Automatic Train Control in Rail Rapid Transit (Part 14 Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ERTMS/ETCS Railway Signalling
Appendix A ERTMS/ETCS Railway Signalling Salvatore Sabina, Fabio Poli and Nazelie Kassabian A.1 Interoperable Constituents The basic interoperability constituents in the Control-Command and Signalling Sub- systems are, respectively, defined in TableA.1 for the Control-Command and Sig- nalling On-board Subsystem [1] and TableA.2 for the Control-Command and Sig- nalling Trackside Subsystem [1]. The functions of basic interoperability constituents may be combined to form a group. This group is then defined by those functions and by its remaining exter- nal interfaces. If a group is formed in this way, it shall be considered as an inter- operability constituent. TableA.3 lists the groups of interoperability constituents of the Control-Command and Signalling On-board Subsystem [1]. TableA.4 lists the groups of interoperability constituents of the Control-Command and Signalling Trackside Subsystem [1]. S. Sabina (B) Ansaldo STS S.p.A, Via Paolo Mantovani 3-5, 16151 Genova, Italy e-mail: [email protected] F. Poli Ansaldo STS S.p.A, Via Ferrante Imparato 184, 80147 Napoli, Italy e-mail: [email protected] N. Kassabian Ansaldo STS S.p.A, Via Volvera 50, 10045 Piossasco Torino, Italy e-mail: [email protected] © Springer International Publishing AG, part of Springer Nature 2018 233 L. Lo Presti and S. Sabina (eds.), GNSS for Rail Transportation,PoliTO Springer Series, https://doi.org/10.1007/978-3-319-79084-8 234 Appendix A: ERTMS/ETCS Railway Signalling Table A.1 Basic interoperability constituents in the Control-Command -
Objects from the National Railway Museum Collection
The Science Museum Group: Science Museum, London National Railway Museum, York Museum of Science and Industry, Manchester National Science and Media Museum, Bradford Locomotion, Shildon Objects Available for Transfer October-December 2018 The objects listed on the following pages have been approved for transfer and are currently available. The closing date for applications is Friday 14 December 2018. If you would like more information or are interested in acquiring an object from the Transfers list, please email us at [email protected] and include the following information: • The object number and description • A description of how you intend to use the object(s) and how this will benefit the public • An explanation of how you will ensure the long-term care of the object(s) • The organisation that you are representing, including the type of organisation (i.e. accredited museum, charitable trust) • Full contact details 1/66 The Science Museum Group: Science Museum, London National Railway Museum, York Museum of Science and Industry, Manchester National Science and Media Museum, Bradford Locomotion, Shildon Transfers from the Railway Museum Collection Object Description Image Number Visual display unit, British Rail, Total Operations Processing System, for use in control E2018.0514.1 office, Datapoint 8600, model number 97-3601-001 (9), serial number 10603, unknown provenance. Thyristor dimmer unit for lighting, high voltage, by Industrolite Ltd, Croydon Airport, serial number 686- E2018.0515.1 6057/8, with ‘DIAGRAM LIGHTING’ printed on Dymo tape label, unknown provenance. Teleprinter, Creed system, model no. 3D, serial no. 6028, by Creed & Co. Ltd., London, British patent numbers 228610, 228842 and others, E2018.0517.1 motor reference no. -
Lubomír Macháček: „Zabezpečováka“ Ze Mě Udělala Tragická Mimořádná Událost
ČTVRTLETNÍK AŽD BEZPEČNĚ K CÍLI 1 | 2020 Lubomír Macháček: „Zabezpečováka“ ze mě udělala tragická mimořádná událost REPORTÉR AŽD PRAHA • 1/2018 | 1 | LITOMĚŘICE HORNÍ NÁDRAŽÍ – MOST VLAKEM RYCHLEJI www.svestkovadraha.cz Z OBsAHU 18 • Jízda RYchlosTÍ 200 KM/H POD DOHLEDEM ETCS LEVEL 2 správa železnic zorganizovala na přelomu roku 2019/2020 mezi Břeclaví a Brnem několik testovacích jízd rychlostí 200 km/h. Provedení těchto jízd bylo zajištěno společností ČD cargo a byly vedeny lokomotivou řady 383 (Vectron). Jak probíhal dohled nad vlastní jízdou vlaku mobilní částí ETCS a jaké musely být provedeny úpravy traťové části ETCS z produkce AŽD? 36 • ŠVEstková dráha TEstuje BEZúdržbový provoz Na takzvané Švestkové dráze (Čížkovice–Obrnice) připra- vuje její vlastník společnost AŽD přechod na bezúdržbový provoz. Bude se jednat o první železniční trať v naší zemi, která kromě pravidelných preventivních údržbových zásahů nebude potřebovat ani takzvané pochůzkáře, kteří pravidelně kontrolují technický stav tratě. 40 • Provoz V rekonstruované ŽELEZNIČNÍ stanicI BRNO hlavní nádraží Neustále rostoucí požadavky objednatelů dopravy na množství vlakových spojů a kvalitu jejich dopravního odbavení vyústily v nutnost zásadní investice ve stanici Brno hlavní nádraží. cílem bylo prodloužit životnost do doby výstavby zcela nového nádraží v odsunuté poloze. 56 • ČEŠI naučili sYsTÉM c-ITs varovat řIDIČE PřED BLÍŽÍcÍM sE ŽELEZNIČNÍM PřEJEZDEM Představte si systém v automobilu, který vás upozorní na blížící se přejezd a pokud je ve výstraze, bude vás varovat textovým hlášením a animovanými piktogramy. Tuto novou službu v rámci projektu c-ROADs cZ vytvořily společnosti RADOM a AŽD. ČTVRTLETNÍK REPORTÉR AŽD 1/2020 (vyšlo 30. 3. 2020 v Praze). VYDÁVÁ: AŽD Praha s.r.o., Žirovnická 3146/2, Záběhlice, 106 00 Praha 10, IČ: 48029483, tel.: 267 287 424 REDAKČNÍ RADA: Jiří Dlabaja, šéfredaktor, Ilona Hrečková, zástupkyně šéfredaktora. -
[(Central] [Central, 6 E -1 4
/NEWYORK^ Fnewyork^ [(Central] [Central, 6 e -1 4 Reference Marks NEW YORK CENTRAL LC.L Between POPULAR ALL-COACH DAYLINER Dally. II Meal station. Sunday only. • Thla train does not carry baggage SERVICE ADVANTAGES Chicago, Pittsburgh & Boston Daily except Sunday- Ex. Sun.—Runs dally except Sunday. Daily except Monday. E.T.—Eastern Standard Time. Daily except Saturday. C.T.—Central Standard Time. In addition to the train service shown, buses of the United Traction Company run at frequent intervals between Albany and Troy. | I i^i ichedulot . pcart'd to 5 Packing and handling research Stops on signal to receive passengers for stations beyond Albuny. traffic requirement! for most ... they assure the security ol Stops to receive or discbarge passengers for or from Astatabula and beyond. Stops except Saturdays and Sundays. rX|M*llitioilH .1. Ii\ i-r n--. the shipped merchandise. bb Stops at 6.25 a. m. to discharge passengers from Rochester and beyond or to 2 Free pick up and delivery ser• receive passengers for Chicago. Smooth operation . easy 4 Stops on signal to receive passengers for beyond Troy. vice . direct from Hliippcr's grades... superlative roadbed. Stops on signal to discharge or receive passengers. to roiisipiirrV door. No baggage handled for or from this station; *y Constant supervision and pro• Stops regularly, but only to receive passengers. * f Optional trucking allowance to tection in transit.. still mon Stops only to discbarge passengers. nhi|»|MTH jiiul roiittignrcR ... a security for shipped merchan Runs Saturdays only. mi I • i i ii i ii I tavina to both. dise. -
BACKTRACK 22-1 2008:Layout 1 21/11/07 14:14 Page 1
BACKTRACK 22-1 2008:Layout 1 21/11/07 14:14 Page 1 BRITAIN‘S LEADING HISTORICAL RAILWAY JOURNAL VOLUME 22 • NUMBER 1 • JANUARY 2008 • £3.60 IN THIS ISSUE 150 YEARS OF THE SOMERSET & DORSET RAILWAY GWR RAILCARS IN COLOUR THE NORTH CORNWALL LINE THE FURNESS LINE IN COLOUR PENDRAGON BRITISH ENGLISH-ELECTRIC MANUFACTURERS PUBLISHING THE GWR EXPRESS 4-4-0 CLASSES THE COMPREHENSIVE VOICE OF RAILWAY HISTORY BACKTRACK 22-1 2008:Layout 1 21/11/07 15:59 Page 64 THE COMPREHENSIVE VOICE OF RAILWAY HISTORY END OF THE YEAR AT ASHBY JUNCTION A light snowfall lends a crisp feel to this view at Ashby Junction, just north of Nuneaton, on 29th December 1962. Two LMS 4-6-0s, Class 5 No.45058 piloting ‘Jubilee’ No.45592 Indore, whisk the late-running Heysham–London Euston ‘Ulster Express’ past the signal box in a flurry of steam, while 8F 2-8-0 No.48349 waits to bring a freight off the Ashby & Nuneaton line. As the year draws to a close, steam can ponder upon the inexorable march south of the West Coast Main Line electrification. (Tommy Tomalin) PENDRAGON PUBLISHING www.pendragonpublishing.co.uk BACKTRACK 22-1 2008:Layout 1 21/11/07 14:17 Page 4 SOUTHERN GONE WEST A busy scene at Halwill Junction on 31st August 1964. BR Class 4 4-6-0 No.75022 is approaching with the 8.48am from Padstow, THE NORTH CORNWALL while Class 4 2-6-4T No.80037 waits to shape of the ancient Bodmin & Wadebridge proceed with the 10.00 Okehampton–Padstow. -
Heavy Haul Freight Transportation System: Autohaul Autonomous Heavy Haul Freight Train Achieved in Australia
FEATURED ARTICLES Advanced Railway Systems through Digital Technology Heavy Haul Freight Transportation System: AutoHaul Autonomous Heavy Haul Freight Train Achieved in Australia There are many iron ore rail lines in the Pilbara region, located in North-West Australia. Global mining company Rio Tinto Limited operates a fleet of heavy haul iron ore trains 24 hours a day from its 16 mines to four port terminals overlooking the Indian Ocean. To increase their operational capacity and reduce transportation time, Rio Tinto realized that driverless (GoA4) operation of its trains was the way to achieve this. The company established a framework agreement with Hitachi Rail STS S.p.A. This project was named AutoHaul, and two companies worked closely on its development over several years. Since completing the first loaded run in July 2018, these trains have now safely travelled more than 11 million km autonomously. The network is the world’s first driverless heavy haul long distance train operation. Mazahir Yusuf Anthony MacDonald, Ph.D. Roslyn Stuart Hiroko Miyazaki Tinto’s Operations Center in Perth more than 1,500 km away (see Figure 1 and Figure 2). Th e operation of this 1. Introduction autonomous train is achieved by the heavy haul freight transportation system, AutoHaul*1, developed through co- Rio Tinto Limited, a leading global mining group, operates creation between Rio Tinto and Hitachi Rail STS S.p.A. an autonomous fl eet of 221 heavy haul locomotives along (formerly Ansaldo STS S.p.A.). Th is article presents the its 1,700 km line 24 hours a day extracting iron ore from development history and features of AutoHaul. -
Station Sign 64” 2 14 Bennet
Boston & Maine Railroad Historical Society Inc. Hardware Collection Tag No. File No: Inventory: Size: Donor: 1 14 West Hollis – Station sign 64” 2 14 Bennett Hall – Station sign 69” Arnold Wilder 3 14 Fitchburg “Wood” Station sign 56” Arnold Wilder 4 14 Woburn “Wood” Station sign 30” Charles Smith 5 14 Danville Junction – Station Sign 96” Anonymous 6 14 West Fitchburg – Station sign 92” Arnold Wilder 7 14 West Hollis – Station sign 72” Arnold Wilder 8 14 Scheghticoke – Station sign 76” Arnold Wilder 9 14 Hubbardston – Station sign 76” Arnold Wilder 10 14 Winchester “Wood” Station sign 68” 11 14 Wedgmere “Wood” Station Sign 56” 12 14 Salem – Station sign 48” 13 14 Whately – Station sign 52”x 11” 14 14 Mt Tom – Station sign 42”x 10 ½” 15 14 Middlesex “Wood” Station sign 54” Carl Byron 16 15 Railway Express Agency - sign 72” 17 15 B&MRR Passenger Waiting Room - sign 32”x 11” 18 15 B&M Outing - sign 23”x 14” 19 15 Yard Limit – sign 16”x 14” 20 15 Notice no Deliveries “Wood” – sign 18”x 24” 21 15 Private Crossing “Plastic” – sign 18”x 6” 22 15 Free Parking “Wood” – sign 24 ½”x 8” 23 15 Railroad Crossing – Sign 36”x 36” 24 15 2 Tracks sign “White /w Black lettering (2 each) 27”x 18” 25 15 Railroad Crossbuck /w reflectors (2 each) 26 14 Lowell Station – sign reproduction Property of the Boston & Maine Railroad Historical Society Boston & Maine Railroad Historical Society Inc. Hardware Collection Tag No. File No: Inventory: Size: Donor: 27 15 Hand Held Stop – sign Donald S. -
Relative Capacity and Performance of Fixed- and Moving-Block Control
Research Article Transportation Research Record 1–12 Ó National Academy of Sciences: Relative Capacity and Performance of Transportation Research Board 2019 Article reuse guidelines: sagepub.com/journals-permissions Fixed- and Moving-Block Control DOI: 10.1177/0361198119841852 Systems on North American Freight journals.sagepub.com/home/trr Railway Lines and Shared Passenger Corridors C. Tyler Dick1, Darkhan Mussanov1,2, Leonel E. Evans1, Geordie S. Roscoe1, and Tzu-Yu Chang1 Abstract North American railroads are facing increasing demand for safe, efficient, and reliable freight and passenger transportation. The high cost of constructing additional track infrastructure to increase capacity and improve reliability provides railroads with a strong financial motivation to increase the productivity of their existing mainlines by reducing the headway between trains. The objective of this research is to assess potential for advanced Positive Train Control (PTC) systems with virtual and moving blocks to improve the capacity and performance of Class 1 railroad mainline corridors. Rail Traffic Controller software is used to simulate and compare the delay performance and capacity of train operations on a representative rail cor- ridor under fixed wayside block signals and moving blocks. The experiment also investigates possible interactions between the capacity benefits of moving blocks and traffic volume, traffic composition, and amount of second main track. Moving blocks can increase the capacity of single-track corridors by several trains per day, serving as an effective substitute to con- struction of additional second main track infrastructure in the short term. Moving blocks are shown to have the greatest capacity benefit when the corridor has more second main track and traffic volumes are high. -
Federal Railroad Administration, DOT § 235.7
Federal Railroad Administration, DOT § 235.7 railroads that operate on standard gage (5) Removal of an intermittent auto- track which is part of the general rail- matic train stop system in conjunction road system of transportation. with the implementation of a positive (b) This part does not apply to rail train control system approved by FRA rapid transit operations conducted over under subpart I of part 236 of this chap- track that is used exclusively for that ter. purpose and that is not part of the gen- (b) When the resultant arrangement eral system of railroad transportation. will comply with part 236 of this title, it is not necessary to file for approval § 235.5 Changes requiring filing of ap- to decrease the limits of a system as plication. follows: (a) Except as provided in § 235.7, ap- (1) Decrease of the limits of an inter- plications shall be filed to cover the locking when interlocked switches, de- following: rails, or movable-point frogs are not in- (1) The discontinuance of a block sig- volved; nal system, interlocking, traffic con- (2) Removal of electric or mechanical trol system, automatic train stop, lock, or signal used in lieu thereof, train control, or cab signal system or from hand-operated switch in auto- other similar appliance or device; matic block signal or traffic control (2) The decrease of the limits of a territory where train speed over the block signal system, interlocking, traf- switch does not exceed 20 miles per fic control system, automatic train hour; or stop, train control, or cab signal sys- (3) Removal of electric or mechanical tem; or lock, or signal used in lieu thereof, (3) The modification of a block signal from hand-operated switch in auto- system, interlocking, traffic control matic block signal or traffic control system, automatic train stop, train territory where trains are not per- control, or cab signal system. -
Developing Standards for New Technology Signal Systems for Rail Transit Applications
Transactions on the Built Environment vol 34, © 1998 WIT Press, www.witpress.com, ISSN 1743-3509 Developing standards for new technology signal systems for rail transit applications A. F. Rumsey Parsons Transportation, New York, U.S.A. Abstract Radio communications-based train control (CBTC) systems, also referred to as transmission-based signalling (TBS) systems, permit more effective utilization of rail transit infrastructure by allowing trains to operate safety at much closer headways, by permitting greater flexibility and greater precision in train control, and by providing continuous safe train separation assurance and overspeed protection. One of the challenges facing transit agencies who are considering the introduction of CBTC systems, however, is the lack of industry standards for this emerging technology, and the current inability of trains equipped with CBTC equipment from one supplier to operate on track equipped with CBTC equipment from a second supplier. This paper reports on the status of two separate initiatives being taken in North America to develop standards for CBTC systems for rail transit applications; one based on a voluntary consensus development approach, and the second based on a competitive procurement approach. 1 Background Conventional signalling and train control systems rely almost exclusively on track circuits to detect the presence of trains. Information on the status of the track ahead is provided to train operators either through wayside signals or trainborne cab signals. Ensuring compliance with the signals is achieved either through strict observance of operating procedures, or through automatic train protection features such as wayside electro-mechanical train stops, or trainborne supervisory equipment linked to the train's braking system. -
Approved Signalling Items for the ARTC Network ESA-00-01
Division / Business Unit: Corporate Services & Safety Function: Signalling Document Type: Catalogue Approved Signalling Items for the ARTC Network ESA-00-01 Applicability ARTC Network Wide SMS Publication Requirement Internal / External Primary Source Existing ARTC Type Approvals Document Status Version # Date Reviewed Prepared by Reviewed by Endorsed Approved 1.3 03 May 2021 Standards Stakeholders Manager General Manager Signalling Technical Standards Standards 03/05/2021 Amendment Record Amendment Date Reviewed Clause Description of Amendment Version # 1.0 23 Mar 20 First issue of catalogue that lists signalling items and communication items related to signalling systems approved for use on the ARTC network. 1.1 26 Jun 20 New approved items added based on type approval and compliance to ARTC specification 1.2 24 Nov 20 New approved items added based on type approval and compliance to ARTC specification © Australian Rail Track Corporation Limited (ARTC) Disclaimer This document has been prepared by ARTC for internal use and may not be relied on by any other party without ARTC’s prior written consent. Use of this document shall be subject to the terms of the relevant contract with ARTC. ARTC and its employees shall have no liability to unauthorised users of the information for any loss, damage, cost or expense incurred or arising by reason of an unauthorised user using or relying upon the information in this document, whether caused by error, negligence, omission or misrepresentation in this document. This document is uncontrolled when printed. Authorised users of this document should visit ARTC’s extranet (www.artc.com.au) to access the latest version of this document. -
Consulting and Feasibility Study for Establishing Railway Electronic Interlocking System for Egypt
Establishment of Algeria's2013 KSP National System VisionConsulting 2030 Chapter 12 2013 System Consulting: Cadastre, Transportation 1. Vision 2030 and Indicator Analysis 2. Algeria and the Global Economy 1. Consulting and Feasibility Study for Establishing Railway 3. Current Issues Facing Algeria’s Economy Electronic Interlocking System for Egypt 4.Vision Scenarios 2. Support for the Establishment of the Chile Cadastral 5. Conclusions Information Management System Establishment of Algeria's2013 KSP National System VisionConsulting 2030 Chapter 1 Consulting and Feasibility Study for Establishing Railway Electronic Interlocking System for Egypt 1. Vision 2030 and Indicator Analysis 2. Algeria and the Global Economy Hwang Gook-hwan, Director General, Korea Eximbank 3. Current Issues Facing Algeria’s Economy Young-Seok Kim, Director, Korea Eximbank 4.Vision Scenarios In-sik Bang, Loan Officer, Korea Eximbank 5. Conclusions Yea-seul Lim, Research officer, Korea Eximbank List of Abbreviations List of Abbreviations Abbreviation Full Description ABS Automatic Block System AC Alternative Current AF Audio Frequency ATC Automatic Train Control ATO Automatic Train Operation ATP Automatic Train Protection ATS Automatic Train Stop BTM Balise Transmission Module CAU Compact Antenna Unit CCTV Closed-circuit television COD Corrugated Optic Duct COMC Communication Operator CPU Central processing unit CTC Centralized Traffic Control DC Direct Current DLP Digtal Light Processing EDCF Economic Development Cooperation Fund EIS Electronic Interlocking System