Armorhab: Design Reference Architecture (DRA) for Human
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Experimental Investigation on Concrete by Using Hemp Fibers and Combined Replacement of Cement with Ggbs
Science, Technology and Development ISSN : 0950-0707 EXPERIMENTAL INVESTIGATION ON CONCRETE BY USING HEMP FIBERS AND COMBINED REPLACEMENT OF CEMENT WITH GGBS AND MARBLE POWDER 1GADDAM SAI KRISHNA 1 Assistant Professor, Department of Civil Engineering, NRI Institute of Technology, JNTU Kakinada, Guntur, Andhra Pradesh, India. (e-mail: [email protected]) 2N. RAVI KUMAR 2 B.Tech Student, Department of Civil Engineering, NRI Institute of Technology, JNTU Kakinada, Guntur, Andhra Pradesh, India. (e-mail: [email protected]) 3 Dr.K. CHANDRAMOUI 3 Professor, Department of Civil Engineering, NRI Institute of Technology, JNTU Kakinada, Guntur, Andhra Pradesh, India. (e-mail: [email protected]) Abstract— Concrete is the composition of cement, is the type of concrete that uses to replace the lime coarse aggregate, fine aggregate, water. Concrete is good cements in binder. in compression. In we discuss about the different uses of addition of hemp fibers and combine replacement of Nano concrete is a form of concrete that contains cement with GGBS and sand with marble powder to the Portland cement particles with size not greater than 100 concrete. μm and also silica particles with size not greater than In this we use different percentages of GGBS and 500 μm, which fill voids that would otherwise occur in marble powder as replacement for cement and adding normal concrete, thereby substantially increasing the 0.5% of hemp fibers respectively. The percentages of material's strength. It is a product of high-energy GGBS and marble powder combinely replaced in M50 grade of concrete i.e, different percentages mixing (HEM) of cement, sand and water. -
Experimental Investigation on Nano Concrete with Nano Silica and M-Sand
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072 EXPERIMENTAL INVESTIGATION ON NANO CONCRETE WITH NANO SILICA AND M-SAND Mohan Raj.B1, Sugila Devi.G2 1PG Student, Nadar Saraswathi College of Engineering and Technology, Theni, Tamilnadu, India. 2Assistant Professor, Nadar Saraswathi College of Engineering and Technology, Theni, Tamilnadu, India. ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - The influence of Nano-Silica on various material is Nano Silica (NS). The advancement made by the properties of concrete is obtained by replacing the cement study of concrete at Nano scale has proved the Nano silica is with various percentages of Nano-Silica. Nano-Silica is used as much better than silica fume used in conventional concrete. a partial replacement for cement in the range of 3%, 3.5%, Now, the researchers are capitalizing on nanotechnology to and 10% for M20 mix. Specimens are casted using Nano-Silica innovate a new generation of concrete materials that concrete. Laboratory tests conducted to determine the overcome the above drawbacks and trying to achieve the compressive strength, split tensile and flexural strength of sustainable concrete structures. Evolution of materials is Nano-Silica concrete at the age of 7, 14 and 28 days. Results need of the day for improved or better performance for indicate that the concrete, by using Nano-Silica powder, was special engineering applications and modifying the bulk able to increase its compressive strength. However, the density state of materials in terms of composition or microstructure is reduce compared to standard mix of concrete. -
Sims-Lohman Fine Kitchens and Granite Meeting the Challenge of Transformation and Growth Head-On with Twelve Locations UR Narrative Begins in by Peter J
www.slipperyrockgazette.net VOLUME 20, ISSUE 236 THE BEACON OF THE STONE INDUSTRY FEBRUARY 2014 Sims-Lohman Fine Kitchens and Granite Meeting the Challenge of Transformation and Growth Head-On with Twelve Locations UR narrative begins in by Peter J. Marcucci the late 1990s, when the Steinman family acquired Photos Courtesy Sims-Lohman and by Larry Hood Moellering Industries, a quality cabinet supplier in Cincinnati, Ohio. Resolute and commit- ted, they did so knowing that the road to success is paved with a myriad of twists, turns and crossroads and is sometimes strewn with the remnants of previous entrepreneurs. Choosing to fast track the journey, Steve Steinman, along with John Beiersdorfer, President of Sims-Lohman, and a cohesive working group of talent, switched on their internal GPS’s, buckled their seat belts, and accelerated the ride by adding acquisition after acquisition to their portfolio of premium companies in the greater Cincinnati, Ohio region to create Sims-Lohman Fine Kitchens and Granite. Spanning four states and employing over 300 people, Sims-Lohman has since dotted that roadmap with eight locations within Ohio, two A trough sink and built-in wine rack are high- in Indiana, one in Kentucky, and their latest lights of this 3cm Magma granite island and acquisition in Pittsburgh, Pennsylvania. All breakfast area. The contemporary cabinets twelve locations are sales showrooms, with company, we adopted that name. Following effective. A lot of companies in the countertop unmistakably define Sims-Lohman as the area’s four being fabrication facilities, strategically this acquisition, we acquired two granite fab- world either made that switch, or they didn’t gold standard and a shop of distinction. -
CEMENT for BUILDING with AMBITION Aalborg Portland A/S Portland Aalborg Cover Photo: the Great Belt Bridge, Denmark
CEMENT FOR BUILDING WITH AMBITION Aalborg Portland A/S Cover photo: The Great Belt Bridge, Denmark. AALBORG Aalborg Portland Holding is owned by the Cementir Group, an inter- national supplier of cement and concrete. The Cementir Group’s PORTLAND head office is placed in Rome and the Group is listed on the Italian ONE OF THE LARGEST Stock Exchange in Milan. CEMENT PRODUCERS IN Cementir's global organization is THE NORDIC REGION divided into geographical regions, and Aalborg Portland A/S is included in the Nordic & Baltic region covering Aalborg Portland A/S has been a central pillar of the Northern Europe. business community in Denmark – and particularly North Jutland – for more than 125 years, with www.cementirholding.it major importance for employment, exports and development of industrial knowhow. Aalborg Portland is one of the largest producers of grey cement in the Nordic region and the world’s leading manufacturer of white cement. The company is at the forefront of energy-efficient production of high-quality cement at the plant in Aalborg. In addition to the factory in Aalborg, Aalborg Portland includes five sales subsidiaries in Iceland, Poland, France, Belgium and Russia. Aalborg Portland is part of Aalborg Portland Holding, which is the parent company of a number of cement and concrete companies in i.a. the Nordic countries, Belgium, USA, Turkey, Egypt, Malaysia and China. Additionally, the Group has acti vities within extraction and sales of aggregates (granite and gravel) and recycling of waste products. Read more on www.aalborgportlandholding.com, www.aalborgportland.dk and www.aalborgwhite.com. Data in this brochure is based on figures from 2017, unless otherwise stated. -
Recycled Polymer Materials As Aggregates for Concrete and Blocks
53 Journal of Chemical Engineering, IEB Vol. ChE. 27, No. 1, June, 2012 Recycled Polymer Materials as Aggregates for Concrete and Blocks 1* 1 2 2 Md. Mostafizur Rahman , Md. Akhtarul Islam , Mainuddin Ahmed and Md. Abdus Salam 1Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology (SUST), Sylhet- 3114, Bangladesh 2Housing and Building Research Institute, Darus-salam Road, Mirpur, Dhaka-1216 Phone: 02-8060989, Fax: 02-8060773, E-mail:[email protected] Abstract The potential of recycled waste polymeric materials as a substitute for aggregates in concrete has been investigated in the study. Two different types of waste polymer, namely polyurethane formaldehyde (PUF) based packaging waste and high density polyethylene (HDPE) were recycled and used in the experiment. Concrete and masonry poly block specimens were prepared using recycled polymer materials, and test specimens were characterized. The effects of waste polymer materials on the mechanical, physical and morphological properties of concrete and poly blocks have been investigated. The result shows that the inclusion of waste polymer materials decreases density, porosity and water absorption of concrete and poly blocks significantly. Polyurethane formaldehyde (PUF) based block exhibited lower density than that of HDPE-based concrete. Due to exceptionally low density, recycled polymer modified blocks and concrete can be used in non-load bearing structures, floating structures and where light weight materials recommended. Keywords: Waste Polymer, recycling, concrete, masonry poly block, porosity 1. Introduction it may appear to be valuable property as construction material. Inclusion of polymer waste in concrete can be The rapid urbanization and industrialization all over the a proper utilization of this valuable property. -
Vysoké Učení Technické V Brně Brno University of Technology
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ FACULTY OF CIVIL ENGINEERING ÚSTAV TECHNOLOGIE STAVEBNÍCH HMOT A DÍLCŮ INSTITUTE OF TECHNOLOGY OF BUILDING MATERIALS AND COMPONENTS VLIV VLASTNOSTÍ VSTUPNÍCH MATERIÁLŮ NA KVALITU ARCHITEKTONICKÝCH BETONŮ INFLUENCE OF INPUT MATERIALS FOR QUALITY ARCHITECTURAL CONCRETE DIPLOMOVÁ PRÁCE DIPLOMA THESIS AUTOR PRÁCE Bc. Veronika Ondryášová AUTHOR VEDOUCÍ PRÁCE prof. Ing. RUDOLF HELA, CSc. SUPERVISOR BRNO 2018 1 2 3 Abstrakt Diplomová práce se zaměřuje na problematiku vlivu vlastností vstupních surovin pro výrobu kvalitních povrchů architektonických betonů. V úvodní části je popsána definice architektonického betonu a také výhody a nevýhody jeho realizace. V dalších kapitolách jsou uvedeny charakteristiky, dávkování či chemické složení vstupních materiálů. Kromě návrhu receptury je důležitým parametrem pro vytvoření kvalitního povrchu betonu zhutňování, precizní uložení do bednění a následné ošetřování povrchu. Popsány jsou také jednotlivé druhy architektonických betonů, jejich způsob vyrábění s uvedenými příklady na konkrétních realizovaných stavbách. V praktické části byly navrženy 4 receptury, kde se měnil druh nebo dávkování vstupních surovin. Při tvorbě receptur byl důraz kladen především na minimální segregaci čerstvého betonu a omezení vzniku pórů na povrchu ztvrdlého betonu. Klíčová slova Architektonický beton, vstupní suroviny, bednění, separační prostředky, cement, přísady, pigment. Abstract This diploma thesis focuses on the influence of properties of feedstocks for the production of quality surfaces of architectural concrete. The introductory part describes the definition of architectural concrete with the advantages and disadvantages of its implementation. In the following chapters, the characteristics, the dosage or the chemical composition of the input materials are given. Besides the design of the mixture, important parameters for the creation of a quality surface of concrete are compaction, precise placement in formwork and subsequent treatment of the surface. -
Geopolymer Concrete with Replacement of Cement
Special Issue - 2016 International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 NCACE - 2016 Conference Proceedings Geopolymer Concrete with Replacement of Cement Hamid Khan, Dushyant Purohit, Deependra Bagara, Hanuman Sahay Pahadiya Department of Civil Engineering Poornima group of institutions, Jaipur Abstract- Concrete is the most abundant manmade material ‘inorganic polymer’ has emerged as a ‘green’ binder with in the world. One of the main ingredients in a normal concrete wide potentials for manufacturing sustainable materials for mixture is Portland cement. However, the production of cement environmental, refractory and construction applications. Geo- is responsible for approximately 5% of the world’s carbon polymer concrete (gpc) has ingredients required for creation of dioxide emissions. In order to create a more sustainable world, geo-polymer binders such as Geo-polymer source materials engineers and scientists must develop and put into use a green such as fly ash, ggbs, Metakaolin, rice husk ash, etc. building material. Geo-polymer concrete is also much more durable that ordinary concrete due to its resistance to corrosion. B. Properties Of Geo-Polymer Concrete It is also much stronger than ordinary concrete. Geo-polymer is made by the mixture of fly ash, sodium hydroxide, sodium Geopolymer are inorganic binders, which are identified by Silicate and water. In this paper, we will present different the basic properties such as Compressive strength depends on properties like compressive strength, durability etc. of geo- curing time and curing temperature. As the curing time and polymer concrete with comparison to Portland cement. temperature increases, the compressive strength increases. Then, Resistance to corrosion, since no limestone is used as a Keywords - Geo-Polymer Concrete, Fly Ash, Ggbs, Portland material, Geopolymer cement has excellent properties within Cement both acid and salt environments. -
Recovery of Waste Expanded Polystyrene in Lightweight Concrete Production
73 The Mining-Geology-Petroleum Engineering Bulletin Recovery of waste expanded polystyrene UDC: 624.01 in lightweight concrete production DOI: 10.17794/rgn.2019.3.8 Original scientifi c paper Gordan Bedeković1; Ivana Grčić2; Aleksandra Anić Vučinić2; Vitomir Premur2 1University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering, Pierottijeva 6, 10000 Zagreb, Croatia 2University of Zagreb, Faculty of Geotechnical Engineering, Hallerova 7, 42000 Varaždin, Croatia Abstract Polystyrene concrete, as a type of lightweight aggregate concrete, has been used in civil construction for years. The use of waste expanded polystyrene (EPS) as a fi ll material in lightweight concrete production is highly recommended from the point of view of the circular economy. Published data shows that an increase in the proportion of lightweight aggre- gates, i.e. EPS, results in a decrease in strength, bulk density and thermal conductivity of the concrete. Utilizing large quantities of waste EPS in non-structural polystyrene concrete production is particularly important. Unlike structural polystyrene concrete, according to the published papers, non-structural polystyrene concrete has not been investigated suffi ciently. The purpose of this paper is to determine the infl uence of the ratios of the basic components in a concrete mixture on the bulk density and compressive strength of non-structural polystyrene concrete produced by utilizing waste EPS as a fi ll material. The test specimens, i.e. cubes with an edge length of 100 mm each, were prepared in labora- tory conditions by varying the proportions of EPS, sand up to 600 g and cement ranging from 300 g to 450 g per speci- men. -
Feature Articles in This Issue
Above: a 1998 period mockup of a modular space station architecture at Johnson Space Center .Feature Articles in This Issue. IN FOCUS “Green” Space-Based From Lava Tube Skylights to Lava tube Solar Power Needs “Green” Rockets One of the space projects supported by many if Settlements not most space enthusiasts is space-based solar power, Peter Kokh pp 3-6 that is, a multitude of solar power satellites in GEO, Mare Ingenii – Sea of Ingenuity Geosynchronous Earth Orbit. And it is obvious that we Sweet Spot on the Moon’s Farside have to begin with a demonstration unit built of materials Peter Kokh page 6 and parts launched from Earth. Most of us see this as a solution to the growing shortage of “clean” energy. This Lunacrete – Easy Concrete for Lunar Needs is something we can sell to the public, and especially to Larry Beyer pp 7-8 the environmentally aware: [=> p. 2, col. 2 ] Toxic Boosters – Shuttle SRB Boosters => Right: An ATK (formerly Morton Thiokol) Solid Rocket Booster. Each Shuttle uses 2 4-segment SRBs. Constella- tion would use 2 5-segment ones. “Each SRB produces 80% more liftoff thrust than one F-1 engine, the most powerful single-chamber liquid-fueled rocket engine ever flown.” [WP] It is easy to see why we use them. The hush-hush problem is that the SRBs put our very dirty, even toxic, exhaust fumes. See our “In Focus” Editorial. 1 ⇒ In Focus Editorial continued from p. 1. Moon Miners’ Manifesto If the demonstration unit convinces enough Published monthly except January and July., by the Lunar investors (power generation company consortia and Reclamation Society (NSS-Milwaukee) for its members, national governments) that we need to deploy hundreds, members of participating National Space Society chapters, even thousands of larger such units, to meet Earth’s members of The Moon Society, and individuals worldwide. -
Polymer Concretes: a Description and Methods for Modification and Improvement
Journal of Materials Education Vol. 33 (1-2): 37 - 52 (2011) POLYMER CONCRETES: A DESCRIPTION AND METHODS FOR MODIFICATION AND IMPROVEMENT G. Martínez-Barrera 1*, E. Vigueras-Santiago 1, O. Gencel 2 and H.E. Hagg Lobland 3 1 Laboratorio de Investigación y Desarrollo de Materiales Avanzados (LIDMA), Facultad de Química, Universidad Autónoma del Estado de México, Km.12 de la carretera Toluca-Atlacomulco, San Cayetano 50200, México; [email protected]; http://www.uaemex.mx/fquimica/ 2 Civil Engineering Department, Faculty of Engineering, Bartin University, 74100 Bartin, Turkey; 3 Laboratory of Advanced Polymers & Optimized Materials (LAPOM), Department of Materials Science and Engineering and Center for Advanced Research and Technology (CART), University of North Texas, 1150 Union Circle # 305310, Denton TX 76203-5017, USA; [email protected]; http://www.unt.edu/LAPOM/ * corresponding author after publication ABSTRACT Portland cement concrete (PCC) has been successful in many applications. However, since the 1960s technological investigations concerning modifications of concrete by polymeric materials have been conducted. Attention has been focused on concretes in which the continuous phase is some kind of polymeric resin and the discrete phase is some type of mineral aggregate. Such composite materials are known as Polymer concrete (PCt) and boast several advantages such as higher strength and a shorter curing process. In spite of these advantages, there are deficiencies that could be addressed by fiber incorporation into PCts, however this kind of approach is not typical. Here we acquaint readers with the nature of polymer concretes as these materials have not yet gained wide recognition. We describe recent developments regarding the influence of fiber reinforcements on PCts. -
Making Concrete Change: Innovation in Low-Carbon Cement and Concrete
Chatham House Report Johanna Lehne and Felix Preston Making Concrete Change Innovation in Low-carbon Cement and Concrete #ConcreteChange Chatham House Report Johanna Lehne and Felix Preston Energy, Environment and Resources Department | June 2018 Making Concrete Change Innovation in Low-carbon Cement and Concrete The Royal Institute of International Affairs Chatham House 10 St James’s Square London SW1Y 4LE T: +44 (0) 20 7957 5700 F: + 44 (0) 20 7957 5710 www.chathamhouse.org Charity Registration No. 208223 Copyright © The Royal Institute of International Affairs, 2018 Chatham House, the Royal Institute of International Affairs, does not express opinions of its own. The opinions expressed in this publication are the responsibility of the author(s). All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical including photocopying, recording or any information storage or retrieval system, without the prior written permission of the copyright holder. Please direct all enquiries to the publishers. ISBN 978 1 78413 272 9 A catalogue record for this title is available from the British Library. Printed and bound in Great Britain by Latimer Trend. The material selected for the printing of this report is manufactured from 100% genuine de-inked post-consumer waste by an ISO 14001 certified mill and is Process Chlorine Free. Typeset by Soapbox, www.soapbox.co.uk Cover image: Staircase, Benesse Museum House, Naoshima, Japan. Copyright © Education Images/UIG via Getty Images -
Cup-Wheel Product Range for CMG 1700 Concrete Grinder
Cup-wheel product range for CMG 1700 concrete grinder Top professional quality for an optimum abrasion rate and a long durability; dif- ferent segment qualities for different material hardnesses; smooth running and durable. Select the suitable grinding cup-wheel for the surface to be machined BST 125 — CYCLONE Premium cup-wheel with 12 segments, long durability for a universal range of applications; optimal dust removal due to offset segment arrangement, consistent diamond coating for constant grinding performance, highly abrasive; coarser grinding pattern;ideal for grinding down hard concrete, ground preparation on hard screed, removing tile adhesive and formwork seams, lime sandstone, sanding lime-cement plaster, and for levelling natural stone Hard concrete Flexible adhesive Screed Type Art. no. Ø Height Bore No. seg- Height mm mm mm ments Segm. mm BST 125 19289 125 22 22.23 12 7 GST 125 – GRINDER Precision diamond cup-wheel with hard segments, premium quality for a perfect grinding pattern on abrasive materials; suitable for sanding and levelling fresh concrete and removing layers of sludge, tile adhesive, fresh screed, cement plas- ter, gypsum plaster, and also for fine sanding of marble and soft natural stone Fresh concrete Tile adhesive Soft natural stone Type Art. no. Ø Height Bore No. seg- Height mm mm mm ments Segm. mm GST 125 19293 125 22 22.23 8 7 Cup-wheel product range UST 125 – UNIVERSAL Standard diamond grinding cup for abrasive material with a very good abrasion to enable rapid working progress; out- standing price/performance ratio; ideal for a wide range of applications such as levelling fresh concrete, screed, mineral adhesives, cement plaster, cement-based fillers and abrasive natural stone (e.g.