MASTER BY: Samuel S

Total Page:16

File Type:pdf, Size:1020Kb

MASTER BY: Samuel S mi JQ V 3!i A8 mimn GJBX-2(81) National Uranium Resource Evaluation GEOLOGY AND RECOGNITION CRITERIA FOR URANIFEROUS HUMATE DEPOSITS GRANTS URANIUM REGION, NEW MEXICO FINAL REPORT MASTER BY: Samuel S. Adams L^amuel S. Adams and Associates Boulder, Colorado and A. E. Saucier SEDI-MET, Inc. Albuquerque, New Mexico N January 1981 PREPARED FOR THE U.S. DEPARTMENT OF ENERGY Assistant Secretary for Resource Applications Grand Junction Office, Colorado This report is a result of work performed by Samuel S. Adams and Associates, through a Bendix Field Engineering Corporation subcontract, as part of the National Uranium Resource Evaluation. NURE is a program of the U.S. Department of Energy's Grand Junction, Colorado, Office to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed in this report, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. GJBX-2(81) GEOLOGY AND RECOGNITION CRITERIA FOR URANIFEROUS HUMATE DEPOSITS, GRANTS URANIUM REGION, NEW MEXICO FINAL REPORT Samuel S. Adams Samuel S. Adams and Associates 2342 Broadway Boulder, Colorado 80302 and A. E. Saucier Consulting Geologist SEDI-MET, INC. -DISCLAIMER • Th 5 book was prepared as an account of work sponsored by an agency o1 the Unned Stales Goyemment Ne iher the United States Government nor any agency thereot nor any ot their employees makes any warranty express or mplieri or assumes any legal liablty or responsibil ty for the accuracy I completeness or usefulness of any informat on apparatus product or process disclosed or 1 represents that ts use would not infr nge privately owned r gfits Reference herein to any spec fic 1 commercial product process or service by trade name trademark manufacturer or otfierw se does 1 not necessarily const tute or imply Us endorsement recommendation or favor ng by the Un ted 1 States Government or any agency thereot The views and opm ons of authors expressed herein do not 1 necessarily state or reflect those of the Un ted States Government or any agency thereof November, 1980 PREPARED FOR THE U. S. DEPARTMENT OF ENERGY ASSISTANT SECRETARY FOR RESOURCE APPLICATIONS GRAND JUNCTION OFFICE, COLORADO UNDER CONTRACT NO. DE-AC13-76GJ01664 AND BENDIX FIELD ENGINEERING CORPORATION SUBCONTRACT NO. 79-296-S TABLE OF CONTENTS Page SUMMARY 9 INTRODUCTION 13 Background 13 Objectives 14 Sources of Information 15 Acknowledgments. 16 GENERAL GEOLOGY 17 Regional Setting 17 Stratigraphy 17 Morrison Formation 20 Recapture Member 22 Westwater Canyon Member 24 Brushy Basin Member 31 Jackpile Sandstone 33 Pre-Cretaceous Unconformity 34 Dakota Sandstone 35 Igneous Rocks 35 Structure 36 Pre-Dakota Structures 36 Faults 37 Folds 37 Pipe Structures 39 Early Cenozolc Structures 42 Late Cenozolc Structures 43 Tectonic History 46 PETROLOGY OF THE HOST SANDSTONE 47 Allogenic Components 47 Framework Grains ..... 47 Quartz 47 Feldspars 49 Rock Fragments 49 Clay Galls 50 Organic Detritus 51 Heavy Minerals 52 Matrix-Cement 53 Authigenic Minerals 53 Clay Minerals 54 Calcite 55 Silica 56 Heavy Minerals 56 Iron Oxides and Carbonate 57 Titanium Minerals 57 Other Minerals 59 Humate 59 Oxidation History 62 Pre-Dakota Oxidation 62 Tertiary Oxidation 63 Quaternary Oxidation 63 -3- Page GEOLOGIC HISTORY 65 GEOLOGY OF THE URAIJIJM DEPOSITS 69 Exploration History 69 Uranium Deposits 70 Primary Uranium Deposits 71 Ore Trends 71 Blanket Ore 72 Jackpile flineralization 75 Ore Controls 75 Accessory Minerals . 76 Age of Primary Tlineralization 79 PN.edistributed Uranium Deposits 80 Early Redistributed Mineralization 80 Stack Ore 82 C-Roll Mineralization 87 Oxidized Uranium Deposits 89 Oxidized Primary Ore 89 Oxidized Redistributed Ore 89 Minor Uranium Occurrences 91 ORGANIC MATTER 95 Types of Organic Matter 95 Metal-Organic Compounds 96 The Coffinite Problem 98 Summary on Organic Material 99 ORE-RELATED ALTERATION 103 Ilmenite-Magnetite Alteration and Destruction 103 Feldspar Alteration 105 Clay Minerals 110 General Distribution 110 Ore-related Clays Ill Kaolinite 113 Pyrite 115 Calcite 115 Other Alterations 116 Paragenesis of Alteration Minerals 117 Alteration Zoning 118 ISOTOPE STUDIES 121 Sulfur Isotopes 121 Isotopes of the Uranium Decay Series 121 Age Dates 122 SYNTHESIS 125 Stratigraphy 125 Structure 125 Lithology and Diagenesis 126 Ground Water 127 Organics 128 Climate 129 Oxidation 130 Mineralogy 131 GENETIC MODEL 133 Evolution of Thought 133 Genetic Working Models 135 -4- Page Working Model I 135 Sediment Deposition 136 Diagenesis 137 Ore Formation 138 Working Model II 139 Uranium Source 141 Structural Controls and Ore Trends 141 Comparison with VJyoming Roll-Type Deposits 142 RECOGNITION CRITERIA 143 Introduction 143 Evaluation of Recognition Criteria 146 Description of Recognition Criteria 149 Regional Tectonic, Structural and Geologic Setting 149 Tectonic Setting 149 Structural Setting 150 Deformation 150 Sediment Provenance 150 Uraniferous Province 155 Continental Sedimentary Sequence 155 Age 155 Associated Sediments 155 Host Sediments 156 Thickness 156 Area 156 Sand-Shale Facies 156 Shales 157 Host Sandstone 157 Area 158 Thickness 158 Depositional Environment 158 Permeability 159 Composition 159 Organic Matter 159 elastics 159 Volcaniclastics 160 Sand-Shale Proportions 160 Alteration and Mineralization 160 Mineralization 161 Alteration 161 Ilmenite-Magnetite 162 Pyrite 162 Feldspar 162 REFLECTIONS AND CONTINUING STUDIES 165 POTENTIAL FOR URANIFEROUS HUMATE-TYPE DEPOSITS IN THE UNITED STATES . 169 APPENDIX 1 SCHEMATIC DRILL HOLE ALTERATION LOGS 173 APPENDIX 2 ESTIMATION OF GEOLOGIC FAVORABILITY FOR THE OCCURRENCE OF URANIFEROUS HUMATE-TYPE DEPOSITS 187 Calculation of Estimated Favorability 187 Completeness and Confidence of Geologic Data 189 Interpretation of Results 189 Example of Favorability Estimate 192 SELECTED REFERENCES 205 LIST OF FIGURES Number Pafee 1. Index map of the Colorado Plateau showing the location of the 18 Grants Uranium Region (modified from Jobin, 1962). 2. Columnar section for the Jurassic rocks in the Grants Uranium 21 Region. 3. Sketch of an intraformational slump structure in the Summerville 40 Formation at Pyramid Mountain near Gallup, New Mexico (Saucier, 1967). 4. Sketch of normal faults and associated slumping in the Zuni sand 41 stone near Pyramid Mountain, New Mexico (Saucier, 1967). 5. Tectonic map of northwestern New Mexico showing igneous centers 44 and some of the uranium deposits (Kelly, 1955). 6. Map of the San Juan Basin region showing the extent of strong 58 hematitic oxidation within the Westwater Canyon Tleraber of the Morrison Formation and its association with Laramide uplifts. 7. Isometric sketch of a primary ore blanl;et from the south trend In 73 Ambrosia Lake (modified from Roeber, 1972). 8. Idealized cross section showing stack and primary ore as it exists 74 in southwestern Ambrosia Lake (modified from Roeber, 1972). 9. Composite sketch of a variety of features associated with ore in 77 the Ann Lee and Section 27 mines (from Squyres, 1970, and Kendall, 1971). 10. Schematic cross section across the oxidation front in the 84 Westwater Canyon Member. Roll front uranium mineralization occurs in every sandstone interval from the top to bottom of the member. The line of section is shown in Figure 11. 11. Map of the sinuous roll fronts in one of the sandstone units of 85 the lower Westwater Canyon Member in the northeast Church Rock area. 12. Schematic map and cross sections of the oxidation front and 88 uranium mineralization in the lower sandstone of the Ruby Well ore trend located in Township 15 North and Range 13 West (modified from Ristorcelli, 1980). 13. Logs for a core hole through the Westwater Canyon Member, Church 106 Rock District, New Mexico. Ilmenite-magnetite distribution indi­ cated by spikes on magnetic susceptibility log and visual estimates from thin sections (modified from Hafen et al, 1967). -6- Number Page 14. Paragenetic relations for the detrital and authigenic minerals of 107 the Jackpile sandstone. Shading represents the clastic deposition or authigenic formation of minerals, dashed lines indicate the destruction of minerals (from Adams et al, 1978). 15. Paragenetic relations for diagnetic alterations in the Tlorrison 108 Formation, Ojito Spring Quadrangle, New Mexico (from Flesch and Wilson, 1974). 16. Cross sections of part of the Jackpile Mine area showing the dis- 120 tribution of uraniferous humate lenses and mineral alteration zones (from Adams et al, 1978). 17. Recognition criteria net for the uraniferous humate deposits, 145 Grants Uranium Region. Numerical estimates of relative favor­ ability
Recommended publications
  • Narbonapass.Pdf
    FIRST-DAY ROAD LOG 1 FIRST-DAY ROAD LOG, FROM GALLUP TO GAMERCO, YAH-TA-HEY, WINDOW ROCK, FORT DEFIANCE, NAVAJO, TODILTO PARK, CRYSTAL, NARBONA PASS, SHEEP SPRINGS, TOHATCHI AND GALLUP SPENCER G. LUCAS, STEVEN C. SEMKEN, ANDREW B. HECKERT, WILLIAM R. BERGLOF, First-day Road Log GRETCHEN HOFFMAN, BARRY S. KUES, LARRY S. CRUMPLER AND JAYNE C. AUBELE ������ ������ ������ ������� ������ ������ ������ ������ �������� Distance: 141.8 miles ������� Stops: 5 ���� ������ ������ SUMMARY ������ �� ������ �� ����� �� The first day’s trip takes us around the southern �� �� flank of the Defiance uplift, back over it into the �� southwestern San Juan Basin and ends at the Hogback monocline at Gallup. The trip emphasizes Mesozoic— especially Jurassic—stratigraphy and sedimentation in NOTE: Most of this day’s trip will be conducted the Defiance uplift region. We also closely examine within the boundaries of the Navajo (Diné) Nation under Cenozoic volcanism of the Navajo volcanic field. a permit from the Navajo Nation Minerals Department. Stop 1 at Window Rock discusses the Laramide Persons wishing to conduct geological investigations Defiance uplift and introduces Jurassic eolianites near on the Navajo Nation, including stops described in this the preserved southern edge of the Middle-Upper guidebook, must first apply for and receive a permit Jurassic depositional basin. At Todilto Park, Stop 2, from the Navajo Nation Minerals Department, P.O. we examine the type area of the Jurassic Todilto For- Box 1910, Window Rock, Arizona, 86515, 928-871- mation and discuss Todilto deposition and economic 6587. Sample collection on Navajo land is forbidden. geology, a recurrent theme of this field conference. From Todilto Park we move on to the Green Knobs diatreme adjacent to the highway for Stop 3, and then to Stop 4 at the Narbona Pass maar at the crest of the Chuska Mountains.
    [Show full text]
  • Post-Carboniferous Stratigraphy, Northeastern Alaska by R
    Post-Carboniferous Stratigraphy, Northeastern Alaska By R. L. DETTERMAN, H. N. REISER, W. P. BROSGE,and]. T. DUTRO,JR. GEOLOGICAL SURVEY PROFESSIONAL PAPER 886 Sedirnentary rocks of Permian to Quaternary age are named, described, and correlated with standard stratigraphic sequences UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1975 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Detterman, Robert L. Post-Carboniferous stratigraphy, northeastern Alaska. (Geological Survey Professional Paper 886) Bibliography: p. 45-46. Supt. of Docs. No.: I 19.16:886 1. Geology-Alaska. I. Detterman, Robert L. II. Series: United States. Geological Survey. Professional Paper 886. QE84.N74P67 551.7'6'09798 74-28084 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-02687-2 CONTENTS Page Page Abstract __ _ _ _ _ __ __ _ _ _ _ _ _ _ _ _ _ _ _ __ __ _ _ _ _ _ _ __ __ _ _ __ __ __ _ _ _ _ __ 1 Stratigraphy__:_Continued Introduction __________ ----------____ ----------------____ __ 1 Kingak Shale ---------------------------------------- 18 Purpose and scope ----------------------~------------- 1 Ignek Formation (abandoned) -------------------------- 20 Geographic setting ------------------------------------ 1 Okpikruak Formation (geographically restricted) ________ 21 Previous work and acknowledgments ------------------ 1 Kongakut Formation ----------------------------------
    [Show full text]
  • Triassic- Jurassic Stratigraphy Of
    Triassic- Jurassic Stratigraphy of the <JF C7 JL / Culpfeper and B arbour sville Basins, VirginiaC7 and Maryland/ ll.S. PAPER Triassic-Jurassic Stratigraphy of the Culpeper and Barboursville Basins, Virginia and Maryland By K.Y. LEE and AJ. FROELICH U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1472 A clarification of the Triassic--Jurassic stratigraphic sequences, sedimentation, and depositional environments UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1989 DEPARTMENT OF THE INTERIOR MANUEL LUJAN, Jr., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging in Publication Data Lee, K.Y. Triassic-Jurassic stratigraphy of the Culpeper and Barboursville basins, Virginia and Maryland. (U.S. Geological Survey professional paper ; 1472) Bibliography: p. Supt. of Docs. no. : I 19.16:1472 1. Geology, Stratigraphic Triassic. 2. Geology, Stratigraphic Jurassic. 3. Geology Culpeper Basin (Va. and Md.) 4. Geology Virginia Barboursville Basin. I. Froelich, A.J. (Albert Joseph), 1929- II. Title. III. Series. QE676.L44 1989 551.7'62'09755 87-600318 For sale by the Books and Open-File Reports Section, U.S. Geological Survey, Federal Center, Box 25425, Denver, CO 80225 CONTENTS Page Page Abstract.......................................................................................................... 1 Stratigraphy Continued Introduction... ..........................................................................................
    [Show full text]
  • Structural Geology of the Upper Rock Creek Area, Inyo County, California, and Its Relation to the Regional Structure of the Sierra Nevada
    Structural geology of the upper Rock Creek area, Inyo County, California, and its relation to the regional structure of the Sierra Nevada Item Type text; Dissertation-Reproduction (electronic); maps Authors Trent, D. D. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 27/09/2021 06:38:23 Link to Item http://hdl.handle.net/10150/565293 STRUCTURAL GEOLOGY OF THE UPPER ROCK CREEK AREA, INYO COUNTY, CALIFORNIA, AND ITS RELATION TO THE REGIONAL STRUCTURE OF THE SIERRA NEVADA by Dee Dexter Trent A Dissertation Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 7 3 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE I hereby recommend that this dissertation prepared under my direction by __________ Dee Dexter Trent______________________ entitled Structural Geology of the Upper Rock Creek Area . Tnvo County, California, and Its Relation to the Regional Structure of the Sierra Nevada ________________ be accepted as fulfilling the dissertation requirement of the degree of ____________Doctor of Philosophy_________ ___________ P). /in /'-/7. 3 Dissertation Director fJ Date After inspection of the final copy of the dissertation, the following members of the Final Examination Committee concur in its approval and recommend its acceptance:* f t M m /q 2 g ££2 3 This approval and acceptance is contingent on the candidate's adequate performance and defense of this dissertation at the final oral examination.
    [Show full text]
  • Hydrogeology of the Chinle Wash Watershed, Navajo Nation Arizona, Utah and New Mexico
    Hydrogeology of the Chinle Wash Watershed, Navajo Nation Arizona, Utah and New Mexico Item Type Thesis-Reproduction (electronic); text Authors Roessel, Raymond J. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 19:50:22 Link to Item http://hdl.handle.net/10150/191379 HYDROGEOLOGY OF THE CHINLE WASH WATERSHED, NAVAJO NATION, ARIZONA, UTAH AND NEW MEXICO by Raymond J. Roessel A Thesis Submitted to the Faculty of the DEPARTMENT OF HYDROLOGY AND WATER RESOURCES In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE WITH A MAJOR IN HYDROLOGY In the Graduate College THE UNIVERSITY OF ARIZONA 1994 2 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author.
    [Show full text]
  • Ocean Drilling Program Scientific Results Volume
    Von Herzen, R. P., Robinson, P. T., et al., 1991 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 118 22. PLASTIC DEFORMATION AT AN OCEANIC SPREADING RIDGE: A MICROSTRUCTURAL STUDY OF THE SITE 735 GABBROS (SOUTHWEST INDIAN OCEAN)1 Mathilde Cannat2 ABSTRACT Microstructural analysis suggests that some Site 735 gabbros were deformed in the crystal mush stage, before they had completely crystallized. Later, solid-state deformation began in granulite-facies metamorphic conditions. At this stage, temperature-dependent diffusion processes may have controlled the plastic deformation of these gabbros, and mylonites formed only in intervals containing more than 10% Fe-Ti oxides. Most oxides in these mylonites are interpreted as magmatic in origin. A sharp change of deformation processes occurred as temperature decreased to the stability conditions of amphibolite-facies metamorphic assemblages: dislocation slip in plagioclase may have become the leading plastic flow mechanism. This change of deformation processes coincides with increased availability of hydrothermal water and with a marked decrease of the plagioclase recrystallized grain size. This reduction in recrystallized grain size is thought to result from an increase of the deviatoric stress, and thus from an increase of the yield strength of the gabbros. In amphibolite-facies metamorphic conditions, dynamic recrystallization of plagioclase locally caused strain-softening, leading to the formation of mylonites. Relict porphyroclasts (plagioclase, olivine, and pyroxenes) in these mylonites are fractured and boudinaged. The cracks produced by this brittle failure are filled with green to brown hydrothermal hornblende. INTRODUCTION the Site 735 deformed gabbros. These results are used to interpret the tectonic evolution of these gabbros (Cannat et A total of 500 m of gabbro was drilled at Site 735 during al., this volume).
    [Show full text]
  • The Geology of New Mexico As Understood in 1912: an Essay for the Centennial of New Mexico Statehood Part 2 Barry S
    Celebrating New Mexico's Centennial The geology of New Mexico as understood in 1912: an essay for the centennial of New Mexico statehood Part 2 Barry S. Kues, Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico, [email protected] Introduction he first part of this contribution, presented in the February Here I first discuss contemporary ideas on two fundamental areas 2012 issue of New Mexico Geology, laid the groundwork for an of geologic thought—the accurate dating of rocks and the move- exploration of what geologists knew or surmised about the ment of continents through time—that were at the beginning of Tgeology of New Mexico as the territory transitioned into statehood paradigm shifts around 1912. Then I explore research trends and in 1912. Part 1 included an overview of the demographic, economic, the developing state of knowledge in stratigraphy and paleontol- social, cultural, and technological attributes of New Mexico and its ogy, two disciplines of geology that were essential in understand- people a century ago, and a discussion of important individuals, ing New Mexico’s rock record (some 84% of New Mexico’s surface institutions, and areas and methods of research—the geologic envi- area is covered by sediments or sedimentary rocks) and which were ronment, so to speak—that existed in the new state at that time. advancing rapidly through the first decade of the 20th century. The geologic time scale and age of rocks The geologic time scale familiar to geologists working in New The USGS did not adopt the Paleocene as the earliest epoch of the Mexico in 1912 was not greatly different from that used by modern Cenozoic until 1939.
    [Show full text]
  • Scenic Trips to the Geologic Past No. 4: Southern Zuni Mountains. Zuni
    SCENIC TRIPS TO THE GEOLOGIC PAST No. No. 1—Santa Fe, New Mexico, 1968 ($1.00). No. 2—Taos-Red River-Eagle Nest, New Mexico, Circle Drive 1968 ($1.00). No. 3—Roswell-Capitan-Ruidoso and Bottomless Lakes Park, New Mexico, 1967 ($1.00). No. 4—Southern Zuni Mountains, New Mexico, 1971 ($1.50). No. No. 5—Silver City-Santa Rita-Hurley, New Mexico, 1967 ($1.00). No. 6—Trail Guide to the Upper Pecos, New Mexico, 1967 ($1.50). No. 7—High Plains—Northeastern New Mexico, Raton-Capulin Mountain- Clayton, 1967 ($1.50). No. 8—Mosaic of New Mexico's Scenery, Rocks, and History, 1967 ($1.50). No. 9—Albuquerque-Its Mountains, valley, Water, and Volcanoes, 1969 ($1.50). No. 10—Southwestern New Mexico, 1971 ($1.50). Cover: SHALAKO WARRIOR DOLL “Man-made highways and automobiles crisscross this world but hardly penetrate it…” J. FRANK DOBIE Apache Gold and Yaqui Silver SCENIC TRIPS TO THE GEOLOGIC PAST NO. 4 Southern Zuni Mountains Zuni-Cibola Trail BY ROY W. FOSTER PHOTOGRAPHS BY H. L. JAMES SKETCHES BY PATRICIA C. GICLAS 1971 STATE BUREAU OF MINES AND MINERAL RESOURCES NEW MEXICO INSTITUTE OF MINING AND TECHNOLOGY CAMPUS STATION SOCORRO, NEW MEXICO 87801 NEW MEXICO STATE BUREAU OF MINES AND MINERAL RESOURCES DON H. BAKER, JR., Director A Division of NEW MEXICO INSTITUTE OF MINING AND TECHNOLOGY STIRLING A. COLGATE, President THE REGENTS MEMBERS EX OFFICIO The Honorable Bruce King ...............................Governor of New Mexico Leonard DeLayo .............................Superintendent of Public Instruction APPOINTED MEMBERS William G. Abbott .......................................................................... Hobbs Henry S. Birdseye ................................................................Albuquerque Ben Shantz ................................................................................Silver City Steve S.
    [Show full text]
  • Analysis and Correlation of Growth
    ANALYSIS AND CORRELATION OF GROWTH STRATA OF THE CRETACEOUS TO PALEOCENE LOWER DAWSON FORMATION: INSIGHT INTO THE TECTONO-STRATIGRAPHIC EVOLUTION OF THE COLORADO FRONT RANGE by Korey Tae Harvey A thesis submitted to the Faculty and Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Geology). Golden, Colorado Date __________________________ Signed: ________________________ Korey Harvey Signed: ________________________ Dr. Jennifer Aschoff Thesis Advisor Golden, Colorado Date ___________________________ Signed: _________________________ Dr. Paul Santi Professor and Head Department of Geology and Geological Engineering ii ABSTRACT Despite numerous studies of Laramide-style (i.e., basement-cored) structures, their 4-dimensional structural evolution and relationship to adjacent sedimentary basins are not well understood. Analysis and correlation of growth strata along the eastern Colorado Front Range (CFR) help decipher the along-strike linkage of thrust structures and their affect on sediment dispersal. Growth strata, and the syntectonic unconformities within them, record the relative roles of uplift and deposition through time; when mapped along-strike, they provide insight into the location and geometry of structures through time. This paper presents an integrated structural- stratigraphic analysis and correlation of three growth-strata assemblages within the fluvial and fluvial megafan deposits of the lowermost Cretaceous to Paleocene Dawson Formation on the eastern CFR between Colorado Springs, CO and Sedalia, CO. Structural attitudes from 12 stratigraphic profiles at the three locales record dip discordances that highlight syntectonic unconformities within the growth strata packages. Eight traditional-type syntectonic unconformities were correlated along-strike of the eastern CFR distinguish six phases of uplift in the central portion of the CFR.
    [Show full text]
  • Stratigraphy of the Project Area
    I BRITISH &! COLUMBLA Ministry of Employment and Investment ENERGY AND MINERALS DIVISION Hon. Dan Miller. Minister Geological Survey Branch THE STIKINE PROJECT GEOLOGY OF WESTERN TELEGRAPH CREEK MAP AREA, NORTHWESTERN BRITISH COLUMBIA (NTS 104G/5,6, llW, 12 AND 13) By Derek A. Brown1 , Michael H. Gunning2 and Charles J. Greig3 Appendix 3 - Conodont identifications by "I. Orchard, Geological Survey of Canada 1. Geological Surve Branch, British Colunlhia Ministry of Employment andYlnvestment 2. Department of Geology, University of Western Ontario, London, Ontario 3. C.G. Greig and Associates Ltd., Penticton, B.C. BULLETIN 95 Canadian Cataloguing in Publication Data Brawn. Derek Anlhony. 1959- The Stikine project : geology of western Telegraph Creek map area. nonhwenlem British Columbia (NTS.lMG15. 6, IIW. 12and 13) Issued by Geological Survey Branch. Includes bibliographical references: p ISBN 0-7726-2502-6 1, Geology -British Columbia -Telegraph Creek Region 2. Geochemistry - British Columbia - Telegraph Creek VICTORIA Region. 3. Geology. Economic - British Columbia - BRITISH COLUMBIA Telegraph Creek Region. 4. Mines and mineral resources - CANADA British Columbia - Telegraph Creek Region. 1. Gunning. Michael H. 11. Greig.Charles James, 1956- . 111. British Columbia. Ministry of Employment and Investmenl. IV. MAY 1996 BritishColumbia. Geological Survey Branch. V. Title. VI. Title: Geology of western Telegraph Creek maparea, nanhwertern British Columbia (NTS 1WG15.6. 1 IW. 12 and 13). V11. Series: Bulletin (British Columbia. Ministry of Employment and Investment) ;95. QE187.B76 1996 557.11’185 (395-960208-9 Frontispiece. View north along the Scud Glacier. Ambition Mountainis underlain by Permian limestone and metavolcanic rocks. Ministry of Emp/oyment and Inveshent TABLE OF CONTENTS CHAPTER 1 Chemistry .....................
    [Show full text]
  • Geology and Coal Resources of Atarque Lake Quadrangle, Cibola
    GEOLOGY AND COAL RESOURCESOF THE ATARQUE LAKEQUADRANGLE, CIBOLA COUNTY, NEW MEXICO NEW MEXICO BUREAU OF MINES AND MINERALRESOURCES OPEN-FILEREPORT 167 bY ORIN J. ANDERSON June, 1982 (revised,1983) Contents: (1) Discussion of Geology and CoalResources (attached) (2) Geologic map with cross sesction (accompanying) Table of Contents GEOLOGY General P. Study Area P. Structure P. Stratigraphy P. COAL RESOURCES p. 22 REFERENCES p. 23 Figures 1 - Measured section of Zuni and Dakota SS. p. 11 2 - Measured section of Atarque and Moreno Hill Fms. p. 18 GEOLOGY General The Atarque Lake quadrangle lies in the southwestern part of the Zuni Basin, a broad,shallow structural element that extends southwestward from the Zuni Mountains of New Mexico into east- central Arizona. As such it liesnear the southeastern margin ofthe Colorado Plateau. The regionaldip in the study area is very gently northeastward toward the Gallup Sag which comprises thenortheastern part of the Basin. There are, however, broad, gentle NW-SE trending folds which result in local southwestward dips, and at least twoabrupt monoclinal flexures, up on the northeastside, (opposed to regional dip) that clearly define the NW-SE structural grain of the area, as well as minor faulting. These structural trends parallel the axis of the Zuni Uplift, but perhaps more importantly they appear to represent the southeastward extension of the structural axes that wrap aroundthe southern end of the Defiance Uplift, as shown by Davis andKiven (1975), and theyalso align very well with the northwest-trendingdike system in the Fence Lake (the Dyke quadrangle),Techado, Adams Diggings,and Pietown areas. Of the three structural features mentioned - broadfolds, monoclines and faulting - monoclinesare the most pronounced and significantnot only locally, but in a much broadercontext.
    [Show full text]
  • RE-EVALUATION, Mileposts 149 to 161
    RE-EVALUATION, Mileposts 149 to 161 Interstate 25 Improvements through the Colorado Springs Area Environmental Assessment PALEONTOLOGY TECHNICAL MEMO April 2012 Prepared for: CDOT Region 2 Prepared by: Doug Eberhart, Telephone (719) 520-5800 Introduction The Colorado Department of Transportation (CDOT) has prepared this technical memorandum to update findings with regards to the paleontological resources described in the original 2004 I-25 Environmental Assessment (EA) with regard to the portion of the Proposed Action between Woodmen Road (Exit 149) in Colorado Springs and State Highway 105 in Monument (Exit 161). The purpose of the EA’s Proposed Action is to relieve existing traffic congestion and address project future congestion on I-25 within the Colorado Springs Urbanized Area. The I-25 EA originally evaluated impacts for the widening of I-25 between South Academy Boulevard (Exit 135) and SH 105, together with reconstruction of various I-25 interchanges within this corridor. Page 2-10 of the EA stated that, “Consistent with projected traffic demand in the I-25 corridor, the conceptual phasing for the Proposed Action calls for: (1) initially six-laning through central Colorado Springs, then (2) six-laning in northern El Paso Figure 1. I -25 EA Re -evaluation Project Vicinity County, and finally (3) adding HOV [High-Occupancy Vehicle] lanes through central Colorado Springs and widening to six lanes south to South Academy Boulevard.” For the year 2012, CDOT has received funding to begin the second phase, meaning to widen I-25 to six lanes in northern El Paso County. The EA calls for eventually widening I-25 all the way to SH105.
    [Show full text]