Spiders in South African Cotton Fields: Species Diversity and Abundance (Arachnida: Araneae)

Total Page:16

File Type:pdf, Size:1020Kb

Spiders in South African Cotton Fields: Species Diversity and Abundance (Arachnida: Araneae) Spiders in South African cotton fields: species diversity and abundance (Arachnida: Araneae) AS Dippenaar-Schoeman, A M van den Berg & A van den Berg ARC - Plant Protection Research Institute, Private Bag X134, Pretoria, 0001 South Africa Dlppenaar-Schoeman A S, Van den Berg A M & Van den Berg A 1999. Spiders in South African cotton fields: species diversity and abundance (Arachnida: Araneae). African Plant Protection 5(2): 93-103. Spiders were collected from 1979 t01997 in five cotton-growing areas in South Africa. Thirty-one families, repre- sented by 92 genera and 127 species, were recorded. The Thomisidae were the richest in species (21) followed by the Araneidae (18) and Theridiidae (11). The most abundant spider species were Pardosa crasslpalpis Purcell (Lycosidae), Enoplognatha sp. (Theridiidae), Eperigone fradeorum (Berland) (Linyphiidae) and Misumenops rubrodecorata Millot (Thomisidae). Wandering spiders constituted 61.5 % and web-builders 38.5 % of all spiders collected. Information on guilds, relative abundance and distribution are provided for each species in an annotated checklist. Spiders 'are common and occur in high numbers in cotton fields and prey on a variety of cotton pests. Although spiders probably are incapable of controlling major pest outbreaks by themselves their role in a complex predatory community may be important in regulating pest species at low densities early in the season and between peaks of pest species activity. They therefore could play an important role in keeping pests at endemic levels and preventing outbreaks Key words: agroecosystems, Araneae, biodiversity, cotton, relative abundance, South Africa, spiders. Cotton (Gossypium spp.) is one of South Africa's (Nyffeler et al. 1994a). Predation is not limited to five major field crops, and is steadily increasing in adult insects but includes the egg and larval or importance. Several pests that attack cotton have nymphal stages as well (Whitcomb 1974; Nyffeler a wide range of natural enemies, of which spiders et al. 1990). Spiders use diverse foraging modes are prominent ones (Van den Berg & Dippenaar- and hunting strategies to obtain prey, and could Schoeman 1991) whose 'potential as biological play an important role in the control of pest species control agents have nevertheless been largely ig- (Dippenaar-Schoeman 1976; Sterling et al. 1992). nored in applied scientific research' in South Africa. A single species may not be able to control a single Spider communities on cotton in the USA have pest species but spider assemblages can be effec- been widely studied, with more than 300 species tive in stabilising pest populations. The buffering having been recorded (Whitcomb & Bell 1964; effect of spiders can only be achieved through the Leigh & Hunter 1969; Young & Lockley 1985; combined activities of a variety of species in a Nyffeler & co-workers 1987-1994). Bishop & given habitat. Therefore, comprehensive surveys, Blood (1977, 1981) and Bishop (1979,1980,1981) to determine species diversity and numerically reported on work carried out in Australia while Wu dominant species and their abundance, are essen- et al. (1981), Zhao (1984) and Zhao et al. (1989) tial before experiments on their effectiveness can studied spiders on cotton in Asia. be conducted (Green 1996). Little information is available on the incidence of This paper presents the results of a survey of spiders on cotton in Africa", In southern Africa, spiders on cotton in South Africa that formed part Brettell & Burgess (1973) made some observa- of the South African National Survey of Arachnida tions on spiders on cotton in Zimbabwe, while (SANSA) in agroecosystems. We provide a check- Coates (1974), Van den Berg (1989), Van den list of spiders commonly found in some cotton- Berg et al. (1990) and Van den Berg & Dippenaar- growing areas of South Africa, with reference also Schoeman (1991) reported on spiders associated to spider guilds, abundance and distribution. with cotton in South Africa. Spiders are among the first predacious arthro- Materials and methods pods to colonise newly-planted cotton fields and their populations gradually build up in size as plant Study areas density and prey numbers increase (Dinkins et al. Spiders were collected in the following five 1970; Van den Berg 1989; Van den Berg & cotton-growing areas in South Africa from 1979 to Dippenaar-Schoeman 1991). Most spider species 1997: Hartebeespoort Experiment Farm near are polyphagous and feed on a variety of prey Brits, North-West Province (25.36S, 27.49E), 94 African Plant Protection vol. 5, no. 2, August 1999 Loskop Research Station (25.10S, 29.24E) and wander around in search of prey. The wandering Oudestad Experiment Farm near Groblersdal spiders can further be divided into plant wanderers (25.12S, 29.12E), Northern Province, and Rust de (PW) and ground wanderers (GW). Web-builders Winter (25.15S, 28.29E) and farms near Marble construct orb webs (OWB), space webs (SPWB), Hall (25.00S, 29.25E) in Mpumalanga. sheet webs (SWB), funnel webs (FWB) and cribellated webs (CWB). Sampling techniques Feedingexperiments.Some of the common spider Spiders were collected from mainly two zones in species were subjected to feeding experiments in cotton fields, using the following techniques: the laboratory where they were presented with a i. Ground wanderers were sampled in pit-traps selection of pest species found on cotton. (Viljoen 1976) between the cotton rows. The traps were usually operational during the entire Results and discussion cotton season. Specimens were removed at weekly intervals. Pit-trapping was carried out in Species recorded four of the five study areas. Table 1 lists the spider species collected, the ii. Plant wanderers were sampled by hand guilds that they occupy, and their relative abun- (Marble Hall), with a sweepnet or beating tray dance and distribution. Thirty-one spider families, (Rust de Winter, Loskop Research Station), or represented by 92 genera and 127 species, were with the whole-plant bag-sampling method collected in the five cotton-growing areas. This (Brits), where the whole plant is removed from compares well with the spider assemblages in the field and spiders collected by hand and cotton fields in Arkansas (19 families, 102 genera aspirator in the laboratory (Van den Berg 1989; and 189 spp.; Heiss et a!. 1988) and in China (20 Van den Berg et a!. 1990). families and 130 spp.; Zhao 1984), but the families Juveniles of some families were reared to matu- and genera differ since the African fauna is dis- rity for species identification. A large number of tinctly different from those of other continents preserved juveniles were unidentifiable. In addi- (Dippenaar-Schoeman & Jocque 1997). tion, some specimens could not be identified to The Thomisidae were represented by the high- species owing to the unresolved taxonomy of their est number of species (21) (Table 1), followed by families. All material is in the National Collection of the Araneidae (18) and the Theridiidae (11). Four- Arachnida, ARC - Plant Protection Research Insti- teen families were represented by single species. tute, Pretoria. The most abundant species were Pardosa crassi- palpis Purcell (Lycosidae), Enoplognatha sp. Sampling period (Theridiidae), Eperigone fradeorum (Berland) Various aspects of cotton production have been (Linyphiidae) and Misumenops rubrodecorata studied at ARC - PPRI over the last 20 years, and Millot (Thomisidae). included sampling of spiders during the 1979-1980 The family and species dominance differs from (Oudestad), 1980-1988 (Hartebeespoort), 1980- those reported from the USA and China. Dean 1981 (Rust de Winter), 1981-1982 (Loskopdam) et a!. (1982) reported that 23 % of the spiders on and 1995-1997 (Marble Hall) growing seasons. cotton in Texas belonged to the Oxyopidae (Oxyopes salticus Hentz) followed by Lycosidae Experimental procedure (Pardosa milvina Hentz and P. pauxilla Montgom- Abundance. The following relative abundance ery), Thomisidae (Misumenops celer Hentz), categories were used: (1) common, three or more Tetragnathidae (Tetragnatha laboriosa Hentz), specimens collected per week; (2) occasional, Dictynidae (Phantyna segregata (Gertsch & 6-30 spiders per season; (3 ) rare, six or fewer Mulaik)) and Miturgidae (Cheiracanthium spiders per season. inclusum Hentz). In China (Zhao 1984) the domi- Guild. A guild is a group of species potentially nant families were Linyphiidae (Micryphantes competing for jointly exploited, limited resources graminicola (Sundevall), Lycosidae (Pardosa (sensu Polis & McCormick 1986). The following astrigera L Koch), Thomisidae (Misumenops guilds were recognised based on foraging behav- tricuspidatus Fabricius) and Theridiidae iour: web-builders (WB) - spiders that snare their (Coleosoma octomaculatum B6senberg & prey with silk: wanderers (W) - spiders that Strand). • Dippenaar-Schoeman et al.: Spiders in South African cotton fields 95 Guilds common species collected from soil at Marble Hall, followed by Microlinyphia sterilis (Pavesi) Web-builders and Ostearius me/anopygius (0 P.-Cambridge). In the present study, 49 species (38.5 %), repre- Erigone irrita Jacque and Microlinyphia sterilis sented by 11 families, were web-builders. The were found in association with the red spider mite Araneidae (18 spp.), Linyphiidae (10 spp.) and Tetranychus lombardiniiBaker & Pritchard (Meyer Theridiidae (11 spp.) were the families most often 1996). encountered. In China, the Iinyphiid Micryphantes graminicola Araneidae. Araneids are orb-web spiders, was the
Recommended publications
  • A Checklist of the Non -Acarine Arachnids
    Original Research A CHECKLIST OF THE NON -A C A RINE A R A CHNIDS (CHELICER A T A : AR A CHNID A ) OF THE DE HOOP NA TURE RESERVE , WESTERN CA PE PROVINCE , SOUTH AFRIC A Authors: ABSTRACT Charles R. Haddad1 As part of the South African National Survey of Arachnida (SANSA) in conserved areas, arachnids Ansie S. Dippenaar- were collected in the De Hoop Nature Reserve in the Western Cape Province, South Africa. The Schoeman2 survey was carried out between 1999 and 2007, and consisted of five intensive surveys between Affiliations: two and 12 days in duration. Arachnids were sampled in five broad habitat types, namely fynbos, 1Department of Zoology & wetlands, i.e. De Hoop Vlei, Eucalyptus plantations at Potberg and Cupido’s Kraal, coastal dunes Entomology University of near Koppie Alleen and the intertidal zone at Koppie Alleen. A total of 274 species representing the Free State, five orders, 65 families and 191 determined genera were collected, of which spiders (Araneae) South Africa were the dominant taxon (252 spp., 174 genera, 53 families). The most species rich families collected were the Salticidae (32 spp.), Thomisidae (26 spp.), Gnaphosidae (21 spp.), Araneidae (18 2 Biosystematics: spp.), Theridiidae (16 spp.) and Corinnidae (15 spp.). Notes are provided on the most commonly Arachnology collected arachnids in each habitat. ARC - Plant Protection Research Institute Conservation implications: This study provides valuable baseline data on arachnids conserved South Africa in De Hoop Nature Reserve, which can be used for future assessments of habitat transformation, 2Department of Zoology & alien invasive species and climate change on arachnid biodiversity.
    [Show full text]
  • Archiv Für Naturgeschichte
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Archiv für Naturgeschichte Jahr/Year: 1905 Band/Volume: 71-2_2 Autor(en)/Author(s): Lucas Robert Artikel/Article: Arachnida für 1904. 925-993 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Arachnida fiir 1904. Bearbeitet von Dr. Robert Lucas. A. Publikationen (Autoren alphabetisch). d'Agostino, A. P. Prima nota dei Ragni deU'Avelliiiese. Avellino 1/8 4 pp. Banks, Nathan (1). Some spiders and mites from Bermuda Islands. Trans. Connect. Acad. vol. XI, 1903 p. 267—275. — {%), The Arachnida of Florida. Proc. Acad. Philad. Jan. 1904 p. 120—147, 2 pls. (VII u. VIII). — (3). Some Arachnida from CaUfornia. Proc. Californ. Acad. III No. 13. p. 331—374, pls. 38—41. — (4). Arachnida (in) Alaska; from the Harriman Alaska Ex- pedition vol. VIII p. 37—45, 11 pls. — Abdruck der Publikation von 1900 aus d. Proc. Washington Acad. vol. II p. 477—486. Berthoumieu, L' Abbe. Revision de l'entomologie dans 1' Antiquite. Arachnides p. 197—200 (Chelifer, Scorpiones, Galeodes, Aranea, Ixodes, Tyroglyphus et Cheyletus). Eev. Sei. Bourbonnais 1904, p. 167. Bolton, H. The Palaeontology of the Lancashire Goal Measures. Manchester. Mus. Owens Coli. Publ. 50. Mus. Handb. p. 378—415. — Abdruck aus Trans. Manchester geol. min. Soc. vol. 28. Brown, Rob. (I). Rectifications tardives mais necessaires. Proc- verb. Soc. Linn. Bordeaux, vol. 59 p. LXVIII—LXX. — Auch über Arachniden. Calman, W. T. Arachnida in Zool. Record for 1903 vol. XL. XI 47 pp. Cambridge, F. 0. Pickard. 1901. Further Contributions towards the Knowledge of the Arachnida of Epping Forest.
    [Show full text]
  • Diversity of Simonid Spiders (Araneae: Salticidae: Salticinae) in India
    IJBI 2 (2), (DECEMBER 2020) 247-276 International Journal of Biological Innovations Available online: http://ijbi.org.in | http://www.gesa.org.in/journals.php DOI: https://doi.org/10.46505/IJBI.2020.2223 Review Article E-ISSN: 2582-1032 DIVERSITY OF SIMONID SPIDERS (ARANEAE: SALTICIDAE: SALTICINAE) IN INDIA Rajendra Singh1*, Garima Singh2, Bindra Bihari Singh3 1Department of Zoology, Deendayal Upadhyay University of Gorakhpur (U.P.), India 2Department of Zoology, University of Rajasthan, Jaipur (Rajasthan), India 3Department of Agricultural Entomology, Janta Mahavidyalaya, Ajitmal, Auraiya (U.P.), India *Corresponding author: [email protected] Received: 01.09.2020 Accepted: 30.09.2020 Published: 09.10.2020 Abstract: Distribution of spiders belonging to 4 tribes of clade Simonida (Salticinae: Salticidae: Araneae) reported in India is dealt. The tribe Aelurillini (7 genera, 27 species) is represented in 16 states and in 2 union territories, Euophryini (10 genera, 16 species) in 14 states and in 4 union territories, Leptorchestini (2 genera, 3 species) only in 2 union territories, Plexippini (22 genera, 73 species) in all states except Mizoram and in 3 union territories, and Salticini (3 genera, 11 species) in 15 states and in 4 union terrioties. West Bengal harbours maximum number of species, followed by Tamil Nadu and Maharashtra. Out of 129 species of the spiders listed, 70 species (54.3%) are endemic to India. Keywords: Aelurillini, Euophryini, India, Leptorchestini, Plexippini, Salticidae, Simonida. INTRODUCTION Hisponinae, Lyssomaninae, Onomastinae, Spiders are chelicerate arthropods belonging to Salticinae and Spartaeinae. Out of all the order Araneae of class Arachnida. Till to date subfamilies, Salticinae comprises 93.7% of the 48,804 described species under 4,180 genera and species (5818 species, 576 genera, including few 128 families (WSC, 2020).
    [Show full text]
  • Overgrazed Shrublands Support High Taxonomic, Functional and Temporal
    Ecological Indicators 103 (2019) 599–609 Contents lists available at ScienceDirect Ecological Indicators journal homepage: www.elsevier.com/locate/ecolind Overgrazed shrublands support high taxonomic, functional and temporal diversity of Mediterranean ground spider assemblages T ⁎ Dimitris Kaltsasa, , Eleni Panayiotoub, Konstantinos Kougioumoutzisc, Maria Chatzakid a Don Daleziou 45, 382 21 Volos, Greece b Palagia Alexandroupolis, PO Box 510, 681 00 Alexandroupolis, Greece c Laboratory of Systematic Botany, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece d Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 681 00 Alexandroupolis, Greece ARTICLE INFO ABSTRACT Keywords: The phryganic and maquis shrublands form the most typical vegetal formations in the Eastern Mediterranean Indicator species that since thousands of years have been subject to various types of anthropogenic disturbance, including grazing. Gnaphosidae We studied the impact of sheep and goat grazing on 50 assemblages of ground spiders (Araneae: Gnaphosidae) in Crete phryganic, maquis and forest habitats from zero to 2000 m elevation on Crete, Greece using pitfall traps for one Maquis year at each sampling site. In total, 58 gnaphosid species and 16,592 individuals were collected. Cretan endemic Livestock grazing Gnaphosidae were negatively affected by intensive grazing and, contrary to findings on other taxa studied on the Habitat degradation island, they were sparse and rare throughout the study area. The species composition of gnaphosid assemblages was primarily determined by elevation. Trachyzelotes lyonneti, Urozelotes rusticus, Zelotes scrutatus, Anagraphis pallens and Berinda amabilis proved to be significant indicators of overgrazing. The vast majority of spiders belonging to synanthropic and nationally red-listed species were found in overgrazed sites.
    [Show full text]
  • Spiders of the Hawaiian Islands: Catalog and Bibliography1
    Pacific Insects 6 (4) : 665-687 December 30, 1964 SPIDERS OF THE HAWAIIAN ISLANDS: CATALOG AND BIBLIOGRAPHY1 By Theodore W. Suman BISHOP MUSEUM, HONOLULU, HAWAII Abstract: This paper contains a systematic list of species, and the literature references, of the spiders occurring in the Hawaiian Islands. The species total 149 of which 17 are record­ ed here for the first time. This paper lists the records and literature of the spiders in the Hawaiian Islands. The islands included are Kure, Midway, Laysan, French Frigate Shoal, Kauai, Oahu, Molokai, Lanai, Maui and Hawaii. The only major work dealing with the spiders in the Hawaiian Is. was published 60 years ago in " Fauna Hawaiiensis " by Simon (1900 & 1904). All of the endemic spiders known today, except Pseudanapis aloha Forster, are described in that work which also in­ cludes a listing of several introduced species. The spider collection available to Simon re­ presented only a small part of the entire Hawaiian fauna. In all probability, the endemic species are only partly known. Since the appearance of Simon's work, there have been many new records and lists of introduced spiders. The known Hawaiian spider fauna now totals 149 species and 4 subspecies belonging to 21 families and 66 genera. Of this total, 82 species (5596) are believed to be endemic and belong to 10 families and 27 genera including 7 endemic genera. The introduced spe­ cies total 65 (44^). Two unidentified species placed in indigenous genera comprise the remaining \%. Seventeen species are recorded here for the first time. In the catalog section of this paper, families, genera and species are listed alphabetical­ ly for convenience.
    [Show full text]
  • Final Project Completion Report
    CEPF SMALL GRANT FINAL PROJECT COMPLETION REPORT Organization Legal Name: - Tarantula (Araneae: Theraphosidae) spider diversity, distribution and habitat-use: A study on Protected Area adequacy and Project Title: conservation planning at a landscape level in the Western Ghats of Uttara Kannada district, Karnataka Date of Report: 18 August 2011 Dr. Manju Siliwal Wildlife Information Liaison Development Society Report Author and Contact 9-A, Lal Bahadur Colony, Near Bharathi Colony Information Peelamedu Coimbatore 641004 Tamil Nadu, India CEPF Region: The Western Ghats Region (Sahyadri-Konkan and Malnad-Kodugu Corridors). 2. Strategic Direction: To improve the conservation of globally threatened species of the Western Ghats through systematic conservation planning and action. The present project aimed to improve the conservation status of two globally threatened (Molur et al. 2008b, Siliwal et al., 2008b) ground dwelling theraphosid species, Thrigmopoeus insignis and T. truculentus endemic to the Western Ghats through systematic conservation planning and action. Investment Priority 2.1 Monitor and assess the conservation status of globally threatened species with an emphasis on lesser-known organisms such as reptiles and fish. The present project was focused on an ignored or lesser-known group of spiders called Tarantulas/ Theraphosid spiders and provided valuable information on population status and potential conservation sites in Uttara Kannada district, which will help in future monitoring and assessment of conservation status of the two globally threatened theraphosid species T. insignis and Near Threatened T. truculentus. Investment Priority 2.3. Evaluate the existing protected area network for adequate globally threatened species representation and assess effectiveness of protected area types in biodiversity conservation.
    [Show full text]
  • References (The Literature Survey Was Completed in the Spring of 1995)
    References (The literature survey was completed in the Spring of 1995) Abdullah MAR, Abulfatih HA (1995) Predation of Acacia seeds by bruchid beetles and its relation to altitudinal gradient in south-western Saudi Arabia. J Arid Environ 29:99- 105 Abramsky Z, Pinshow B (1989) Changes in foraging effort in two gerbil species with habitat type and intra- and interspecific activity. Oikos 56:43-53 Abramsky Z, Rosenzweig ML, Pins how BP, Brown JS, Kotler BP, Mitchell WA (1990) Habitat selection: an experimental field test with two gerbil species. Ecology 71:2358-2369 Abramsky Z, Shachak M, Subrach A, Brand S, Alfia H (1992) Predator-prey relationships: rodent-snail interaction in the Central Negev Desert ofIsrael. Oikos 65:128-133 Abushama FT (1972) The repugnatorial gland of the grasshopper Poecilocerus hiero­ glyphicus (Klug). J Entomol Ser A Gen EntomoI47:95-100 Abushama FT (1984) Epigeal insects. In: Cloudsley-Thompson JL (ed) Sahara desert (Key environments). Pergamon Press, Oxford, pp 129-144 Alexander AJ (1958) On the stridulation of scorpions. Behaviour 12:339-352 Alexander AJ (1960) A note on the evolution of stridulation within the family Scorpioni­ dae. Proc Zool Soc Lond 133:391-399 Alexander RD (1974) The evolution of social behaviour. Annu Rev Ecol Syst 5:325-383 AlthoffDM, Thompson IN (1994) The effects of tail autotomy on survivorship and body growth of Uta stansburiana under conditions of high mortality. Oecologia 100:250- 255 Applin DG, Cloudsley-Thompson JL, Constantinou C (1987) Molecular and physiological mechanisms in chronobiology - their manifestations in the desert ecosystem. J Arid Environ 13:187-197 Arnold EN (1984) Evolutionary aspects of tail shedding in lizards and their relatives.
    [Show full text]
  • Araneae, Theridiidae)
    Phelsuma 14; 49-89 Theridiid or cobweb spiders of the granitic Seychelles islands (Araneae, Theridiidae) MICHAEL I. SAARISTO Zoological Museum, Centre for Biodiversity University of Turku,FIN-20014 Turku FINLAND [micsaa@utu.fi ] Abstract. - This paper describes 8 new genera, namely Argyrodella (type species Argyrodes pusillus Saaristo, 1978), Bardala (type species Achearanea labarda Roberts, 1982), Nanume (type species Theridion naneum Roberts, 1983), Robertia (type species Theridion braueri (Simon, 1898), Selimus (type species Theridion placens Blackwall, 1877), Sesato (type species Sesato setosa n. sp.), Spinembolia (type species Theridion clabnum Roberts, 1978), and Stoda (type species Theridion libudum Roberts, 1978) and one new species (Sesato setosa n. sp.). The following new combinations are also presented: Phycosoma spundana (Roberts, 1978) n. comb., Argyrodella pusillus (Saaristo, 1978) n. comb., Rhomphaea recurvatus (Saaristo, 1978) n. comb., Rhomphaea barycephalus (Roberts, 1983) n. comb., Bardala labarda (Roberts, 1982) n. comb., Moneta coercervus (Roberts, 1978) n. comb., Nanume naneum (Roberts, 1983) n. comb., Parasteatoda mundula (L. Koch, 1872) n. comb., Robertia braueri (Simon, 1898). n. comb., Selimus placens (Blackwall, 1877) n. comb., Sesato setosa n. gen, n. sp., Spinembolia clabnum (Roberts, 1978) n. comb., and Stoda libudum (Roberts, 1978) n. comb.. Also the opposite sex of four species are described for the fi rst time, namely females of Phycosoma spundana (Roberts, 1978) and P. menustya (Roberts, 1983) and males of Spinembolia clabnum (Roberts, 1978) and Stoda libudum (Roberts, 1978). Finally the morphology and terminology of the male and female secondary genital organs are discussed. Key words. - copulatory organs, morphology, Seychelles, spiders, Theridiidae. INTRODUCTION Theridiids or comb-footed spiders are very variable in general apperance often with considerable sexual dimorphism.
    [Show full text]
  • The Case of Embrik Strand (Arachnida: Araneae) 22-29 Arachnologische Mitteilungen / Arachnology Letters 59: 22-29 Karlsruhe, April 2020
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arachnologische Mitteilungen Jahr/Year: 2020 Band/Volume: 59 Autor(en)/Author(s): Nentwig Wolfgang, Blick Theo, Gloor Daniel, Jäger Peter, Kropf Christian Artikel/Article: How to deal with destroyed type material? The case of Embrik Strand (Arachnida: Araneae) 22-29 Arachnologische Mitteilungen / Arachnology Letters 59: 22-29 Karlsruhe, April 2020 How to deal with destroyed type material? The case of Embrik Strand (Arachnida: Araneae) Wolfgang Nentwig, Theo Blick, Daniel Gloor, Peter Jäger & Christian Kropf doi: 10.30963/aramit5904 Abstract. When the museums of Lübeck, Stuttgart, Tübingen and partly of Wiesbaden were destroyed during World War II between 1942 and 1945, also all or parts of their type material were destroyed, among them types from spider species described by Embrik Strand bet- ween 1906 and 1917. He did not illustrate type material from 181 species and one subspecies and described them only in an insufficient manner. These species were never recollected during more than 110 years and no additional taxonomically relevant information was published in the arachnological literature. It is impossible to recognize them, so we declare these 181 species here as nomina dubia. Four of these species belong to monotypic genera, two of them to a ditypic genus described by Strand in the context of the mentioned species descriptions. Consequently, without including valid species, the five genera Carteroniella Strand, 1907, Eurypelmella Strand, 1907, Theumella Strand, 1906, Thianella Strand, 1907 and Tmeticides Strand, 1907 are here also declared as nomina dubia. Palystes modificus minor Strand, 1906 is a junior synonym of P.
    [Show full text]
  • The Abundance and Species Richness (Araneae: Arachnida) Associated with a Riverine Thicket, Rocky Outcrop and Aloe Marlothii
    THE ABUNDANCE AND SPECIES RICHNESS OF THE SPIDERS (ARANEAE: ARACHNIDA) ASSOCIATED WITH A RIVERINE AND SWEET THORN THICKET, ROCKY OUTCROP AND ALOE MARLOTHII THICKET IN THE POLOKWANE NATURE RESERVE, LIMPOPO PROVINCE by THEMBILE TRACY KHOZA Submitted in fulfillment of the requirements for the degree of Master of Science in Zoology, in the School of Molecular and Life Sciences in the Faculty of Science and Agriculture, University of Limpopo, South Africa. 2008 SUPERVISOR: Prof S.M. DIPPENAAR CO-SUPERVISOR: Prof A.S. DIPPENAAR-SCHOEMAN Declaration I declare that the dissertation hereby submitted to the University of Limpopo for the degree of Master of Science in Zoology has not previously been submitted by me for a degree at this or any other university, that it is my own work in design and in execution, and that all material contained therein has been duly acknowledged. T.T. Khoza i Abstract Spiders are abundant and they play a major role in ecosystems. Few studies have been conducted throughout South Africa to determine the diversity and distribution of spiders. The current study was initiated to determine the species richness and diversity and to compile a checklist of spiders found at the Polokwane Nature Reserve. This survey was the first collection of spiders in the reserve and provides valuable data for the management of the reserve as well as to the limited existing information on the Savanna Biome. It will also improve our knowledge of spiders of the Limpopo Province and contribute to the South African National Survey of Arachnida database. The study was conducted from the beginning of March 2005 to the end of February 2006.
    [Show full text]
  • Phylogeny of Entelegyne Spiders: Affinities of the Family Penestomidae
    Molecular Phylogenetics and Evolution 55 (2010) 786–804 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogeny of entelegyne spiders: Affinities of the family Penestomidae (NEW RANK), generic phylogeny of Eresidae, and asymmetric rates of change in spinning organ evolution (Araneae, Araneoidea, Entelegynae) Jeremy A. Miller a,b,*, Anthea Carmichael a, Martín J. Ramírez c, Joseph C. Spagna d, Charles R. Haddad e, Milan Rˇezácˇ f, Jes Johannesen g, Jirˇí Král h, Xin-Ping Wang i, Charles E. Griswold a a Department of Entomology, California Academy of Sciences, 55 Music Concourse Drive, Golden Gate Park, San Francisco, CA 94118, USA b Department of Terrestrial Zoology, Nationaal Natuurhistorisch Museum Naturalis, Postbus 9517 2300 RA Leiden, The Netherlands c Museo Argentino de Ciencias Naturales – CONICET, Av. Angel Gallardo 470, C1405DJR Buenos Aires, Argentina d William Paterson University of New Jersey, 300 Pompton Rd., Wayne, NJ 07470, USA e Department of Zoology & Entomology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa f Crop Research Institute, Drnovská 507, CZ-161 06, Prague 6-Ruzyneˇ, Czech Republic g Institut für Zoologie, Abt V Ökologie, Universität Mainz, Saarstraße 21, D-55099, Mainz, Germany h Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic i College of Life Sciences, Hebei University, Baoding 071002, China article info abstract Article history: Penestomine spiders were first described from females only and placed in the family Eresidae. Discovery Received 20 April 2009 of the male decades later brought surprises, especially in the morphology of the male pedipalp, which Revised 17 February 2010 features (among other things) a retrolateral tibial apophysis (RTA).
    [Show full text]
  • SA Spider Checklist
    REVIEW ZOOS' PRINT JOURNAL 22(2): 2551-2597 CHECKLIST OF SPIDERS (ARACHNIDA: ARANEAE) OF SOUTH ASIA INCLUDING THE 2006 UPDATE OF INDIAN SPIDER CHECKLIST Manju Siliwal 1 and Sanjay Molur 2,3 1,2 Wildlife Information & Liaison Development (WILD) Society, 3 Zoo Outreach Organisation (ZOO) 29-1, Bharathi Colony, Peelamedu, Coimbatore, Tamil Nadu 641004, India Email: 1 [email protected]; 3 [email protected] ABSTRACT Thesaurus, (Vol. 1) in 1734 (Smith, 2001). Most of the spiders After one year since publication of the Indian Checklist, this is described during the British period from South Asia were by an attempt to provide a comprehensive checklist of spiders of foreigners based on the specimens deposited in different South Asia with eight countries - Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka. The European Museums. Indian checklist is also updated for 2006. The South Asian While the Indian checklist (Siliwal et al., 2005) is more spider list is also compiled following The World Spider Catalog accurate, the South Asian spider checklist is not critically by Platnick and other peer-reviewed publications since the last scrutinized due to lack of complete literature, but it gives an update. In total, 2299 species of spiders in 67 families have overview of species found in various South Asian countries, been reported from South Asia. There are 39 species included in this regions checklist that are not listed in the World Catalog gives the endemism of species and forms a basis for careful of Spiders. Taxonomic verification is recommended for 51 species. and participatory work by arachnologists in the region.
    [Show full text]