SANSA News, No 26, June-August 2016

Total Page:16

File Type:pdf, Size:1020Kb

SANSA News, No 26, June-August 2016 SANSA NEWS No 26 JUNE– AUGUST 2016 12th AFRAS COLLOQUIUM—WESTERN CAPE The AFRICAN ARACHNOLOGICAL SOCIETY (AFRAS) is a scientific society devoted to the Inside this issue: study of spiders, scorpions and other arach- nids in Africa. It was initiated in 1986 in 2017 AFRAS colloquium …......1 SANSA 20 years………..……....1 Pretoria and was first called "The Research ISA Congress feedback….….2-3 Group for the Study of African Arachnida". Bonnet award …………………..3 Red Listing……………...……....4 In 1996 the name was changed to the Afri- Augrabies National Park……….5 can Arachnological Society. Membership of Richtersveld National Park ……5 AFRAS is free of charge and is mainly used Nursery-web observations…..6-7 to report on and facilitate arachnid re- New horned trapdoor spider ….8 search undertaken in Africa. This is done Spiders on bark………………….8 Araneid mimics……………...9-10 through an annual newsletter, website and Spider Club…...…………..…...11 a colloquium held every three years. National Museum ...…………..11 New project UFS……………...12 The 12th Colloquium of the African Arach- New projects at ARC …….12-13 nology Society will be hosted by members Student project ………………14 Connie retire ………………....14 of AFRAS and will be held from 22-25 Janu- Literature…………………......14 ary 2017 at Goudini Resort near Worcester Last Word…………………….15 in the Western Cape, South Africa. The resort is about an hour’s drive from Cape SANSA 20 YEARS OLD Town. The venue is situated in the Cape THE SOUTH AFRICAN NATIONAL Floral Kingdom, with an amazing array of SURVEY (SANSA) started in 1997 at tourist attractions and the opportunity to Editors and coordinators: the ARC and will be 20 years old in sample arachnids in a global biodiversity 2017. At the 12th AFRAS Colloquium hotspot. The second circular is now availa- Ansie Dippenaar-Schoeman & we will have special sessions to give Robin Lyle ble and can be downloaded from the AFRAS some feedback on SANSA, with ARC-Plant Protection Research website (http://afras.ufs.ac.za). Institute highlights, where we currently stand, Private Bag X134 CONTACT: Charles Haddad (Chairman) at and the way forward documenting the Queenswood [email protected] arachnid diversity of South Africa. 0121 South Africa Ansie Dippenaar-Schoeman will or- E-mail: [email protected] SOME GOOD NEWS ganize the session and workshops and interested persons can contact Charles Haddad At last the SANSA VIRTUAL MUSEUM Department of Zoology & Entomol- her directly to participate. ogy is working again. If you click on University of the Free State “more” the images are now enlarged. P.O. Box 339 We have a backlog of > 1000 images Bloemfontein 9300 and hope to load them as soon as pos- South Africa sible. But please, if you have images to E-mail: [email protected] add we need them! Also see the re- quest on p 4. SANSA EWS 26 Page 2 FEEDBACK ON CONGRESS—20th International Congress of Arachnology 2016 transect is across the Cederberg mountains in the Cape Floristic King- dom, South Africa and constitutes 17 sites with an elevational range of 1900 m on two aspects of the mountain (east and west) . Spider as- semblages were sampled biannually (wet and dry seasons) over six years. Four replicates per site, each consisting of a 5 × 2 pitfall grid, were sampled for five days sessions. GLMMα- and β diversity (Jaccard dissimilarity βjac and its partitioned components (βjtu and βjne)) was used to model the effects of elevation and season on these two indices respectively. Spider alpha diversity had a hump-shaped pattern on the western aspect and U-shaped on the eastern aspect. However, season interacted with elevation to produce more complex patterns during the dry season. There was no significant nestedness. Replacement accounted for 60-70 % of beta diversity between sites, and elevational distance decay in beta diversity was the result of in- creased turnover on the western aspect and increased species loss on the eastern aspect. Standardized patterns suggest that there are no effect of season on beta diversity except for a decreased rate of distance decay during the dry season on the western aspect. Large- Four Southern African Arachnologists attended the congress in scale predictors of spider alpha diversity explained a small amount of Colorado: Charles Haddad, Zingisile Mbo, Stefan Foord and variation in spider diversity, pointing to the importance of local and Tharina Bird. Below the abstracts of their posters and papers. stochastic processes. Regional turnover of spider diversity is mainly the result of niche processes, pointing to localized adaptation of taxa, this is supported by the lack of nestedness in assemblages. Termite-eating spiders (Ammoxenidae: Ammox- enus): distribution and coexistence of cryptic spe- cies [poster] Biology, behaviour and physiological adaptations of the termitophagous spider genus Ammoxenus Tharina L. Bird, Christopher Bird, John Irish & Ansie Dippenaar- [paper] Schoeman Charles Haddad, Stano Pekár, Ansie Dippenaar-Schoeman, Lenka Niche theory and the principle of competitive exclusion dictate that Petráková, Marek Brabec, Eva Líznarová, Lenka Sentenská & William species which occupy the same niche, e.g., use the same resource and Symondson occupy the same habitat in the same manner, cannot coexist. Spiders belonging to the southern African genus Ammoxenus (Araneae, Am- moxenidae) are specialists, feeding exclusively on termites. Up to four The spider genus Ammoxenus (Araneae: Ammoxenidae) is endemic Ammoxenus species were found to coexist in sympatry. These species to southern Africa. Research since the 1970’s has shown these spi- are cryptic, and can be separated only by the structure of the palp and ders to feed on termites, although their degree of dietary specializa- epigyne, sometimes only very slightly so. Collection data indicate that tion has, until recently, been unconfirmed. Ammoxenus are often very these spiders utilize the same termite food source in a seemingly iden- common in grassland and savanna habitats in South Africa where tical manner in space and time. One plausible explanation for the high harvester termites are locally abundant. Ammoxenus have various levels of sympatry in these spiders could be that the abundance of the morphological and behavioural adaptations to feeding on termites, termite food source mitigate competition, resulting in little to no niche including rastellate chelicerae, pseudosegmented tarsi, and high partitioning, in accord with ecological neutral theory model predictions. speed running and digging behaviour. The presence of a sandy sub- Conversely, given that the spiders hide in the small, soft soil mounds strate, particularly areas with soft sand, are critical for the effective made by the termites, which allow them to correlate their activity pat- capture of termite prey and subsequent digging to feed. A pitfall sur- terns with that of termites, the limiting resource could be microhabitat vey in grassland showed that A. amphalodes activity density was (termite mounds) availability, which might have driven niche partition- strongly correlated to that of Hodotermes mossambicus, but not to ing. Field observations on behavior and microhabitat use are needed to Trinervitermes trinervoides. Although narrowly associated with H. establish possible cryptic niche partitioning. For example, anecdotal mossambicus as prey, A. amphalodes also utilize sand mounds of evidence in the literature indicate differences in post-capture termite other organisms, including ants and moles, for retreat construction. processing. This could have implications for differential predatory pres- Recent studies using next generation sequencing showed that 99.8% sures. Even if evidence for niche partitioning is found, however, it of sequences extracted from the guts of A. amphalodes belonged to would only partially explain the distribution patterns seen in Ammox- H. mossambicus termites; this in spite of the presence of other ter- enus. Our aim is to provide possible explanations, including the still mites (Odontotermes sp. and T. trinervoides) and arthropods in the contentious sympatric speciation that could be further investigated to study area. Juveniles had a significantly greater diversity of prey se- explain the distribution and the level of sympatry seen in these spiders. quences than adults, although both males and females continued to feed on H. mossambicus as adults. Analysis of venom protein profiles Keywords: biogeography, competitive exclusion, niche partitioning, shows that A. amphalodes possesses a much more limited number of sympatric speciation proteins when compared to euryphagous spiders, providing evidence supporting a stenophagous diet on termites. We briefly describe sev- eral future studies that will investigate other aspects of Ammoxenus biology to support the evolution of stenophagy in this group of termi- The effect of elevation and time on mountain spider tophagous predators. diversity: a view of two aspects in the Cederberg mountains of South Africa [paper] Stefan Foord & Ansie Dippenaar-Schoeman Our aim was to test if long-term patterns in α and β diversity along an elevational transect on two aspects of a mountain are consistent through time using spiders as model organisms, quantify the role of elevation, time (seasonal and inter-annual) in explaining these patterns and partition the relative contribution of nestedness, species turnover F M Webb Peter and species loss in richness in explaining these diversity patterns. The Page 3 SANSA EWS 26 FEEDBACK ON CONGRESS—20th International Congress
Recommended publications
  • A Checklist of the Non -Acarine Arachnids
    Original Research A CHECKLIST OF THE NON -A C A RINE A R A CHNIDS (CHELICER A T A : AR A CHNID A ) OF THE DE HOOP NA TURE RESERVE , WESTERN CA PE PROVINCE , SOUTH AFRIC A Authors: ABSTRACT Charles R. Haddad1 As part of the South African National Survey of Arachnida (SANSA) in conserved areas, arachnids Ansie S. Dippenaar- were collected in the De Hoop Nature Reserve in the Western Cape Province, South Africa. The Schoeman2 survey was carried out between 1999 and 2007, and consisted of five intensive surveys between Affiliations: two and 12 days in duration. Arachnids were sampled in five broad habitat types, namely fynbos, 1Department of Zoology & wetlands, i.e. De Hoop Vlei, Eucalyptus plantations at Potberg and Cupido’s Kraal, coastal dunes Entomology University of near Koppie Alleen and the intertidal zone at Koppie Alleen. A total of 274 species representing the Free State, five orders, 65 families and 191 determined genera were collected, of which spiders (Araneae) South Africa were the dominant taxon (252 spp., 174 genera, 53 families). The most species rich families collected were the Salticidae (32 spp.), Thomisidae (26 spp.), Gnaphosidae (21 spp.), Araneidae (18 2 Biosystematics: spp.), Theridiidae (16 spp.) and Corinnidae (15 spp.). Notes are provided on the most commonly Arachnology collected arachnids in each habitat. ARC - Plant Protection Research Institute Conservation implications: This study provides valuable baseline data on arachnids conserved South Africa in De Hoop Nature Reserve, which can be used for future assessments of habitat transformation, 2Department of Zoology & alien invasive species and climate change on arachnid biodiversity.
    [Show full text]
  • An In-Depth Biochemical Analysis of Spider and Silkworm Silk
    Unravelling the secrets of silk: an in-depth biochemical analysis of spider and silkworm silk Hamish Cameron Craig A thesis in fulfilment of the requirements for the degree of Doctor of Philosophy School of Biological, Earth and Environmental Sciences Evolution and Ecology Research Centre UNSW February 2019 THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Craig First name: Hamish Other name/s: Cameron Abbreviation for degree as given in the University calendar: PhD School: School of Biological, Earth and Environmental Sciences Faculty: Faculty of Science Title: Unravelling the secrets of silk: a detailed examination of silk biology and structure Abstract: Silk is a protein-based biopolymer produced by many different invertebrate species from amphipods to spiders. Its incredible material properties, biocompatibility and antimicrobial properties make it one of the most desirable natural fibres in the race for new materials, with major potential impacts in everything from biomedical research to its aerospace applications. Although silk has been studied in detail since the latter part of the 20th century the field is still unable to produce truly comparable synthetics due to the complexity of biological factors involved in influencing silks properties. The major focus of this thesis is examining biological and structural factors that impact silk properties within spiders and silkworms. To examine this, I analysed silk across many scales from phylogenetic trends in amino acid composition and material properties, down to the Nano-scale examining the impacts of molecular structure, pioneering new methods of silk analysis through utilisation of dynamic nuclear polarization (DNP) solid-state nuclear magnetic resonance (ssNMR) spectroscopy.
    [Show full text]
  • Malelane Safari Lodge, Kruger National Park
    INVERTEBRATE SPECIALIST REPORT Prepared For: Malelane Safari Lodge, Kruger National Park Dalerwa Ventures for Wildlife cc P. O. Box 1424 Hoedspruit 1380 Fax: 086 212 6424 Cell (Elize) 074 834 1977 Cell (Ian): 084 722 1988 E-mail: [email protected] [email protected] Table of Contents 1. EXECUTIVE SUMMARY ............................................................................................................................ 3 2. INTRODUCTION ........................................................................................................................................... 5 2.1 DESCRIPTION OF PROPOSED PROJECT .................................................................................................................... 5 2.1.1 Safari Lodge Development .................................................................................................................... 5 2.1.2 Invertebrate Specialist Report ............................................................................................................... 5 2.2 TERMS OF REFERENCE ......................................................................................................................................... 6 2.3 DESCRIPTION OF SITE AND SURROUNDING ENVIRONMENT ......................................................................................... 8 3. BACKGROUND ............................................................................................................................................. 9 3.1 LEGISLATIVE FRAMEWORK ..................................................................................................................................
    [Show full text]
  • David Penney
    ARTÍCULO: NEW EXTANT AND FOSSIL DOMINICAN REPUBLIC SPIDER RECORDS, WITH TWO NEW SYNONYMIES AND COMMENTS ON TAPHONOMIC BIAS OF AMBER PRESERVATION David Penney Abstract: A collection of 23 identifiable extant spider species from the Dominican Republic revealed eight (= 35%) new species records for the country and five (= 22%) for the island of Hispaniola. The collection includes the first record of the family Prodidomidae from Hispaniola. Phantyna guanica (Gertsch, 1946) is identified as a junior synonym of Emblyna altamira (Gertsch & Davis, 1942) (Dictynidae) and Ceraticelus solitarius Bryant, 1948 is identified as a junior synonym of C. paludigenus Crosby & Bishop, 1925 (Linyphiidae). Such a large proportion of new records in such a small sample demonstrates that the extant spider fauna of the Dominican Republic is poorly known ARTÍCULO: and is worthy of further investigation, particularly in light of its potential for quantifying New extant and fossil Dominican bias associated with the amber-preserved fauna. New records of fossil spider species Republic spider records, with two preserved in Miocene amber are provided. The taphonomic bias towards a significantly new synonymies and comments higher number of male compared to female spiders as inclusions in Dominican Republic on taphonomic bias of amber amber is a genuine phenomenon. preservation Key words: Arachnida, Araneae, Dictynidae, Linyphiidae, Miocene, palaeontology, taphonomy, taxonomy, Hispaniola. David Penney Taxonomy: Department of Earth Sciences Emblyna altamira (Gertsch & Davis,
    [Show full text]
  • Final Project Completion Report
    CEPF SMALL GRANT FINAL PROJECT COMPLETION REPORT Organization Legal Name: - Tarantula (Araneae: Theraphosidae) spider diversity, distribution and habitat-use: A study on Protected Area adequacy and Project Title: conservation planning at a landscape level in the Western Ghats of Uttara Kannada district, Karnataka Date of Report: 18 August 2011 Dr. Manju Siliwal Wildlife Information Liaison Development Society Report Author and Contact 9-A, Lal Bahadur Colony, Near Bharathi Colony Information Peelamedu Coimbatore 641004 Tamil Nadu, India CEPF Region: The Western Ghats Region (Sahyadri-Konkan and Malnad-Kodugu Corridors). 2. Strategic Direction: To improve the conservation of globally threatened species of the Western Ghats through systematic conservation planning and action. The present project aimed to improve the conservation status of two globally threatened (Molur et al. 2008b, Siliwal et al., 2008b) ground dwelling theraphosid species, Thrigmopoeus insignis and T. truculentus endemic to the Western Ghats through systematic conservation planning and action. Investment Priority 2.1 Monitor and assess the conservation status of globally threatened species with an emphasis on lesser-known organisms such as reptiles and fish. The present project was focused on an ignored or lesser-known group of spiders called Tarantulas/ Theraphosid spiders and provided valuable information on population status and potential conservation sites in Uttara Kannada district, which will help in future monitoring and assessment of conservation status of the two globally threatened theraphosid species T. insignis and Near Threatened T. truculentus. Investment Priority 2.3. Evaluate the existing protected area network for adequate globally threatened species representation and assess effectiveness of protected area types in biodiversity conservation.
    [Show full text]
  • The Placement of the Spider Genus Periegops and the Phylogeny of Scytodoidea (Araneae: Araneomorphae)
    Zootaxa 3312: 1–44 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) The placement of the spider genus Periegops and the phylogeny of Scytodoidea (Araneae: Araneomorphae) FACUNDO M. LABARQUE1 & MARTÍN J. RAMÍREZ1 1Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Ángel Gallardo 470, C1405DJR, Buenos Aires, Argentina. [email protected] / [email protected] Abstract The relationships of Scytodoidea, including the families Drymusidae, Periegopidae, Scytodidae and Sicariidae, have been con- tentious for a long time. Here we present a reviewed phylogenetic analysis of scytodoid spiders, emphasizing Periegops, the only genus in the family Periegopidae. In our analysis the Scytodoidea are united by the fusion of the third abdominal entapo- physes into a median lobe, the presence of female palpal femoral thorns and associated cheliceral stridulatory ridges, a mem- branous lobe on the cheliceral promargin, and the loss of minor ampullate gland spigots. A basal split within Scytodoidea defines two monophyletic groups: Sicariidae and a group formed by Scytodidae as the sister group of Periegopidae plus Dry- musidae, all united by having bipectinate prolateral claws on tarsi I–II, one major ampullate spigot accompanied by a nubbin, and the posterior median spinnerets with a mesal field of spicules. Periegops is the sister group of Drymusidae, united by the regain of promarginal cheliceral teeth and a triangular cheliceral lamina, which is continuous with the paturon margin. Key words: Drymusa, Drymusidae, Haplogyne, morphology, Scytodes, Stedocys, Scytodidae, Sicariidae, Sicarius, Loxosceles Introduction The family Periegopidae currently comprises only the genus Periegops, with two species: the type species Perie- gops suteri (Urquhart) from the Banks Peninsula on the South Island of New Zealand (Vink 2006), and Periegops australia Forster, from southeastern Queensland (Forster 1995).
    [Show full text]
  • A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
    Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views.
    [Show full text]
  • A Summary List of Fossil Spiders
    A summary list of fossil spiders compiled by Jason A. Dunlop (Berlin), David Penney (Manchester) & Denise Jekel (Berlin) Suggested citation: Dunlop, J. A., Penney, D. & Jekel, D. 2010. A summary list of fossil spiders. In Platnick, N. I. (ed.) The world spider catalog, version 10.5. American Museum of Natural History, online at http://research.amnh.org/entomology/spiders/catalog/index.html Last udated: 10.12.2009 INTRODUCTION Fossil spiders have not been fully cataloged since Bonnet’s Bibliographia Araneorum and are not included in the current Catalog. Since Bonnet’s time there has been considerable progress in our understanding of the spider fossil record and numerous new taxa have been described. As part of a larger project to catalog the diversity of fossil arachnids and their relatives, our aim here is to offer a summary list of the known fossil spiders in their current systematic position; as a first step towards the eventual goal of combining fossil and Recent data within a single arachnological resource. To integrate our data as smoothly as possible with standards used for living spiders, our list follows the names and sequence of families adopted in the Catalog. For this reason some of the family groupings proposed in Wunderlich’s (2004, 2008) monographs of amber and copal spiders are not reflected here, and we encourage the reader to consult these studies for details and alternative opinions. Extinct families have been inserted in the position which we hope best reflects their probable affinities. Genus and species names were compiled from established lists and cross-referenced against the primary literature.
    [Show full text]
  • The Case of Embrik Strand (Arachnida: Araneae) 22-29 Arachnologische Mitteilungen / Arachnology Letters 59: 22-29 Karlsruhe, April 2020
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arachnologische Mitteilungen Jahr/Year: 2020 Band/Volume: 59 Autor(en)/Author(s): Nentwig Wolfgang, Blick Theo, Gloor Daniel, Jäger Peter, Kropf Christian Artikel/Article: How to deal with destroyed type material? The case of Embrik Strand (Arachnida: Araneae) 22-29 Arachnologische Mitteilungen / Arachnology Letters 59: 22-29 Karlsruhe, April 2020 How to deal with destroyed type material? The case of Embrik Strand (Arachnida: Araneae) Wolfgang Nentwig, Theo Blick, Daniel Gloor, Peter Jäger & Christian Kropf doi: 10.30963/aramit5904 Abstract. When the museums of Lübeck, Stuttgart, Tübingen and partly of Wiesbaden were destroyed during World War II between 1942 and 1945, also all or parts of their type material were destroyed, among them types from spider species described by Embrik Strand bet- ween 1906 and 1917. He did not illustrate type material from 181 species and one subspecies and described them only in an insufficient manner. These species were never recollected during more than 110 years and no additional taxonomically relevant information was published in the arachnological literature. It is impossible to recognize them, so we declare these 181 species here as nomina dubia. Four of these species belong to monotypic genera, two of them to a ditypic genus described by Strand in the context of the mentioned species descriptions. Consequently, without including valid species, the five genera Carteroniella Strand, 1907, Eurypelmella Strand, 1907, Theumella Strand, 1906, Thianella Strand, 1907 and Tmeticides Strand, 1907 are here also declared as nomina dubia. Palystes modificus minor Strand, 1906 is a junior synonym of P.
    [Show full text]
  • Tarantulas and Social Spiders
    Tarantulas and Social Spiders: A Tale of Sex and Silk by Jonathan Bull BSc (Hons) MSc ICL Thesis Presented to the Institute of Biology of The University of Nottingham in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The University of Nottingham May 2012 DEDICATION To my parents… …because they both said to dedicate it to the other… I dedicate it to both ii ACKNOWLEDGEMENTS First and foremost I would like to thank my supervisor Dr Sara Goodacre for her guidance and support. I am also hugely endebted to Dr Keith Spriggs who became my mentor in the field of RNA and without whom my understanding of the field would have been but a fraction of what it is now. Particular thanks go to Professor John Brookfield, an expert in the field of biological statistics and data retrieval. Likewise with Dr Susan Liddell for her proteomics assistance, a truly remarkable individual on par with Professor Brookfield in being able to simplify even the most complex techniques and analyses. Finally, I would really like to thank Janet Beccaloni for her time and resources at the Natural History Museum, London, permitting me access to the collections therein; ten years on and still a delight. Finally, amongst the greats, Alexander ‘Sasha’ Kondrashov… a true inspiration. I would also like to express my gratitude to those who, although may not have directly contributed, should not be forgotten due to their continued assistance and considerate nature: Dr Chris Wade (five straight hours of help was not uncommon!), Sue Buxton (direct to my bench creepy crawlies), Sheila Keeble (ventures and cleans where others dare not), Alice Young (read/checked my thesis and overcame her arachnophobia!) and all those in the Centre for Biomolecular Sciences.
    [Show full text]
  • A New Species of the Endemic South African Spider Genus Austrachelas (Araneae: Gallieniellidae) and First Description of the Male of A
    Zootaxa 4323 (1): 119–124 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Correspondence ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4323.1.9 http://zoobank.org/urn:lsid:zoobank.org:pub:74311FB2-3669-4525-A743-7DBBAAA29DDC A new species of the endemic South African spider genus Austrachelas (Araneae: Gallieniellidae) and first description of the male of A. bergi CHARLES R. HADDAD1,2 & ZINGISILE MBO1 1Department of Zoology & Entomology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa 2Corresponding author. Tel.: +27 51 401-2568, Fax: +27 51 401-9950. E-mail: [email protected] The Gallieniellidae is a small family of ground-dwelling gnaphosoid spiders with a Gondwanan distribution, currently including 10 genera and 55 species (World Spider Catalog 2017). The composition of the group remains unresolved, as different phylogenies have either supported (Platnick 2002; Haddad et al. 2009) or disputed (Ramírez 2014; Wheeler et al. in press) its monophyly. Presently, Austrachelas Lawrence, 1938 is one of four genera recorded from the Afrotropical Region. Austrachelas and Drassodella Hewitt, 1916 are both endemic to South Africa (Tucker 1923; Haddad et al. 2009; Mbo 2017), while Gallieniella Millot, 1947 and Legendrena Platnick, 1984 are endemic to Madagascar (Platnick 1984, 1990, 1995). Amongst the Afrotropical genera, only Austrachelas has been revised to date (Haddad et al. 2009). In the current study, the unknown male of A. bergi Haddad, Lyle, Bosselaers & Ramírez, 2009 is described for the first time, new distribution records are presented for this species, and a new species, A.
    [Show full text]
  • SA Spider Checklist
    REVIEW ZOOS' PRINT JOURNAL 22(2): 2551-2597 CHECKLIST OF SPIDERS (ARACHNIDA: ARANEAE) OF SOUTH ASIA INCLUDING THE 2006 UPDATE OF INDIAN SPIDER CHECKLIST Manju Siliwal 1 and Sanjay Molur 2,3 1,2 Wildlife Information & Liaison Development (WILD) Society, 3 Zoo Outreach Organisation (ZOO) 29-1, Bharathi Colony, Peelamedu, Coimbatore, Tamil Nadu 641004, India Email: 1 [email protected]; 3 [email protected] ABSTRACT Thesaurus, (Vol. 1) in 1734 (Smith, 2001). Most of the spiders After one year since publication of the Indian Checklist, this is described during the British period from South Asia were by an attempt to provide a comprehensive checklist of spiders of foreigners based on the specimens deposited in different South Asia with eight countries - Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka. The European Museums. Indian checklist is also updated for 2006. The South Asian While the Indian checklist (Siliwal et al., 2005) is more spider list is also compiled following The World Spider Catalog accurate, the South Asian spider checklist is not critically by Platnick and other peer-reviewed publications since the last scrutinized due to lack of complete literature, but it gives an update. In total, 2299 species of spiders in 67 families have overview of species found in various South Asian countries, been reported from South Asia. There are 39 species included in this regions checklist that are not listed in the World Catalog gives the endemism of species and forms a basis for careful of Spiders. Taxonomic verification is recommended for 51 species. and participatory work by arachnologists in the region.
    [Show full text]