Influence of Landscape Diversity and Agricultural Practices on Spider

Total Page:16

File Type:pdf, Size:1020Kb

Influence of Landscape Diversity and Agricultural Practices on Spider COMMUNITY AND ECOSYSTEM ECOLOGY Influence of Landscape Diversity and Agricultural Practices on Spider Assemblage in Italian Vineyards of Langa Astigiana (Northwest Italy) 1 M. ISAIA, F. BONA, AND G. BADINO Environ. Entomol. 35(2): 297Ð307 (2006) ABSTRACT The purpose of this study was to investigate spider assemblages of the Italian vineyards of Langa Astigiana (northwest Italy). Pitfall trapping and standardized hand collecting were combined to have an overall idea of the spider fauna living in this agroecosystem. A total of 138 samples for pitfall sampling and 92 for hand collecting sites were collected at 23 different times over a period of 2 yr (2003 and 2004). The vineyards differ mainly from agricultural practices (certiÞed organic production, production according to EECÕs Council Regulation 2092/91 on biological agriculture and intensive production) and for the heterogeneity of landscape matrix surrounding them. We studied the inßuence of these two factors on spider assemblages applying canonical correspondence analysis and multiresponse permutation procedures (MRPPs). SigniÞcant results of MRPP were analyzed in terms of hunting strategies. SigniÞcant differences are found among groups according to both landscape heterogeneity and agricultural practices, the Þrst resulting more signiÞcantly. Analyzed in terms of hunting strategies, an increase in landscape heterogeneity seems to provide an increase in ambush spiders and specialized predators, whereas an increase in sheet web weavers seems to be related to homogeneous landscapes. KEY WORDS spider assemblages, vineyards, landscape diversity, agricultural practices, hunting strategies BECAUSE OF THEIR ABUNDANCE and feeding habits, spi- al. 2004). The main conclusions of their research are ders play an important role in the trophic web of that (1) despite their vegetation structure, vineyards terrestrial ecosystems (Turnbull 1973, Wise 1993, can host a very diversiÞed and abundant spider com- Hlivko and Rypstra 2003). According to Ekschmit et al. munity, and (2) the maintenance of ground cover (1997), they are a necessary component of efÞcient, between vine rows can play a very important role in sustainable, and low-input agricultural systems. maintaining a spider community. A spider community can undergo rapid changes in In Piedmont (northwest Italy), as in other coun- species composition because of its quick reaction to tries, this kind of agroecosystem is facing intense variations in vegetation structure (Asselin and Baudry transformations, consisting in two apparently opposite 1989). It is inßuenced by agricultural practices (Luc- processes: land abandonment and agricultural inten- zak 1979, Reichert and Lockley 1984) and chemical siÞcation. IntensiÞcation results in the progressive re- treatments (Bajwa and Niazee 2001, Horton et al. moval of small natural landscape elements, thus en- 2001, Koss et al. 2005, see Marc et al. 1999 for an overall hancing the overall loss of heterogeneity and its review). Moreover, landscape ecology gives many ex- consequences on biotic communities (Ruthsatz and amples of the inßuence of landscape heterogeneity, Haber 1981, Harms et al. 1987). spatial structure, and fragmentation on species distri- In this study, we used two sampling techniques bution and community composition (Burel and (pitfall traps and hand collecting on standard areas of Baudry 1999, Vandergast and Gillespie 2004). How- 9m2) to sample both ground-dwellers and spiders that ever, it seems that agricultural practices affect pitfall- live above ground level (web weavers and ambush collected spider community composition more than spiders) and to give an overall idea of the spider landscape heterogeneity (Jeanneret et al. 2003). assemblages living in vineyards. We analyzed the re- Only a few authors have focused on spider assem- sponse of spider assemblages to different agricultural blages in vineyards (Costello and Daane 1997, 1998, practices and to landscape heterogeneity and which of 2003, Beck 1991, Groppali et al. 1997, Genini 2000, the above-mentioned factors is affecting spider assem- Nobre and Meierrose 2000, Nobre et al. 2000, Isaia et blages more. This study also contributes to the knowledge of the spider fauna in vineyards and of the ecology of Italian 1 Corresponding author: Dipartimento di Biologia Animale e dellÕUomo, Universita` di Torino, Via Accademia Albertina, 13Ð10123 species. Indeed, the Italian spider fauna is far from Torino, Italy (e-mail: [email protected]). being satisfactorily known (Pesarini 1995). 0046-225X/06/0297Ð0307$04.00/0 ᭧ 2006 Entomological Society of America 298 ENVIRONMENTAL ENTOMOLOGY Vol. 35, no. 2 Table 1. Sampling sites characterized by Shannon index di- Table 2. Groups according to agricultural practices performed versity applied to the landscape (SHL) of a 200-m-radius circle in the vineyards chosen for the research centered in the vineyard centroid and agricultural practices sorted into three groups Vineyards Description treatments Landscape Agricultural Sites SHL group practices Group B No chemical treatments except sulphur and copper sulfate spraying. In some cases pyrethrum is V1 1.192 1 E sprayed against ßavescence dore`e. V2 1.192 1 E The presence of the herbaceous layer is constant over V3 1.192 1 E the whole year. Grass is mowed once or twice a V4 1.502 2 B year, according to need. V5 1.502 2 B Group E Chemical treatments with insecticides against V6 1.502 1 B ßavescence dore`e, anti-rot compounds (most V7 0.659 0 B treatments are against Botrytis cinerea using V8 0.659 0 B dicarboximidic fungicides like Procymidone), V9 0.659 0 B sulphur spraying, copper, zinc, products with V10 0.604 0 H esaconazol and copper oxiclorur sulphate against V11 0.604 0 H oidium and rots, carbamate pesticides and fungicide V12 1.310 2 H (Mancozeb), mean use of mineral feeds with P, K V13 1.310 2 H and N of 4.5 q/ha. V14 0.697 0 H The presence of the herbaceous layer is not constant V15 0.697 0 E over the whole year. Grass mowing and tilling are V16 0.697 0 E performed once or twice a year, according to need. V17 1.073 0 H Group H Chemical treatments with pre- and post- emergence V18 1.073 0 H herbicides and (mostly glufosinate), insecticides V19 1.073 1 H (mostly against ßavescence dore`e), anti-rot V20 0.663 0 E compounds, sulphur spraying, copper, zinc, V21 0.663 0 E products with esaconazol and copper oxiclorur V22 0.774 0 E sulphate against oidium and rots, carbamate V23 0.774 0 E pesticides and fungicide (different from Mancozeb), mean use of mineral feeds with P, K See Table 2 for details on agricultural practices. and N of 6.5 q/ha. According to SHL values, sites have been assigned to group 0 Agricultural practices reduce dramatically the ground (SHL Ͻ 0.8), group 2 (SHL Ͼ 1.3), or group 1 (in-between values). cover because of the use of herbicides and tilling. B, certiÞed organic production; E, production according to Euro- pean Council Regulation 2092/91; H, intensive production. The environmental characterization of the sampling Materials and Methods sites used for multivariate statistics is based on the Study Area following metrics: Shannon diversity index (Shannon and Weaver 1949) applied to the landscape (SLH), The study area is located in the Langa Astigiana which estimates the evenness of land use categories in (northwest Italy), a zone with a high density of vine- a circle area of 200 m; distance from woods; and mean yards with an annual precipitation of nearly 900 mm. height of the ground cover. We chose 23 sites across Þve areas of Ϸ20 ha each. These are located in the municipalities of Loazzolo, Canelli, Cassinasco, and Costigliole dÕAsti, all of them Spider Sampling belong to the Province of Asti, worldwide known for Following Marc et al. (1999), we used two methods the production of wine. All sampling sites have clay to collect spider assemblages. loam as the prevailing soil texture, a south or south- Pitfall Traps. Pitfall traps of 6.5 cm diameter Þlled west exposure, and roughly the same altitude (250Ð with 20 ml of ethylene glycol 50% were replaced every 350 m a.s.l.) and slope (10Ð15%). The vineyards cho- 3 wk. Sites were randomly selected and sampled in sen for the analysis have a vertical trellis system, the 2003 and 2004. Three samples per year for each of the cultivars are mainly ÔBarberaÕ and ÔMoscatoÕ, and vine 23 selected vineyards were taken from April to July age varies from 8 to 25 yr. Vineyards have been according to Table 3. grouped into three groups (group B, group E, group Hand Collecting in 9-m2 Sample Plots. As suggested H) according to cultural practices (Table 1). Con- by Canard (1981), 9-m2 plots are an optimal choice for cerning agricultural practices, group B is composed of Þeld surveys of hand-collected spider fauna. In our vineyards of certiÞed organic production, group E follows European Council Regulation 2092/91 on bi- ological agriculture, and group H includes intensive Table 3. Sampling design at the 23 vineyards chosen for the analysis farms (see Table 2 for details). With reference to landscape heterogeneity, vineyards are grouped into Collection methods 2003 2004 three groups (group 0, group 1, and group 2) accord- Hand collecting 2 by 23 2 by 23 ing to Shannon index values (SHL) calculated for a (June 21 and July 28) (June 11 and July 30) 200-m-radius circle around the center of each vine- Pitfall traps 3 by 23 3 by 23 yard, deÞned using a geographic information system. (April 27 to May 18 (April 1 to April 21 Shannon indices Ͼ1.3 belong to group 2, Ͻ0.8 to group May 14 to May 27 May 12 to June 2 0, and between values to group 1 (Table 1). June 17 to July 8) June 19 to July 10) April 2006 ISAIA ET AL.: SPIDERS IN ITALIAN VINEYARDS 299 Table 4.
Recommended publications
  • Arachnida: Araneae)
    Iranian Journal of Animal Biosystematics (IJAB) Vol. 1, No. 1, 59-66, 2005 ISSN: 1735-434X Faunistic study of spiders in Khorasan Province, Iran (Arachnida: Araneae) OMID MIRSHAMSI KAKHKI* Zoology Museum, Faculty of Sciences, Ferdowsi University of Mashhad, IRAN The spiders of Iran are still very incompletely known. As a result of the study of spider fauna in different localities of Khorasan Province and other studies which have been done by other workers a total of 26 families, 63 genera and 95 species are recorded from these areas. Distribution in Khorasan Province and in the world, field and some taxonomic notes are given for each species. Available biological or ecological data are provided. Key Words: Araneae, spider fauna, Khorasan, Iran INTRODUCTION The order Araneae ranks seventh in global diversity after the five insect orders (Coleoptera, Hymenoptera, Lepidoptera, Diptera, and Hemiptera) and Acarina among the Arachnids in terms of species described (Coddington and Levi, 1991). Because spiders are not studied thoroughly estimation of total diversity is very difficult. On the basis of records, the faunas of Western Europe, especially England, and Japan are completely known, and areas such as South America, Africa, the pacific region and the Middle East are very poorly known (Coddington and Levi, 1991). Platnick in his World Spider Catalog (2005) has estimated that there are about 38000 species worldwide, arranged in 110 families. Despite this diversity among spiders, limited studies could be found in literature on spider fauna of Iran. Indeed, taxonomic and faunistic studies on spiders of Iran have begun during the last 10 years. Before that our knowledge of Iranian spiders was limited to the studies of some foreign authors such as Roewer (1955); Levi (1959); Kraus & Kraus (1989); Brignoli (1970, 72, 80, 81); Senglet (1974); Wunderlich (1995); Levy & Amitai (1982); Logunov (1999,2001,2004); Logunov et al (1999, 2002); Saaristo et al(1996) .
    [Show full text]
  • SA Spider Checklist
    REVIEW ZOOS' PRINT JOURNAL 22(2): 2551-2597 CHECKLIST OF SPIDERS (ARACHNIDA: ARANEAE) OF SOUTH ASIA INCLUDING THE 2006 UPDATE OF INDIAN SPIDER CHECKLIST Manju Siliwal 1 and Sanjay Molur 2,3 1,2 Wildlife Information & Liaison Development (WILD) Society, 3 Zoo Outreach Organisation (ZOO) 29-1, Bharathi Colony, Peelamedu, Coimbatore, Tamil Nadu 641004, India Email: 1 [email protected]; 3 [email protected] ABSTRACT Thesaurus, (Vol. 1) in 1734 (Smith, 2001). Most of the spiders After one year since publication of the Indian Checklist, this is described during the British period from South Asia were by an attempt to provide a comprehensive checklist of spiders of foreigners based on the specimens deposited in different South Asia with eight countries - Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka. The European Museums. Indian checklist is also updated for 2006. The South Asian While the Indian checklist (Siliwal et al., 2005) is more spider list is also compiled following The World Spider Catalog accurate, the South Asian spider checklist is not critically by Platnick and other peer-reviewed publications since the last scrutinized due to lack of complete literature, but it gives an update. In total, 2299 species of spiders in 67 families have overview of species found in various South Asian countries, been reported from South Asia. There are 39 species included in this regions checklist that are not listed in the World Catalog gives the endemism of species and forms a basis for careful of Spiders. Taxonomic verification is recommended for 51 species. and participatory work by arachnologists in the region.
    [Show full text]
  • Spiders of the Family Thomisidae in Hawaii1
    Pacific Insects 12 (4) : 773-864 25 December 1970 SPIDERS OF THE FAMILY THOMISIDAE IN HAWAII1 By Theodore W. Suman2 Abstract: The spider family Thomisidae in the Hawaiian Islands contains 30 species which constitutes approximately 20 % of the Hawaiian spider fauna. All of the species are endemic to the Hawaiian Islands. The 30 species of Hawaiian Thomisidae are grouped into 2 subfamilies and 5 genera. In the subfamily Misumeninae, 17 of the 21 species are placed in the genus Misumenops which has not been previously recorded for the Hawaiian Islands. The genus Synaema contains 1 species, and the endemic genus Mecaphesa contains 3 species. Five species are synonymized and 9 new species are de­ scribed in this subfamily. In the subfamily Philodrominae, the endemic genus Proernus contains 5 species and the endemic genus Pagiopalus contains 4 species. One genus and 3 species are synonymized, and 1 new species is described in this subfamily. All species are described and 28 of the 30 species are illustrated. Type specimens are missing for the 2 species not illustrated. A key to the subfamilies, genera and species, and data on the distribution and ecology of each species are presented. Information on the biology and phylogeny of the Thomisidae in the Hawaiian Islands is included. The crab-spider family Thomisidae is a moderately large group and is world-wide in distribution. In the Hawaiian Islands, this family consists of 30 species which is ap­ proximately 20 % of the spider fauna. Karsch (1880) described Diaea kanakana (= Misumenops kanakanus), the first Ha­ waiian thomisid, from a group of spiders collected by O.
    [Show full text]
  • A Check List of the Spider Fauna of the Western Soutpansberg, South Africa (Arachnida: Araneae)
    foord.qxd 2005/12/09 10:03 Page 35 A check list of the spider fauna of the Western Soutpansberg, South Africa (Arachnida: Araneae) S.H. FOORD, ANNA S. DIPPENAAR-SCHOEMAN and M. VAN DER MERWE Foord, S.H., Anna S. Dippenaar-Schoeman and M. van der Merwe. 2002. A check list of the spider fauna of the Western Soutpansberg, South Africa (Arachnida: Araneae). Koedoe 45(2): 35–43. Pretoria. ISSN 0075-6458. By virtue of its geological history and geographical location the Soutpansberg consti- tutes a refuge for a high diversity of organisms. The Western Soutpansberg forms part of the Savanna Biome and is presently the area with the highest concentration of Nat- ural Heritage Sites in South Africa. A unique private initiative is under way to improve its national and international conservation status in a bid to conserve the mountain. A checklist of the spider species of the Western Soutpansberg collected over a five-year period is presented. Forty-six families, represented by 109 genera and 127 species have been collected. Of the species collected, 81 (64 %) were wandering spiders and 46 (36 %) web builders. The Thomisidae have the highest number of species (15) followed by the Araneidae and the Salticidae with 10 species each. Ninety-six genera are repre- sented by a single species. Ninety six percent of the species collected are new records for the area. This survey is the first for the area and forms part of the South African National Survey of Arachnida (SANSA). Keywords: biodiversity, guilds, conservancy. S.H. Foord ( ) and M. van der Merwe, Department of Biological Sciences, Universi- ty of Venda, Thohoyandou, 0950, Republic of South Africa; Anna S.
    [Show full text]
  • Title a Revisional Study of the Spider Family Thomisidae (Arachnida
    A revisional study of the spider family Thomisidae (Arachnida, Title Araneae) of Japan( Dissertation_全文 ) Author(s) Ono, Hirotsugu Citation 京都大学 Issue Date 1988-01-23 URL https://doi.org/10.14989/doctor.r6388 Right Type Thesis or Dissertation Textversion author Kyoto University 学位 請 論 文 (主 論 文) 小 野 族 嗣 1灘 灘灘 灘轟 1 . Thomisidae aus Japan. I. Das Genus Tmarus Simon (Arachnida: Araneae). Acta arachnol., 27 (spec. no.): 61-84 (1977). 2 . Thomisidae aus Japan. II. Das Genus Oxytate L.Koch 1878 (Arachnida: Araneae). Senckenb. biol., 58: 245-251 (1978). 3 . Thomisidae aus dem Nepal-Himalaya. I. Das Genus Xysticus C.L.Koch 1835 (Arachnida: Araneae). Senckenb. biol., 59: 267-288 (1978). 4 . Thomisidae aus dem Nepal-Himalaya. II. Das Genus Lysiteles Simon 1895 (Arachnida: Araneae). Senckenb. biol., 60: 91-108 (1979). 5 . Fossile Spinnen aus miozanen Sedimenten des Randecker Maars in SW- Deutschland (Arachnida: Araneae). Jh. Ges. Naturkde. Wurttemberg, 134: 133-141 (1979). (W.Schawaller t 4E1t) 6 . Thomisidae aus Japan. III. Das Genus Lysiteles Simon 1895 (Arachnida: Araneae). Senckenb. biol., 60: 203-217 (1980). 7 . Thomisidae aus dem Nepal-Himalaya. III. Das Genus Stiphropus Gerstaecker 1873, mit Revision der asiatischen Arten (Arachnida: Araneae). Senckenb. biol., 61: 57-76 (1980). 8 . Erstnachweis einer Krabbenspinne (Thomisidae) in dominikanischem Bernstein (Stuttgarter Bernsteinsammlung: Arachnida, Araneae). Stuttgart. Beitr. Naturk., B, (73): 1-13 (1981). 9 . Revision japanischer Spinnen. I. Synonymieeiniger Arten der Familien Theridiidae, Araneidae, Tetragnathidae and Agelenidae (Arachnida: Araneae). Acta arachnol., 30: 1-7 (1981). 10 . Verwandtschaft von Tetrablemma phulchoki Lehtinen 1981 (Araneae: Tetrablemmidae). Senckenb. biol., 62: 349-353 (1982).
    [Show full text]
  • Annotated Checklist of the Spiders of Turkey
    _____________Mun. Ent. Zool. Vol. 12, No. 2, June 2017__________ 433 ANNOTATED CHECKLIST OF THE SPIDERS OF TURKEY Hakan Demir* and Osman Seyyar* * Niğde University, Faculty of Science and Arts, Department of Biology, TR–51100 Niğde, TURKEY. E-mails: [email protected]; [email protected] [Demir, H. & Seyyar, O. 2017. Annotated checklist of the spiders of Turkey. Munis Entomology & Zoology, 12 (2): 433-469] ABSTRACT: The list provides an annotated checklist of all the spiders from Turkey. A total of 1117 spider species and two subspecies belonging to 52 families have been reported. The list is dominated by members of the families Gnaphosidae (145 species), Salticidae (143 species) and Linyphiidae (128 species) respectively. KEY WORDS: Araneae, Checklist, Turkey, Fauna To date, Turkish researches have been published three checklist of spiders in the country. The first checklist was compiled by Karol (1967) and contains 302 spider species. The second checklist was prepared by Bayram (2002). He revised Karol’s (1967) checklist and reported 520 species from Turkey. Latest checklist of Turkish spiders was published by Topçu et al. (2005) and contains 613 spider records. A lot of work have been done in the last decade about Turkish spiders. So, the checklist of Turkish spiders need to be updated. We updated all checklist and prepare a new checklist using all published the available literatures. This list contains 1117 species of spider species and subspecies belonging to 52 families from Turkey (Table 1). This checklist is compile from literature dealing with the Turkish spider fauna. The aim of this study is to determine an update list of spider in Turkey.
    [Show full text]
  • A Checklist of the Spiders of Tanzania
    Journal of East African Natural History 109(1): 1–41 (2020) A CHECKLIST OF THE SPIDERS OF TANZANIA A. Russell-Smith 1, Bailiffs Cottage, Doddington, Sittingbourne Kent ME9 0JU, UK [email protected] ABSTRACT A checklist of all published spider species from Tanzania is provided. For each species, the localities from which it was recorded are noted and a gazetteer of the geographic coordinates of all but a small minority of these localities is included. The results are discussed in terms of family species richness, the completeness of our knowledge of the spider fauna of this country and the likely biases in family composition. Keywords: Araneae, East Africa, faunistics, biodiversity INTRODUCTION Students of spiders are very fortunate in having a complete online catalogue that is continuously updated—the World Spider Catalog (http://www.wsc.nmbe.ch/). The catalogue also provides full text of virtually all the relevant systematic literature, allowing ready access to taxonomic accounts for all species. However, researchers interested in the spiders of a particular country face two problems in using the catalogue: 1. For species that have a widespread distribution, the catalogue often lists only the region (e.g. “East Africa”) or even the continent (“Africa”) from which it is recorded 2. The catalogue itself provides no information on the actual locations from which a species is recorded. There is thus a need for more detailed country checklists, particularly those outside the Palaearctic and Nearctic regions where most arachnologists have traditionally been based. In addition to providing an updated list of species from the country concerned, such catalogues can provide details of the actual locations from which each species has been recorded, together with geographical coordinates when these are available.
    [Show full text]
  • Official Lists and Indexes of Names in Zoology
    Official Lists and Indexes of Names in Zoology Names placed on the Official Lists and Indexes in Opinions and Directions published in Volumes 43 (1986) to 63 (2006) of the Bulletin of Zoological Nomenclature This section lists in alphabetic order every family-group, generic and specific name placed on the Official Lists and Indexes; specific names are given in their original binomen. Names on the Official Lists are in bold type and those on the Official Indexes in non-bold type.The Direction or Opinion number under which each name was placed on the Official List or Index is given at the end of that entry. aalensis, Loligo, Schübler in Zieten, 1832, Die Versteinerungen Württembergs, Expeditum des Werkes ‘Unsere Zeit’, part 5, p. 34 (specific name of the type species of Loligosepia Quenstedt, 1839) (Cephalopoda, Coleoidea). Op. 1914 abbreviatus, Carabus, Fabricius, 1779, Reise nach Norwegen mit Bemerkungen aus der Naturhistorie und Oekonomie, p. 263, ruled under the plenary power not to be given priority over Lesteva angusticollis Mannerheim, 1830 whenever they are considered to be synonyms (Coleoptera). Op. 2086 abbreviatus, Carabus, Fabricius, 1779, Reise nach Norwegen mit Bemerkungen aus der Naturhistorie und Oekonomie, p. 263, ruled under the plenary power not to be given priority over Lesteva angusticollis Mannerheim, 1830 whenever they are considered to be synonyms (Coleoptera). Op. 2086 aberrans, Philonthus, Cameron, 1932, The fauna of British India including Ceylon and Burma. Coleoptera. Staphylinidae, vol. 3, p. 111, ruled under the plenary power to be not invalid by reason of being a junior primary homonym of P. aberrans Sharp, 1876 (Coleoptera).
    [Show full text]
  • Additions to the Crab Spider Fauna of Iran (Araneae: Thomisidae)
    © Arachnologische Gesellschaft e.V. Frankfurt/Main; http://arages.de/ Arachnologische Mitteilungen / Arachnology Letters 53: 1-8 Karlsruhe, April 2017 Additions to the crab spider fauna of Iran (Araneae: Thomisidae) Najmeh Kiany, Saber Sadeghi, Mohsen Kiany, Alireza Zamani & Sheidokht Ostovani doi: 10.5431/aramit5301 Abstract. In this study, the crab spider (Thomisidae) fauna of Fars Province in Iran is investigated and some additional new records are given for both the country and the province. The species Monaeses israeliensis Levy, 1973, Synema anatolica Demir, Aktas & Topçu, 2009, Thomisus unidentatus Dippenaar-Schoeman & van Harten, 2007 and Xysticus abramovi Marusik & Logunov, 1995 are new records for Iran, while Heriaeus spinipalpus Loerbroks, 1983, Ozyptila tricoloripes Strand, 1913, Runcinia grammica (C. L. Koch, 1837), Synema globosum (Fabricius, 1775), Thomisus zyuzini Marusik & Logunov, 1990, Xysticus kaznakovi Utochkin, 1968, X. loeffleriRoewer, 1955 and X. striatipes L. Koch, 1870 are new to the fauna of Fars Province. Keywords: Fars, faunistic study, new records Zusammenfassung. Ergänzungen zur Krabbenspinnenfauna des Iran (Araneae: Thomisidae). Im Rahmen dieser Studie wurden die Krabbenspinnen (Thomisidae) der Fars Provinz im Iran erfasst. Die Arten Monaeses israeliensis Levy, 1973, Synema anatolica Demir, Aktas & Topçu, 2009, Thomisus unidentatus Dippenaar-Schoeman & van Harten, 2007 und Xysticus abramovi Marusik & Logunov, 1995 sind Neunachweise für den Iran, während Heriaeus spinipalpus Loerbroks, 1983, Ozyptila tricoloripes Strand, 1913, Runcinia grammica (C. L. Koch, 1837), Synema globosum (Fabricius, 1775), Thomisus zyuzini Marusik & Logunov, 1990, Xysticus kaznakovi Utochkin, 1968, X. loeffleri Roewer, 1955 und X. striatipes L. Koch, 1870 erstmals für die Fars Provinz nachgewiesen werden konnten. In spite of recent increases in the faunistic data on Thomisi- Results dae in Iran, the family must be considered as poorly studied A total number of 14 species from seven genera were iden- in this country (Zamani et al.
    [Show full text]
  • Voltage-Gated Sodium Channels Are Targets for Toxins from the Venom of the Spider Heriaeus Melloteei1 A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Lirias ISSN 1990-7478, Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2009, Vol. 3, No. 3, pp. 245–253. © Pleiades Publishing, Ltd., 2009. Original Russian Text © A.S. Nikolsky, B. Billen, A.A. Vassilevski, S.Yu. Filkin, J. Tytgat, E.V. Grishin, 2009, published in Biologicheskie Membrany, 2009, Vol. 26, No. 3, pp. 249– 257. Voltage-Gated Sodium Channels Are Targets for Toxins from the Venom of the Spider Heriaeus melloteei1 A. S. Nikolskya, B. Billenb, A. A. Vassilevskia, S. Yu. Filkina, J. Tytgatb, E. V. Grishina aShemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow, 117997 Russia; e-mail: [email protected]. bLaboratory of Toxicology, University of Leuven, Campus Gasthuisberg, O&N 2, P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium Received March 27, 2009 Abstract—Three novel peptides were isolated from the venom of the spider Heriaeus melloteei (Thomisidae) and characterized. The peptides named Hm-1, 2 and 3 blocked voltage-gated Na+ channels at concentrations in the order of 100 nM. Activity of the purified peptides was investigated in Na+ channel isoforms of mammals and insects. Hm-1 and 2 appeared to act as pore blockers, whereas Hm-3 modulated the channel activation pro- cess. The toxins described exhibit minor similarity with other known peptides and may therefore constitute new groups of Na≅+ channel ligands. Key words: spider venom, voltage-gated sodium channels, toxin, peptide structure, blocker, modulator DOI: 10.1134/S1990747809030027 1 Voltage-gated sodium (Na+) channels play a crucial segments S5 and S6 of the four domains, which also role in processes of propagating action potentials in contain the selectivity filter.
    [Show full text]
  • Scope: Munis Entomology & Zoology Publishes a Wide Variety of Papers
    _____________ Mun. Ent. Zool. Vol. 8, No. 2, June 2013___________ I This volume is dedicated to the lovely memory of the chief-editor Hüseyin Özdikmen’s khoja HACI AHMET KAYHAN MUNIS ENTOMOLOGY & ZOOLOGY Ankara / Turkey II _____________ Mun. Ent. Zool. Vol. 8, No. 2, June 2013___________ Scope: Munis Entomology & Zoology publishes a wide variety of papers on all aspects of Entomology and Zoology from all of the world, including mainly studies on systematics, taxonomy, nomenclature, fauna, biogeography, biodiversity, ecology, morphology, behavior, conservation, paleobiology and other aspects are appropriate topics for papers submitted to Munis Entomology & Zoology. Submission of Manuscripts: Works published or under consideration elsewhere (including on the internet) will not be accepted. At first submission, one double spaced hard copy (text and tables) with figures (may not be original) must be sent to the Editors, Dr. Hüseyin Özdikmen for publication in MEZ. All manuscripts should be submitted as Word file or PDF file in an e-mail attachment. If electronic submission is not possible due to limitations of electronic space at the sending or receiving ends, unavailability of e-mail, etc., we will accept “hard” versions, in triplicate, accompanied by an electronic version stored in a floppy disk, a CD-ROM. Review Process: When submitting manuscripts, all authors provides the name, of at least three qualified experts (they also provide their address, subject fields and e-mails). Then, the editors send to experts to review the papers. The review process should normally be completed within 45-60 days. After reviewing papers by reviwers: Rejected papers are discarded. For accepted papers, authors are asked to modify their papers according to suggestions of the reviewers and editors.
    [Show full text]
  • Spiders in South African Cotton Fields: Species Diversity and Abundance (Arachnida: Araneae)
    Spiders in South African cotton fields: species diversity and abundance (Arachnida: Araneae) AS Dippenaar-Schoeman, A M van den Berg & A van den Berg ARC - Plant Protection Research Institute, Private Bag X134, Pretoria, 0001 South Africa Dlppenaar-Schoeman A S, Van den Berg A M & Van den Berg A 1999. Spiders in South African cotton fields: species diversity and abundance (Arachnida: Araneae). African Plant Protection 5(2): 93-103. Spiders were collected from 1979 t01997 in five cotton-growing areas in South Africa. Thirty-one families, repre- sented by 92 genera and 127 species, were recorded. The Thomisidae were the richest in species (21) followed by the Araneidae (18) and Theridiidae (11). The most abundant spider species were Pardosa crasslpalpis Purcell (Lycosidae), Enoplognatha sp. (Theridiidae), Eperigone fradeorum (Berland) (Linyphiidae) and Misumenops rubrodecorata Millot (Thomisidae). Wandering spiders constituted 61.5 % and web-builders 38.5 % of all spiders collected. Information on guilds, relative abundance and distribution are provided for each species in an annotated checklist. Spiders 'are common and occur in high numbers in cotton fields and prey on a variety of cotton pests. Although spiders probably are incapable of controlling major pest outbreaks by themselves their role in a complex predatory community may be important in regulating pest species at low densities early in the season and between peaks of pest species activity. They therefore could play an important role in keeping pests at endemic levels and preventing outbreaks Key words: agroecosystems, Araneae, biodiversity, cotton, relative abundance, South Africa, spiders. Cotton (Gossypium spp.) is one of South Africa's (Nyffeler et al.
    [Show full text]