Feature Articles in This Issue
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Experimental Investigation on Foam Concrete with Partial Replacement of Fine Aggreate by Fly Ash and Cement by Alccofine
E3S Web of Conferences 184, 01089 (2020) https://doi.org/10.1051/e3sconf/202018401089 ICMED 2020 EXPERIMENTAL INVESTIGATION ON FOAM CONCRETE WITH PARTIAL REPLACEMENT OF FINE AGGREATE BY FLY ASH AND CEMENT BY ALCCOFINE Dr.G.V.V. SATYANARAYANA1 and G. PRAVEEN KUMAR2 1Professor, Department of Civil Engineering, GRIET, Hyderabad-500090 2 P.G.Scholar, Dept. of Civil Engineering, GRIET, Hyderabad-500090 ABSTRACT- As we know that Foam concrete has been successfully used and it has gained popularity due to its lower density than normal concrete. Globally the construction activities are rapid and using huge amount of fine aggregate and cement. Due to continuous usage of large amount of sand and cement we are creating natural imbalance by CONTINUOUS mining of sand, lime etc., from natural resources, which causes many natural hazards and become threat to humans. As a responsible citizen of world everyone think to stop the usage of sand and cement in huge quantity for infrastructural activities. Fly ash is one alternative solution as a partial replacement of sand and cement with Alccofine. In this investigation we are replacing fine aggregate with fly ash and cement with Alccofine by usage of Using additive materials in foam concrete which provides not only workability, strength but also reduce overall cost. As reducing the quantity of sand and cement in foam concrete we conserve Green House effect and also other raw materials used for cement. Foam concrete produced with uniform distribution of air bubbles thoughout the mass of concrete. The density of foam concrete is a function of the volume of foam added to the slurry and the strength decreases as decrease in densities. -
Vysoké Učení Technické V Brně Brno University of Technology
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ FACULTY OF CIVIL ENGINEERING ÚSTAV TECHNOLOGIE STAVEBNÍCH HMOT A DÍLCŮ INSTITUTE OF TECHNOLOGY OF BUILDING MATERIALS AND COMPONENTS VLIV VLASTNOSTÍ VSTUPNÍCH MATERIÁLŮ NA KVALITU ARCHITEKTONICKÝCH BETONŮ INFLUENCE OF INPUT MATERIALS FOR QUALITY ARCHITECTURAL CONCRETE DIPLOMOVÁ PRÁCE DIPLOMA THESIS AUTOR PRÁCE Bc. Veronika Ondryášová AUTHOR VEDOUCÍ PRÁCE prof. Ing. RUDOLF HELA, CSc. SUPERVISOR BRNO 2018 1 2 3 Abstrakt Diplomová práce se zaměřuje na problematiku vlivu vlastností vstupních surovin pro výrobu kvalitních povrchů architektonických betonů. V úvodní části je popsána definice architektonického betonu a také výhody a nevýhody jeho realizace. V dalších kapitolách jsou uvedeny charakteristiky, dávkování či chemické složení vstupních materiálů. Kromě návrhu receptury je důležitým parametrem pro vytvoření kvalitního povrchu betonu zhutňování, precizní uložení do bednění a následné ošetřování povrchu. Popsány jsou také jednotlivé druhy architektonických betonů, jejich způsob vyrábění s uvedenými příklady na konkrétních realizovaných stavbách. V praktické části byly navrženy 4 receptury, kde se měnil druh nebo dávkování vstupních surovin. Při tvorbě receptur byl důraz kladen především na minimální segregaci čerstvého betonu a omezení vzniku pórů na povrchu ztvrdlého betonu. Klíčová slova Architektonický beton, vstupní suroviny, bednění, separační prostředky, cement, přísady, pigment. Abstract This diploma thesis focuses on the influence of properties of feedstocks for the production of quality surfaces of architectural concrete. The introductory part describes the definition of architectural concrete with the advantages and disadvantages of its implementation. In the following chapters, the characteristics, the dosage or the chemical composition of the input materials are given. Besides the design of the mixture, important parameters for the creation of a quality surface of concrete are compaction, precise placement in formwork and subsequent treatment of the surface. -
Design Efficiency, Characteristics, and Utilization of Reinforced Foamed
crystals Review Design Efficiency, Characteristics, and Utilization of Reinforced Foamed Concrete: A Review Mugahed Amran 1,2,*, Yeong Huei Lee 3,*, Nikolai Vatin 4 , Roman Fediuk 5, Shek Poi-Ngian 6, Yee Yong Lee 7 and Gunasekaran Murali 8 1 Department of Civil Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia 2 Department of Civil Engineering, Faculty of Engineering and IT, Amran University, Quhal 9677, Amran, Yemen 3 Department of Civil and Construction Engineering, Faculty of Engineering and Science, Curtin University, CDT250, Miri 98009, Sarawak, Malaysia 4 Higher School of Industrial, Civil and Road Construction, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia; [email protected] 5 School of Engineering, Far Eastern Federal University, Vladivostok 690950, Russia; [email protected] 6 Construction Research Centre (CRC), Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; [email protected] 7 Department of Civil Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia; [email protected] 8 School of Civil Engineering, SASTRA Deemed to be University, Thanjavur 613404, Tamil Nadu, India; [email protected] * Correspondence: [email protected] or [email protected] (M.A.); [email protected] (Y.H.L.) Received: 27 August 2020; Accepted: 30 September 2020; Published: 17 October 2020 Abstract: Foam concrete (FC) serves as an efficient construction material that combines well thermal insulation and structural properties. The studies of material characteristics, including the mechanical, physical, rheological, and functional properties of lightweight concrete, have been conducted rigorously. However, a lack of knowledge on the design efficiency of reinforced FC (RFC) was found in current research trends, compared to reinforced lightweight aggregate concrete. -
Characteristics of Lightweight Foamed Concrete Brick Mixed with Flyash
SSRG International Journal of Civil Engineering Volume 6 Issue 3, 22-28, March 2019 ISSN: 2348 – 8352 /doi:10.14445/23488352/IJCE-V6I3P103 © 2019 Seventh Sense Research Group® Characteristics of Lightweight Foamed Concrete Brick Mixed with FlyAsh Seyed Navid Hashem Moniri*1, Fathoni Usman#2 *1MSc Student, Research Center of Concrete and Asphalt, Damavand Branch, Islamic Azad University, Damavand, Iran. #2Senior Lecturer, Institute of Energy Infrastructure, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia. Abstract construction industry's carbon footprint, lightweight Lightweight concrete has become a sweet foamed concrete can be used as an alternative, moving solution in the construction industry. The foamed towards sustainable construction by lessening the concrete brick can be substitute with the normal clay frequency of transportation and heavy types of burnt brick, which consumes more energy and carbon machinery usage [4]. Foamed concrete brick consists footprint. To reduce cement in the foamed concrete, fly of some materials such as fine aggregate, cement, ash as a scheduled wastage by-product of the coal- water, and foaming agent. The foamed concrete fueled power plant is added into the mixture. This application can be obtained to structural, partition, paper presents the development of fly ash mixed with a insulation, and filling grades [5]. Foamed concrete is foamed concrete brick. The samples were prepared suitable for producing lightweight bricks. Lightweight with different percentages of fly ash substituting the foamed concrete blocks were developed more than 60 cement. The compressive test and the flexural test years ago and have been used internationally for were conducted to evaluate the mechanical properties different construction applications. -
Amvic ICF Installation Manual
ICF INSTALLATION MANUAL Amvic ICF Installation Manual STRONGER EVERY DAY INNOVATIVE INSULATION CONSTRUCTION SOLUTIONS FOR ENERGY EFFICIENT AND COMFORTABLE BUILDINGS BER 2020 BER M 4 NOVE 4 TABLE OF CONTENTS Preface ........................................................................................................................................................................... Technical Support .......................................................................................................................................................... Amvic Website ............................................................................................................................................................... Acknowledgment ........................................................................................................................................................... Disclaimer ...................................................................................................................................................................... Copyright ........................................................................................................................................................................ Part 1 - Introduction .................................................................................................................................................... 8 Part 2 - Products and Availability ............................................................................................................................. -
Armorhab: Design Reference Architecture (DRA) for Human
Copyright © 2016 by Dark Sea Industries LLC and the University of New Mexico. Published by The Mars Society with permission ArmorHab: Design Reference Architecture (DRA) for human habitation in deep space Peter Vorobieff Professor and Assistant Chair, Assistant Chair of Facilities, Department of Mechanical Engineering University of New Mexico, Albuquerque, NM, 87131 Phone: (505) 277-8347 email: [email protected] Affiliation: University of New Mexico Craig Davidson Administrator 4808 Downey NE Albuquerque, NM 87109 Phone: 505-720-2321 email: [email protected] Affiliation: Dark Sea Industries LLC Dr. Mahmoud Reda Taha, Peng Professor and Chair, Department of Civil Engineering University of New Mexico, Albuquerque, NM 87131-0001 Office: (505) 277-1258, Cell: (505) 385-8930, Fax (505) 277-1988 http://civil.unm.edu/faculty-staff/faculty-profiles/mahmoud-taha.html www.unm.edu/~mrtaha/index.htm Affiliation: University of New Mexico Christos Christodoulou Associate Dean for Research Distinguished Professor, Electrical & Computer Engineering University of New Mexico Albuquerque, NM 87131 Tel: (505) 277-6580 www.ece.unm.edu/faculty/cgc www.cosmiac.org Affiliation: University of New Mexico Anil K. Prinja Professor and Chair Department of Nuclear Engineering University of New Mexico Albuquerque, NM 87131-1070 -1- Copyright © 2016 by Dark Sea Industries LLC and the University of New Mexico. Published by The Mars Society with permission Phone: (505)-277-4600, Fax: (505)-277-5433 [email protected] Affiliation: University of New Mexico Svetlana V. Poroseva Assistant Professor Department of Mechanical Engineering University of New Mexico, Albuquerque, NM, 87131 Phone: 1(505) 277-1493, Fax: 1(505) 277-1571 email: poroseva at unm.edu Affiliation: University of New Mexico Mehran Tehrani Assistant Professor Department of Mechanical Engineering University of New Mexico, Albuquerque, NM, 87131 Phone: 1(505) 277-1493, Fax: 1(505) 277-1571 email: [email protected] Affiliation: University of New Mexico David T. -
Preparation of Foamed Phosphogypsum Lightweight Materials by Incorporating Cementitious Additives
ISSN 1392–1320 MATERIALS SCIENCE (MEDŽIAGOTYRA). Vol. 25, No. 3. 2019 Preparation of Foamed Phosphogypsum Lightweight Materials by Incorporating Cementitious Additives Ting WANG 1, Xiao-Jian GAO 1, 2, 3 , Jian WANG 1 1 School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China 2 Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China 3 Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150090, China http://dx.doi.org/10.5755/j01.ms.25.3.19910 Received 11 January 2018; accepted 09 April 2018 As a byproduct of phosphoric acid industry, phosphogypsum has many environmental problems. In order to recycle phosphogypsum to manufacture lightweight building materials, cementitious additives including fly ash, ground granulate blast-furnace slag and Portland cement were added to improve strength and water-resistance and different volume of foam was added to reduce the bulk density. The results show that hydrated lime can improve mechanical strength and water resistance of PG paste and the optimal dosage of hydrated lime is 6 %. Higher addition of fly ash or ground granulated blast-furnace slag improves the fluidity and delays the setting time of PG paste. The addition of 10 ~ 20 % fly ash results in a little reducing influence and 10 % ground granulated blast-furnace slag leads to an increase of 20.7 % for 28 days compressive strength of hardened PG specimen. The higher addition of Portland cement results in the better mechanical strength and water resistance of PG specimens. -
An Investigation on Properties of Foamed Concrete by Using Different
ISSN: 2277-3754 ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 8, Issue 11, May 2019 An investigation on properties of foamed concrete by using different mixes Tarek El-Badry1, Ahmed Abdel-Reheem2, Mohamed Mahdy3 1Demonstrator - Department of civil engineering, Delta University for Science & Technology, International Coastal Road, Gamasa City, Egypt 2, 3Professor - Department of civil engineering, Faculty of Engineering-Mansoura University, Egypt Moreover, it is an economical, environmentally friendly Abstract— This paper investigates an experimental study of and it enhances the fire resistance, thermal conductivity [4]. foamed concrete (FC) by using organic foaming agent. There Foamed concrete is not a particularly new material. are many methods to produce FC. Mixed foaming method is Historically, the romans first noticed that small air bubbles used to produce FC with wide range of concrete densities 1200, are formed by adding animal blood in to the mix of small 1500 and 1800 kg/m3. This study concentrates on the effect of high cement (PC) content, using silica fume (SF) as cement gravel and coarse sand with hot lime and water [7,8]. The replacement and using fly ash (FA) as sand replacement on the first patent of foamed concrete recorded back to early 1920s. fresh and mechanical properties. As well as presenting the According to Sach and Seifert (1999), limited scale thermal conductivity of the three different densities. The foamed production began in 1923 and according to Arasteh (1988), concrete mixes achieve (4-19.1) MPa compressive strength at in 1924 Linde pronounced its production, properties and 28-days. -
Cellular Lightweight Concrete
Journal of Advance Research in Mechanical and Civil Engineering ISSN: 2208-2379 Cellular Lightweight Concrete 1. Sagar W. Dhengare 2. Ajay L. Dandge 3. H.R.Nikhade 1,2,3 Department of civil Engineering, YCCE, Nagpur, India (Asst. Professor) Abstract—Cellular Light weight Concrete (CLWC) is not a new invention in concrete world. It has been known since ancient times. It was made using natural aggregates of volcanic origin such as pumice, scoria, etc. The Greeks and the Romans used pumice in building construction. Lightweight concrete can be defined as a type of concrete which includes an expanding agent in that it increases the volume of the mixture while giving additional qualities such as inability and lessened the dead weight. The usage of Cellular Light-weight Concrete (CLC) blocks gives a prospective solution to building construction industry along with environmental preservation. I. INTRODUCTION Concrete is most important construction materials. Concrete is a material used in building construction, consisting of a hard, chemically inert particulate substance, known as an aggregate that is bonded together by cement and water. In upcoming years there has been an increasing worldwide demand for the construction of buildings, roads and an airfield which has mitigate the raw material in concrete like aggregate. In some ruler areas, the huge quantities of aggregate that have already been used means that local materials are no longer available and the deficit has to be made up by importing materials from other place. Therefore a new direction towards Cellular Lightweight Concrete in building and civil engineering construction is used [1]. Lightweight concrete maintains its large voids and not forming laitance layers or cement films when placed on the wall. -
Effect of Nano-Silica on the Properties and Form Mechanism of Foamed Concrete
[Type text] ISSN : [Type0974 -text] 7435 Volume[Type 10 Issue text] 2 4 2014 BioTechnology An Indian Journal FULL PAPER BTAIJ, 10(24), 2014 [15583-15589] Effect of nano-silica on the properties and form mechanism of foamed concrete Zhang Jing1,2*, Liu Xiangdong1 1School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, (CHINA) 2Inner Mongolia Technical Collage of Construction, Hohhot, Inner Mongolia 010070, (CHINA) ABSTRACT Foamed concrete is usually made of cement and fly ash, with H2O2 and Fecl3 as foaming agent, and calcium stearate as foam stabilizer. Nano SiO2, or nano-silica, can be used as an additive to change the properties of concrete. In this paper, the effect of nano-SiO2 on the compressive strength of foamed concrete is investigated, as well as the additive mechanism is analyzed. Experimental results show that compressive strength at 7-th days can be improved up to 15%, and at 28-th days can be improved up to 18%, respectively through adding nano SiO2. The improvement is explained as that nano-SiO2 changes the microstructure and the interactions on the surface of foam to shorten the foaming time. KEYWORDS Foamed concrete; Nano SiO2 ; Fly ash; H2O2; Fecl3. © Trade Science Inc. 15584 Effect of nano-silica on the properties and form mechanism of foamed concrete BTAIJ, 10(24) 2014 INTRODUCTION Foamed concrete is a kind of porous concrete materials which is mainly made from cement, fly ash and blowing agents, with additives and through nature conservation process[3]. Because of its light- weight, material saving, green, good thermal insulation, fire resistance and equal-lifetime with building, and obtained easily, foamed concrete is popular used in construction industry. -
The Effects of Curing Methods on Early-Age Strength of Sustainable Foamed Concrete
Advances in Research 3(6): 548-557, 2015, Article no.AIR.2015.050 ISSN: 2348-0394 SCIENCEDOMAIN international www.sciencedomain.org The Effects of Curing Methods on Early-age Strength of Sustainable Foamed Concrete Alonge O. Richard1* and Mahyuddin B. Ramli1 1School of Housing, Building and Planning, Universiti Sains Malaysia, Penang, Malaysia. Authors’ contributions This work was carried out in collaboration between both authors. Author AOR designed the study, wrote the protocol, and wrote the first draft of the manuscript. He also managed the literature searches, analyses of the study and the experimental process while author MBR proofreads the manuscript. Both authors read and approved the final manuscript. Article Information DOI: 10.9734/AIR/2015/13373 Editor(s): (1) Francisco Marquez-Linares, Full Professor of Chemistry Nanomaterials Research Group School of Science and Technology University of Turabo, USA. (2) Enrico Franceschi, Department of Chemistry and Industrial Chemistry - University of Genoa Via Dodecanese 31-16146 Genoa, Italy. Reviewers: (1) Anonymous, Belarusian National Technical University, Belarus. (2) Kofi Agyekum, Department Of Building Technology, Kwame Nkrumah University Of Science And Technology (Knust), Ghana. (3) Anonymous, Linköping University, Sweden. (4) Anonymous, Chungnam National University, Korea. Complete Peer review History: http://www.sciencedomain.org/review-history.php?iid=758&id=31&aid=7113 Received 14th August 2014 th Original Research Article Accepted 28 October 2014 th Published 8 December 2014 ABSTRACT Curing is a process aimed at keeping concrete saturated or nearly saturated, so as to ensure complete hydration process of cement. For curing to be done properly, the temperature, duration and condition remain key factors. -
Geopolymers from Lunar and Martian Soil Simulants Alexiadis, Alessio; Alberini, Federico; Meyer, Marit E
University of Birmingham Geopolymers from lunar and Martian soil simulants Alexiadis, Alessio; Alberini, Federico; Meyer, Marit E. DOI: 10.1016/j.asr.2016.10.003 License: Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) Document Version Peer reviewed version Citation for published version (Harvard): Alexiadis, A, Alberini, F & Meyer, ME 2017, 'Geopolymers from lunar and Martian soil simulants', Advances in Space Research, vol. 59, no. 1, pp. 490-495. https://doi.org/10.1016/j.asr.2016.10.003 Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.