Les Chemins De Fer Monorails
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Case of High-Speed Ground Transportation Systems
MANAGING PROJECTS WITH STRONG TECHNOLOGICAL RUPTURE Case of High-Speed Ground Transportation Systems THESIS N° 2568 (2002) PRESENTED AT THE CIVIL ENGINEERING DEPARTMENT SWISS FEDERAL INSTITUTE OF TECHNOLOGY - LAUSANNE BY GUILLAUME DE TILIÈRE Civil Engineer, EPFL French nationality Approved by the proposition of the jury: Prof. F.L. Perret, thesis director Prof. M. Hirt, jury director Prof. D. Foray Prof. J.Ph. Deschamps Prof. M. Finger Prof. M. Bassand Lausanne, EPFL 2002 MANAGING PROJECTS WITH STRONG TECHNOLOGICAL RUPTURE Case of High-Speed Ground Transportation Systems THÈSE N° 2568 (2002) PRÉSENTÉE AU DÉPARTEMENT DE GÉNIE CIVIL ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE PAR GUILLAUME DE TILIÈRE Ingénieur Génie-Civil diplômé EPFL de nationalité française acceptée sur proposition du jury : Prof. F.L. Perret, directeur de thèse Prof. M. Hirt, rapporteur Prof. D. Foray, corapporteur Prof. J.Ph. Deschamps, corapporteur Prof. M. Finger, corapporteur Prof. M. Bassand, corapporteur Document approuvé lors de l’examen oral le 19.04.2002 Abstract 2 ACKNOWLEDGEMENTS I would like to extend my deep gratitude to Prof. Francis-Luc Perret, my Supervisory Committee Chairman, as well as to Prof. Dominique Foray for their enthusiasm, encouragements and guidance. I also express my gratitude to the members of my Committee, Prof. Jean-Philippe Deschamps, Prof. Mathias Finger, Prof. Michel Bassand and Prof. Manfred Hirt for their comments and remarks. They have contributed to making this multidisciplinary approach more pertinent. I would also like to extend my gratitude to our Research Institute, the LEM, the support of which has been very helpful. Concerning the exchange program at ITS -Berkeley (2000-2001), I would like to acknowledge the support of the Swiss National Science Foundation. -
Monorail, Satellite City District, Uniform System Mass Transport in the Cities
International Journal of Traffic and Transportation Engineering 2017, 6(2): 36-42 DOI: 10.5923/j.ijtte.20170602.03 Satellite Boroughs Connection Vladimír Strakoš1, Michal Novák2,3,* 1Supervisor of Doctoral Studies, College of Logistics, Commercial Benefit Corporation, Přerov, Czech Republic 2Combined Studies Doctoral Student of the Faculty of Transportation Sciences, Department of Logistics and Management of Transport, Czech Technical University in Prag, Czech Republic 3Dispatcher Passenger Traffic for the Region Bohemia, Czech Railways, Inc., General Directorate, O 11 – Department of Control Operation of Personal Transport, Czech Republic Abstract The aim of this article is to introduce to the non-professional and professional public the use of monorail as a vehicle for connection of the satellite city districts. The issue of the article is to show how can be different routes monorail boroughs connected with a uniform system of public transport between residents and work places. The combination of satellite boroughs via monorail provides its potential users quality and fast transport between the residences and work places. The system relieves congested roads; it also provides the availability of more urban parts of one or more cities and, ultimately contributes significantly to the environmentally friendly solution for public transport in cities. With the use of solar energy it will also ensure environmental friendliness over each individual point of the line´s length. The main contribution of the paper is to draw out a possible solution for public transport by using the existing modes of transport known today to resolve the temporal and convenient access to employment in urban areas without the inefficient solutions to individual automobile transport. -
Appendix a Monorail Database Formatted 1.13.2020.Xlsx
Appendix A Global Scan Summary Number and Type Location Year Open Length # Stations Ridership (Daily Average) Ridership (Annual) Speed Travel Time Design/Construction Cost Infrastructure Technology/Guidence System of Vehicles Australia, 1989 (Closed 2017) Straddle-beam Steel box beam Broadbeach Australia, Queensland, Sea 1986 1.2 miles 2 17 mph $3M (Australian) 3, 9-car trains Straddle-beam Von Roll Mk II World 500 V AV power, generator provided to clear trains in emergencies. Built to operate 12 minutes (entire Von Roll Type III, 6, Australia, Sydney 1988 (Closed 2013) 2.24 miles 8 70 million (lifetime) 21 mph (average) $55 million USD Straddle-beam autonomously, breakdowns loop) 7-car trains (construction) soon after opening led to $10-15 million USD decision to retain drivers for (demolish) each train Approx. $550,000 dollars Belgium, Lichtaart 1975 1.15 miles 3 4.7 mph 15 minutes Straddle-beam Schwarzkopf (1978) 2021 (proposed Capacity of 150,000 $650 million Brazil, Salvador 12.4 miles 22 Straddle-beam BYD Skyrail estimate) passengers a day (approximately) 54 seven-car trains 500,000 (estimated once fully $1.6 billion (estimated for Brazil, Sao Paulo, 12 min (50 minutes (total once Phase 1: 2016 4.7 miles (out of 17 6 (out of 18 completed) entire project, not clear CITYFLO 650 automatic train Line 15 (Expresso 50 mph (average) end to end once completed), Straddle-beam Phase 2: 2018 miles planned) planned) 40,000 passengers per hour what is included in this control Tiradentes) fully completed) Bombardier Innova per direction amount) -
Optimisation of Traction and Fixing Systems in Suspended Monorails
This paper is part of the Proceedings of the 15th International Conference on Railway Engineering Design and Operation (CR 2016) www.witconferences.com Optimisation of traction and fixing systems in suspended monorails J. Yunta, D. Fernandez, D. Garcia-Pozuelo, V. Diaz, B. L. Boada & M. B. Ramírez Departamento de Ingeniería Mecánica, Instituto para la Seguridad de los Vehículos Automóviles (ISVA), Universidad Carlos III de Madrid, Spain Abstract Means of transport are a key point in the development of countries and the population interconnection, so the continuous improvement of them is an obligation and a challenge as well. The mean of transport selected for improvement is the monorail, which serves as a single rail track to transport cargo or passengers. In most cases, the monorail drives around suspension, but can also drive at ground level or tunnels. The aim of this work is the analysis of the optimisation design and technical feasibility of the traction and fixing systems of the monorail. A comparative technical analysis of these systems has been carried out to quantify them, assessing the strengths and weaknesses. Once the system idea to develop and optimise is defined, basic parameters and characteristics of the system are detailed, commercial elements are selected and a traction-fixing system model is modelled. The traction-fixing system has also been optimised with various loading limited conditions like static, modal and thermal analysis. FEM with Abaqus/CAE and CAD-CAM modelling with AutoCAD have been used in this work. Keywords: suspended monorail, optimisation, comparative technical analysis, design alternative, FEM, computer simulations, 3D modelling. 1 Introduction The monorail is a mean of transport in which carriages are moved in suspension or on a single rail structure and they are used for carrying passengers or cargo [1]. -
Universidade Federal Do Rio De Janeiro 2017
Universidade Federal do Rio de Janeiro RETROSPECTIVA DOS MÉTODOS DE LEVITAÇÃO E O ESTADO DA ARTE DA TECNOLOGIA DE LEVITAÇÃO MAGNÉTICA Hugo Pelle Ferreira 2017 RETROSPECTIVA DOS MÉTODOS DE LEVITAÇÃO E O ESTADO DA ARTE DA TECNOLOGIA DE LEVITAÇÃO MAGNÉTICA Hugo Pelle Ferreira Projeto de Graduação apresentado ao Curso de Engenharia Elétrica da Escola Politécnica, Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Engenheiro. Orientador: Richard Magdalena Stephan Rio de Janeiro Abril de 2017 RETROSPECTIVA DOS MÉTODOS DE LEVITAÇÃO E O ESTADO DA ARTE DA TECNOLOGIA DE LEVITAÇÃO MAGNÉTICA Hugo Pelle Ferreira PROJETO DE GRADUAÇÃO SUBMETIDO AO CORPO DOCENTE DO CURSO DE ENGENHARIA ELÉTRICA DA ESCOLA POLITÉCNICA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE ENGENHEIRO ELETRICISTA. Examinada por: ________________________________________ Prof. Richard Magdalena Stephan, Dr.-Ing. (Orientador) ________________________________________ Prof. Antonio Carlos Ferreira, Ph.D. ________________________________________ Prof. Rubens de Andrade Jr., D.Sc. RIO DE JANEIRO, RJ – BRASIL ABRIL de 2017 RETROSPECTIVA DOS MÉTODOS DE LEVITAÇÃO E O ESTADO DA ARTE DA TECNOLOGIA DE LEVITAÇÃO MAGNÉTICA Ferreira, Hugo Pelle Retrospectiva dos Métodos de Levitação e o Estado da Arte da Tecnologia de Levitação Magnética/ Hugo Pelle Ferreira. – Rio de Janeiro: UFRJ/ Escola Politécnica, 2017. XVIII, 165 p.: il.; 29,7 cm. Orientador: Richard Magdalena Stephan Projeto de Graduação – UFRJ/ Escola Politécnica/ Curso de Engenharia Elétrica, 2017. Referências Bibliográficas: p. 108 – 165. 1. Introdução. 2. Princípios de Levitação e Aplicações. 3. Levitação Magnética e Aplicações. 4. Conclusões. I. Stephan, Richard Magdalena. II. Universidade Federal do Rio de Janeiro, Escola Politécnica, Curso de Engenharia Elétrica. -
Table of Contents
DMJM+HARRIS Monorail Technology Assessment TABLE OF CONTENTS LIST OF FIGURES 6 LIST OF TABLES 6 1.0 EXECUTIVE SUMMARY 7 2.0 PURPOSE OF ASSESSMENT 12 3.0 SCOPE OF WORK 12 4.0 METHODOLOGY 12 5.0 INITIAL SCREENING OF TECHNOLOGIES 14 5.1 Insufficient Information Available for Determination 14 5.2 Systems No Longer Marketed 14 5.3 System Characteristics Inconsistent with Needs of Montgomery County 15 5.4 Systems Recommended for Further Evaluation 16 5.4.1 Systems in Operation 16 5.4.2 Systems in Development 16 5.5 Classification of Candidate Systems 17 6.0 REFINEMENT OF LIST 18 7.0 MEASURES OF EFFECTIVENESS 24 8.0 COMPARISON BETWEEN MODES OF TRANSPORTATION 25 8.1 Overview 25 8.2 Proposed Measures of Effectiveness 25 8.2.1 Capacity 25 8.2.2 Speed 25 8.2.3 Cost 25 8.3 Other Factors 26 12/18/2001 Final 2 DMJM+HARRIS Monorail Technology Assessment 8.3.1 Automation 26 8.3.2 Expandability 26 8.3.3 Maintenance 26 8.3.4 Yard and Shop 26 8.3.5 Safety 26 8.3.6 Compatibility 26 8.3.7 Maneuverability 27 8.3.8 Visual impacts 27 9.0 PROJECT REVIEW TEAM INPUT 27 9.1 General Concerns Regarding Monorail Technologies 27 9.2 Evaluation of Measures of Effectiveness 28 10.0 SYSTEMS REVIEWED IN DETAIL 28 10.1 OTG HighRoad 28 10.1.1 Background/System Description 28 10.1.2 Existing Locations 28 10.1.3 Vehicle/Guide way/Station Description 28 10.1.4 Capacity 30 10.1.5 Costs 30 10.1.6 Feasibility 30 10.1.7 Environmental Considerations 31 10.2 Futrex 32 10.2.1 Background/System Description 32 10.2.2 Existing Locations 32 10.2.3 Vehicle/Guide way/Station Description 32 -
GUIDEWAY DESIGN and FABRICATION METHOD for the SPARTAN SUPERWAY a MS Project Presented to the Faculty of the Department of Mecha
GUIDEWAY DESIGN AND FABRICATION METHOD FOR THE SPARTAN SUPERWAY A MS Project Presented to The Faculty of the Department of Mechanical Engineering San José State University In Partial Fulfillment of the Requirements for the Degree Master of Science By Liwei Lu 12th Dec 2020 GUIDEWAY DESIGN AND FABRICATION METHOD FOR THE SPARTAN SUPERWAY By Liwei Lu APPROVED BY THE DEPARTMENT OF MECHANICAL ENGINEERING SAN JOSÉ STATE UNIVERSITY Dec 2020 ----------------------------------------------------------------------------- Burford Furman, Ph.D. (Chair) ----------------------------------------------------------------------------- Ron Swenson, International Institute of Sustainable Transportation ----------------------------------------------------------------------------- James Mokri, Lecturer of ME Department, SJSU ABSTRACT The preliminary design for the guideway elements was undertaken throughout the semester. Straight guideway beam, curved guideway beam, supporting structure, and heat expansion joint has been modeled and analyzed. The current design for the guideway for SPARTAN Superway project followed the concept of SAFEGE (Société Anonyme Française d' Etude de Gestion et d' Entreprises, named after a French Company) type guideway. It’s a rectangular hollow steel beam with an open bottom, and outside of the hollow steel beams there are ribs that can hold the shape of the guideway from collapsing. Finite element analysis (FEA) method is the main approach when designing the guideway. After the FEA design study, a 0.1-inch wall thickness and 48 inches rib spacing has been determined, which will give the guideway the best performance. FEA study shows that all the guideways and support structures designed have a factor of safety 5.0 or above, and the maximum deflection of all the guideways and supporting structures are fulfilling the L/800 spec. It can also handle a magnitude 6.9 earthquake and a 115mph wind load. -
Considering Monorail Rapid Transit for North American Cities
Considering Monorail Rapid Transit for North American Cities Ryan R. Kennedy Table of Contents INTRODUCTION............................................................................................................2 PART ONE—Defining Monorail..................................................................................3 A. Monorail Types…3 B. Characteristics of Monorail Technology...7 Conclusion...11 PART TWO—Straddle Monorail Systems and Technology.................................12 A. Aerial Structures...13 B. Straddle Monorail Vehicles...18 C. Straddle Monorail Implementation...25 Conclusion...27 PART THREE—Monorail as Cost-effective Urban Transportation.....................28 A. Monorail Capital Costs...29 B. Comparing Conventional Rail Systems to Monorail...33 Conclusion...40 GENERAL CONCLUSION..........................................................................................42 REFERENCES.................................................................................................................43 Cover Picture: Seattle Alweg Monorail built in 1962. Source: Seattle Times 1 INTRODUCTION Monorails have often been lumped together with flying cars as part of a naïve, cartoonish vision of the future. Despite the immense popularity monorails have had with the general public, this form of transportation has been mainly relegated to world’s fairs and amusement parks. Recently, however, a number of major, transit-grade monorails have either been built or are in the construction or planning phase. Japan is clearly the leader -
International Journal for Scientific Research & Development
IJSRD - International Journal for Scientific Research & Development| Vol. 3, Issue 03, 2015 | ISSN (online): 2321-0613 Monorail a Guided System Be an Approving Transit System in Developing Countries like India Rewati S. Marathe1 N. D. Hajiani2 1M.E Student 2Associate Professor 1Department of Transportation Engineering 2Department of Civil Engineering 1,2L.D. College of Engineering, Ahmedabad, Gujarat, India Abstract— Transportation systems play a significant role in the early use by Japan. Tokyo Monorail, one of the world's the healthy development and functioning of Communities busiest, averages 127,000 passengers per day and has served from the local to national levels in India. There is need for over 1.5 billion passengers since 1964. Monorails have seen new and improved transportation systems in India. Cities continuing use in niche shuttle markets and amusement play a vital role in promoting economic growth and parks. prosperity. The development of cities largely depends upon Modern mass transit monorail systems use their physical, social, and infrastructure. Commuters in the developments of the ALWEG beam and tyre approach, with cities are faced with acute road congestion, rising air only two suspended types in large use. Monorail pollution, and a high level of accident risk. These problems configurations have also been adopted by maglev trains. cannot be solved without a concise and sound urban Chongqing Rail Transit in China has adopted a unique transport approach, to deal with such problem Monorail is a ALWEG-based design with rolling stock is much wider than good solution. most monorails, with capacity comparable to heavy rail. Key words: Monorail, urban transportation, metro rail, This is because Chongqing is criss-crossed by numerous transit system hills, mountains and rivers, therefore tunneling are not feasible except in some cases (Line 1 and future Line 6) due I. -
Monorail Assessment Report for the I-24 Southeast Corridor
MONORAIL ASSESSMENT REPORT FOR THE I-24 SOUTHEAST CORRIDOR FINAL REPORT Prepared for: Tennessee Department of Transportation Prepared by: January 2015 MONORAIL ASSESSMENT REPORT FOR THE I-24 SOUTHEAST CORRIDOR Table of Contents OVERVIEW SUMMARY ............................................................................................. OS-1 1.0 INTRODUCTION AND PURPOSE .......................................................................... OS-1 2.0 MONORAIL TECHNOLOGY OVERVIEW ............................................................... OS-2 3.0 KEY OPERATING CHARACTERISTICS ................................................................ OS-3 3.1 Speed .................................................................................................................... OS-4 3.2 Ride ....................................................................................................................... OS-4 3.3 Switching ............................................................................................................... OS-4 3.4 Safety and Evacuation .......................................................................................... OS-4 3.5 Evacuation ............................................................................................................ OS-4 3.6 Rubber Tired Traction and Guidance ................................................................... OS-5 3.7 Energy Consumption ............................................................................................ OS-5 3.8 Acceleration and -
Automated Guideway Transit: an Assessment of PRT and Other New Systems
Automated Guideway Transit: An Assessment of PRT and Other New Systems June 1975 NTIS order #PB-244854 UNITED STATES CONGRESS Office of Technology Assessment AUTOMATED GUIDEWAY TRANSIT AN ASSESSMENT OF PRT AND OTHER NEW SYSTEMS INCLUDING SUPPORTING PANEL REPORTS PREPARED AT THE REQUEST OF THE SENATE COMMITTEE ON APPROPRIATIONS TRANSPORTATION SUBCOMMITTEE w JUNE 1975 U.S. GOVERNMENT PRINTING OFFICE S4+70 o WASHINGTON : 1975 For sale by the Superintendent of DOCIUIN@S, U.S. Government Printing Oflice Washington, D.C. 20402- Prtce $3.65 Congress of the United States Office of Technology Assessment Washington, D.C. 20510 TECHNOLOGY ASSESSMENT BOARD OLIN E. TEAGUE, Texas, Chairman CLIFFORD P. CASE, New Jersey, Vice Chairman EDWARD M. KENNEDY, Massachusetts MORRIS K. UDALL, Arizona ERNEST F. HOLLINGS, South Carolina GEORGE E. BROWN, Jr, California HUBERT H. HUMPHREY, Minnesota CHARLES A. MOSHER, Ohio RICHARD S. SCHWEIKER, Pennsylvania MARVIN L. ESCH, Michigan TED STEVENS, Alaska MARJORIE S. HOLT, Maryland EMILIO Q. DADDARIO EMilio Q. DADDAO, Director DANIEL V. DESiMONE, Deputy Direclor URBAN MasS TRANSIT ADVISORY PANEL WALTER J. BiERWAGEN, Amalgamated Transit Union Dr DORN MC GRATH, George Washington Univer- ROBERT A. Buaco, Public Policy Research Associa- Sity tion Dr. BERNARD M. OLWER, Hewlett-Packard Corp. JEANNE J. Fox, Joint Center for Political Studies SIMON REICH, Gibbs and Hill DR. LAWRENCE A. (Goldmuntz Economics and PROF. THOMAS C. SUTHERLAND, Jr., Princeton Science Planning University. GEORGE KRAMBLES , Chicago Transit Authority FREDERICK P. SALVUCCI, Massachusetts DOT DR. STEWART F. TAYLOR, Sanders and Thomas, Inc. OTA T RANSPORTATION A SSESSMENT S TAFF M EMBERS MARY E. AMES Dn. GRETCHEN S. -
Monorails in Japan: an Overview Publictransit.Us Special Report No
Monorails In Japan: An Overview publictransit.us Special Report No. 9 Leroy W. Demery, Jr. June 22, 2005 Copyright 2005, Leroy W. Demery, Jr. A web-based publication of P.O. Box 6076 Vallejo, CA. 94591-6076 www.publictransit.us (707) 557-7563 (707) 557-6735 fax Use Policy. Our goal is to make information on publictransit.us widely available. You are welcome to quote and use excerpts from publictransit.us documents, provided you credit the authors. Most documents are posted in HTM or PDF format. Contact us at [email protected] if you need other formats. Just let us know how you plan to use it. Comments and suggestions are also welcome. Monorails In Japan: An Overview June 22, 2005 1 Table of Contents Abstract 4 I. Introduction 5 Notes on Transcription 8 Other Details 8 II. The Monorail Market Niche 11 III. Monorail and Other Modal Specifications 14 IV. Criteria For Application 16 V. Small-Scale Installations 18 東京 Tōkyō 豊島園 Toshima-en amusement park (1951-?) 19 東京 Tōkyō 上野懸垂線 Ueno Suspended Line (Ueno Park) 19 奈良 Nara 奈良ドリームラン Nara Dreamland 20 犬山 Inuyama 20 川崎 Kawasaki 読売(よみうり)ランド Yomiuriland (1964-1978) 21 名古屋 Nagoya 東山公園 Higashiyama Park (1964-1974) 22 川崎 Kawasaki - 向ヶ丘 Mukōgaoka (1966-2000) 23 姫路 Himeji (1966-1974) 24 横浜 Yokohama (1966-1967) 25 大阪Ōsaka - Expo ‘70 (1970) 26 VI. The Large-Scale Prototypes 26 Monorails In Japan: An Overview June 22, 2005 2 東京 Tōkyō 東京モノレール Tōkyō Monorail 26 鎌倉 Kamakura 湘南モノレール Shōnan Monorail 33 VII. Unrealized Plans 35 VIII. Standards Adopted For Supported and Suspended Monorails 39 IX.