Automatic Train Control in Rail Rapid Transit (Part 14 Of

Total Page:16

File Type:pdf, Size:1020Kb

Automatic Train Control in Rail Rapid Transit (Part 14 Of Appendix E CHRONOLOGY OF TRAIN CONTROL DEVELOPMENT The history of train control technology in rail 1832 The first fixed signal system in America rapid transit is interwoven with railroad engineer- was installed on the New Castle & ing. Most of the train control techniques applied in Frenchtown RR, The signals were ball- rail rapid transit have their origin in railroading, shaped objects mounted on masts at 3- from which they are either borrowed directly or mile intervals. The signals were raised adapted to the special circumstances of the urban and lowered by a signalman to indicate setting. For this reason, many train control permissible speed—low meaning stop engineers consider ATC in rail rapid transit simply and stay and high meaning proceed at an extension of the field of railroad signaling. full speed, The latter indication gave rise However, there are some distinct differences, both to the expression “highballing.” in the technology and its application. The 1843 The first mechanical interlocking was similarities and differences are evident in the installed at Bricklayer’s Arms Junction in chronology of train control development presented England. It was a simple machine oper- here. ated by a signalman who worked the The development of signaling and train control switches with his hands and the signals technology may be separated into two periods, with with his feet. 1920 as the dividing point. Before 1920 the major 1851 Morse code electric telegraph was first areas of technological advance were interlocking used in train operation for sending train control and block signaling (manual and automatic). orders on the New York & Erie RR. After 1920, the demand for moving heavier traffic at higher speeds and with increased safety led to 1853 The Philadelphia & Reading RR installed major developments such as centralized traffic con- signal towers for giving information to trol, continuous cab signaling, coded track circuits, approaching trains on the occupancy of and automatic train control. Generally, innovative the track in advance. signaling and train control technology for rail rapid 1853 Open-circuit manual block signaling was transit was derived from railroads and lagged first used in England. behind railroad application by about 10 years. There were some notable exceptions; the development of 1860 Gate signals were initiated in America. automatic junction operation and automatic train A stop indication was displayed by plac- dispatching was pioneered in rail rapid transit. Very ing a red banner or disc on top of the gate recently, since roughly 1960, there has been some during the day. A red light was displayed experimentation with techniques and equipment at night. solely for rail rapid transit and small people-mover systems. 1863 Closed-circuit (fail-safe) manual block signaling, using the space interval The major source of this material is American method of operation, was first employed Railway Signaling Principles and Practices, in America on the United New Jersey Chapter l—History and Development of Railway Canal & RR Co. between Kensington, Pa. Signaling, published by the Association of (Philadelphia), and Trenton, N.J. American Railroads, Signal Section, 1954. Supple- mentary information, particularly on rail rapid tran- 1866 The first automatic electric block system sit technology in recent years, was assembled from was installed on the New Haven System various sources, including manufacturer’s at Meriden, Corm. Hall enclosed disc sig- brochures, local transit agency reports, and techni- nals, open circuit, were operated by track cal journals. instruments. 215 1868 The Pennsylvania RR used a type of trains was in use on the New York, New train order signal which was under the Haven & Hartford RR and the New York control of the train dispatcher who could Central & Hudson River RR. When oper- set it in the stop-danger position at any ated automatically by a treadle device on remote station by means of a selective the rail, the passing train released a device operated over the regular Morse pointer which started to move around a telegraph circuit. dial divided into three segments each representing 5 minutes. The pointer 1870 The first interlocking machine in movement was controlled by an escape- America was installed at Top-of-the- ment so that it moved across the dial in a Hill, a junction at Trenton, N. J., on the period of 15 minutes. Headway for the Camden and Amboy Division of the train ahead was thus indicated up to 15 Pennsylvania RR. minutes. 1871 A system of automatic block signals, 1885 The first electric detector locking for in- comparable with presently used equip- terlocked track switches was installed by ment, was installed on the New York & the Pennsylvania RR at the Pittsburgh, Harlem RR and the Eastern RR. Pa., terminal by using depression trips to 1872 The first installation of closed d.c. track ground the indication circuit. circuit, invented by Dr. William Robin- son, was made at Kinzua, Pa., on the 1889 The first electric interlocking employing Philadelphia & Erie RR. dynamic indication, invented by John D. Taylor, was installed at East Norwood, 1873 The Robinson closed-circuit track block Ohio, at the crossing of the Baltimore & for switch protection was first put into Ohio Southwestern RR and the Cincin- use on the Philadelphia & Erie RR. nati and Northern RR. 1876 The first power interlocking of the Burn 1893 The first low-voltage, direct-current, pneumatic type was put in use on the motor-operated automatic semaphore Pennsylvania RR at Mantua “Y,” West block signals were installed on the Philadelphia, Pa. Central RR of New Jersey in Black Dan’s 1876 The Boston & Lowell and the Boston & Cut, east of Phillipsburg, N.J. They were Providence RRs introduced the Robin- two-position lower-quandrant signals son electromechanical signal for with the motor and driving chain outside automatic blocking, controlled by direct the mast. current track circuits. 1900 The first three-block indication was in- 1880 The first automatic train stop was placed stalled on the Pennsylvania RR between in trial service on the Middle Division of Altoona and Cresson, Pa. The signals the Pennsylvania RR. A glass tube in the were two-position, lower-quadrant, train air line located on the locomotive home and distant automatic semaphores, near the rails was designed to be broken by a “track trip” set in operating position 1900 In Acton Town, England, an illuminated when the signals were in the stop posi- track diagram was first used in connec- tion. tion with resignaling on the District Ry. due to electrification, It dispensed with 1881 The first interlocking of the hydraulic separate track indicators and brought type was installed by the Union Switch & together all track occupancy information Signal Co. at Wellington, Ohio, for a on the plan of tracks and signals, thereby crossing of the Wheeling & Lake Erie Ry. facilitating the work of the signalman with the Cleveland, Cincinnati, Chicago handling traffic. & St. Louis Ry. 1901 The Taylor Signal Co. put in service the 1885 The “Dutch Clock” device for establish- first electric interlocking embodying the ing time intervals (headways) between “dynamic indication” principle, at Eau 216 Claire, Wis., on the Chicago, St. Paul, 1912 Cab signals were first used on an electric Minneapolis & Omaha Ry. railway, the Indianapolis & Cincinnati Traction Co. ● 1901 The Boston Elevated installed special 1914 polarized d.c. track relays. This was the The cam controller for control of power first attempt to operate track circuits on a application to d.c. propulsion motors was railroad where propulsion power was first used in the Chicago Rapid Transit supplied by electricity and the rails were co. used as the medium for current return. 1915 The American Railway Association adopted rules which permitted train 1901 The Boston Elevated made the first per- operation on single track by controlled manent installation of an automatic train manual block signal indications, super- stop system, which consisted of seding timetable and train orders. mechanical wayside trips engaging brake control apparatus on the moving car. 1919 The Buffalo, Rochester & Pittsburgh Ry. made the first trial installation of the 1903 The North Shore RR of California made General Railway Signal Co. intermittent the first installation of a.c. track circuits inductive train stop system. This system for automatic block signals. used magnetic induction to transfer sig- nals from wayside controls to train 1906 The first signal system with a.c. track equipment. circuits on a road using a.c. propulsion 1920 The first installation of automatic speed power was installed on the New York, control in the US. was that of the Regan New Haven & Hartford RR, The track Safety Device Co. intermittent electrical circuits were the two-rail type, 60 Hz, contact ramp-type train control system with impedance bonds. Propulsion cur- on the Chicago, Rock Island & Pacific RR rent was 25 Hz. between Blue Island and Joliet, Ill. 1907 The first automatic interlocking for the 1923 The Pennsylvania RR placed in service, protection of a railroad crossing was in- experimentally, the first installation stalled at Chester, Va., at a crossing of anywhere of the continuous inductive cab the Tidewater & Western Ry. with the signal and train control system coveting Virginia Railway, Power & Light Co. 43.5 miles of single track and 3.4 miles of two-track, between Lewistown and Sun- 1909 The Erie RR installed automatic signal- bury, Pa. It was the first instance where ing for train operation by signal indica- vacuum tubes were used for purposes tion on a two-track division, 139.7 miles other than in communication circuits. in length, which directed trains to: (1) This installation also was the first time stop and hold main track, (2) take siding, that cab signals were used in lieu of (3) proceed on main track regardless of wayside signals for operating trains by superior trains.
Recommended publications
  • ERTMS/ETCS Railway Signalling
    Appendix A ERTMS/ETCS Railway Signalling Salvatore Sabina, Fabio Poli and Nazelie Kassabian A.1 Interoperable Constituents The basic interoperability constituents in the Control-Command and Signalling Sub- systems are, respectively, defined in TableA.1 for the Control-Command and Sig- nalling On-board Subsystem [1] and TableA.2 for the Control-Command and Sig- nalling Trackside Subsystem [1]. The functions of basic interoperability constituents may be combined to form a group. This group is then defined by those functions and by its remaining exter- nal interfaces. If a group is formed in this way, it shall be considered as an inter- operability constituent. TableA.3 lists the groups of interoperability constituents of the Control-Command and Signalling On-board Subsystem [1]. TableA.4 lists the groups of interoperability constituents of the Control-Command and Signalling Trackside Subsystem [1]. S. Sabina (B) Ansaldo STS S.p.A, Via Paolo Mantovani 3-5, 16151 Genova, Italy e-mail: [email protected] F. Poli Ansaldo STS S.p.A, Via Ferrante Imparato 184, 80147 Napoli, Italy e-mail: [email protected] N. Kassabian Ansaldo STS S.p.A, Via Volvera 50, 10045 Piossasco Torino, Italy e-mail: [email protected] © Springer International Publishing AG, part of Springer Nature 2018 233 L. Lo Presti and S. Sabina (eds.), GNSS for Rail Transportation,PoliTO Springer Series, https://doi.org/10.1007/978-3-319-79084-8 234 Appendix A: ERTMS/ETCS Railway Signalling Table A.1 Basic interoperability constituents in the Control-Command
    [Show full text]
  • Objects from the National Railway Museum Collection
    The Science Museum Group: Science Museum, London National Railway Museum, York Museum of Science and Industry, Manchester National Science and Media Museum, Bradford Locomotion, Shildon Objects Available for Transfer October-December 2018 The objects listed on the following pages have been approved for transfer and are currently available. The closing date for applications is Friday 14 December 2018. If you would like more information or are interested in acquiring an object from the Transfers list, please email us at [email protected] and include the following information: • The object number and description • A description of how you intend to use the object(s) and how this will benefit the public • An explanation of how you will ensure the long-term care of the object(s) • The organisation that you are representing, including the type of organisation (i.e. accredited museum, charitable trust) • Full contact details 1/66 The Science Museum Group: Science Museum, London National Railway Museum, York Museum of Science and Industry, Manchester National Science and Media Museum, Bradford Locomotion, Shildon Transfers from the Railway Museum Collection Object Description Image Number Visual display unit, British Rail, Total Operations Processing System, for use in control E2018.0514.1 office, Datapoint 8600, model number 97-3601-001 (9), serial number 10603, unknown provenance. Thyristor dimmer unit for lighting, high voltage, by Industrolite Ltd, Croydon Airport, serial number 686- E2018.0515.1 6057/8, with ‘DIAGRAM LIGHTING’ printed on Dymo tape label, unknown provenance. Teleprinter, Creed system, model no. 3D, serial no. 6028, by Creed & Co. Ltd., London, British patent numbers 228610, 228842 and others, E2018.0517.1 motor reference no.
    [Show full text]
  • Lubomír Macháček: „Zabezpečováka“ Ze Mě Udělala Tragická Mimořádná Událost
    ČTVRTLETNÍK AŽD BEZPEČNĚ K CÍLI 1 | 2020 Lubomír Macháček: „Zabezpečováka“ ze mě udělala tragická mimořádná událost REPORTÉR AŽD PRAHA • 1/2018 | 1 | LITOMĚŘICE HORNÍ NÁDRAŽÍ – MOST VLAKEM RYCHLEJI www.svestkovadraha.cz Z OBsAHU 18 • Jízda RYchlosTÍ 200 KM/H POD DOHLEDEM ETCS LEVEL 2 správa železnic zorganizovala na přelomu roku 2019/2020 mezi Břeclaví a Brnem několik testovacích jízd rychlostí 200 km/h. Provedení těchto jízd bylo zajištěno společností ČD cargo a byly vedeny lokomotivou řady 383 (Vectron). Jak probíhal dohled nad vlastní jízdou vlaku mobilní částí ETCS a jaké musely být provedeny úpravy traťové části ETCS z produkce AŽD? 36 • ŠVEstková dráha TEstuje BEZúdržbový provoz Na takzvané Švestkové dráze (Čížkovice–Obrnice) připra- vuje její vlastník společnost AŽD přechod na bezúdržbový provoz. Bude se jednat o první železniční trať v naší zemi, která kromě pravidelných preventivních údržbových zásahů nebude potřebovat ani takzvané pochůzkáře, kteří pravidelně kontrolují technický stav tratě. 40 • Provoz V rekonstruované ŽELEZNIČNÍ stanicI BRNO hlavní nádraží Neustále rostoucí požadavky objednatelů dopravy na množství vlakových spojů a kvalitu jejich dopravního odbavení vyústily v nutnost zásadní investice ve stanici Brno hlavní nádraží. cílem bylo prodloužit životnost do doby výstavby zcela nového nádraží v odsunuté poloze. 56 • ČEŠI naučili sYsTÉM c-ITs varovat řIDIČE PřED BLÍŽÍcÍM sE ŽELEZNIČNÍM PřEJEZDEM Představte si systém v automobilu, který vás upozorní na blížící se přejezd a pokud je ve výstraze, bude vás varovat textovým hlášením a animovanými piktogramy. Tuto novou službu v rámci projektu c-ROADs cZ vytvořily společnosti RADOM a AŽD. ČTVRTLETNÍK REPORTÉR AŽD 1/2020 (vyšlo 30. 3. 2020 v Praze). VYDÁVÁ: AŽD Praha s.r.o., Žirovnická 3146/2, Záběhlice, 106 00 Praha 10, IČ: 48029483, tel.: 267 287 424 REDAKČNÍ RADA: Jiří Dlabaja, šéfredaktor, Ilona Hrečková, zástupkyně šéfredaktora.
    [Show full text]
  • [(Central] [Central, 6 E -1 4
    /NEWYORK^ Fnewyork^ [(Central] [Central, 6 e -1 4 Reference Marks NEW YORK CENTRAL LC.L Between POPULAR ALL-COACH DAYLINER Dally. II Meal station. Sunday only. • Thla train does not carry baggage SERVICE ADVANTAGES Chicago, Pittsburgh & Boston Daily except Sunday- Ex. Sun.—Runs dally except Sunday. Daily except Monday. E.T.—Eastern Standard Time. Daily except Saturday. C.T.—Central Standard Time. In addition to the train service shown, buses of the United Traction Company run at frequent intervals between Albany and Troy. | I i^i ichedulot . pcart'd to 5 Packing and handling research Stops on signal to receive passengers for stations beyond Albuny. traffic requirement! for most ... they assure the security ol Stops to receive or discbarge passengers for or from Astatabula and beyond. Stops except Saturdays and Sundays. rX|M*llitioilH .1. Ii\ i-r n--. the shipped merchandise. bb Stops at 6.25 a. m. to discharge passengers from Rochester and beyond or to 2 Free pick up and delivery ser• receive passengers for Chicago. Smooth operation . easy 4 Stops on signal to receive passengers for beyond Troy. vice . direct from Hliippcr's grades... superlative roadbed. Stops on signal to discharge or receive passengers. to roiisipiirrV door. No baggage handled for or from this station; *y Constant supervision and pro• Stops regularly, but only to receive passengers. * f Optional trucking allowance to tection in transit.. still mon Stops only to discbarge passengers. nhi|»|MTH jiiul roiittignrcR ... a security for shipped merchan Runs Saturdays only. mi I • i i ii i ii I tavina to both. dise.
    [Show full text]
  • BACKTRACK 22-1 2008:Layout 1 21/11/07 14:14 Page 1
    BACKTRACK 22-1 2008:Layout 1 21/11/07 14:14 Page 1 BRITAIN‘S LEADING HISTORICAL RAILWAY JOURNAL VOLUME 22 • NUMBER 1 • JANUARY 2008 • £3.60 IN THIS ISSUE 150 YEARS OF THE SOMERSET & DORSET RAILWAY GWR RAILCARS IN COLOUR THE NORTH CORNWALL LINE THE FURNESS LINE IN COLOUR PENDRAGON BRITISH ENGLISH-ELECTRIC MANUFACTURERS PUBLISHING THE GWR EXPRESS 4-4-0 CLASSES THE COMPREHENSIVE VOICE OF RAILWAY HISTORY BACKTRACK 22-1 2008:Layout 1 21/11/07 15:59 Page 64 THE COMPREHENSIVE VOICE OF RAILWAY HISTORY END OF THE YEAR AT ASHBY JUNCTION A light snowfall lends a crisp feel to this view at Ashby Junction, just north of Nuneaton, on 29th December 1962. Two LMS 4-6-0s, Class 5 No.45058 piloting ‘Jubilee’ No.45592 Indore, whisk the late-running Heysham–London Euston ‘Ulster Express’ past the signal box in a flurry of steam, while 8F 2-8-0 No.48349 waits to bring a freight off the Ashby & Nuneaton line. As the year draws to a close, steam can ponder upon the inexorable march south of the West Coast Main Line electrification. (Tommy Tomalin) PENDRAGON PUBLISHING www.pendragonpublishing.co.uk BACKTRACK 22-1 2008:Layout 1 21/11/07 14:17 Page 4 SOUTHERN GONE WEST A busy scene at Halwill Junction on 31st August 1964. BR Class 4 4-6-0 No.75022 is approaching with the 8.48am from Padstow, THE NORTH CORNWALL while Class 4 2-6-4T No.80037 waits to shape of the ancient Bodmin & Wadebridge proceed with the 10.00 Okehampton–Padstow.
    [Show full text]
  • Heavy Haul Freight Transportation System: Autohaul Autonomous Heavy Haul Freight Train Achieved in Australia
    FEATURED ARTICLES Advanced Railway Systems through Digital Technology Heavy Haul Freight Transportation System: AutoHaul Autonomous Heavy Haul Freight Train Achieved in Australia There are many iron ore rail lines in the Pilbara region, located in North-West Australia. Global mining company Rio Tinto Limited operates a fleet of heavy haul iron ore trains 24 hours a day from its 16 mines to four port terminals overlooking the Indian Ocean. To increase their operational capacity and reduce transportation time, Rio Tinto realized that driverless (GoA4) operation of its trains was the way to achieve this. The company established a framework agreement with Hitachi Rail STS S.p.A. This project was named AutoHaul, and two companies worked closely on its development over several years. Since completing the first loaded run in July 2018, these trains have now safely travelled more than 11 million km autonomously. The network is the world’s first driverless heavy haul long distance train operation. Mazahir Yusuf Anthony MacDonald, Ph.D. Roslyn Stuart Hiroko Miyazaki Tinto’s Operations Center in Perth more than 1,500 km away (see Figure 1 and Figure 2). Th e operation of this 1. Introduction autonomous train is achieved by the heavy haul freight transportation system, AutoHaul*1, developed through co- Rio Tinto Limited, a leading global mining group, operates creation between Rio Tinto and Hitachi Rail STS S.p.A. an autonomous fl eet of 221 heavy haul locomotives along (formerly Ansaldo STS S.p.A.). Th is article presents the its 1,700 km line 24 hours a day extracting iron ore from development history and features of AutoHaul.
    [Show full text]
  • Station Sign 64” 2 14 Bennet
    Boston & Maine Railroad Historical Society Inc. Hardware Collection Tag No. File No: Inventory: Size: Donor: 1 14 West Hollis – Station sign 64” 2 14 Bennett Hall – Station sign 69” Arnold Wilder 3 14 Fitchburg “Wood” Station sign 56” Arnold Wilder 4 14 Woburn “Wood” Station sign 30” Charles Smith 5 14 Danville Junction – Station Sign 96” Anonymous 6 14 West Fitchburg – Station sign 92” Arnold Wilder 7 14 West Hollis – Station sign 72” Arnold Wilder 8 14 Scheghticoke – Station sign 76” Arnold Wilder 9 14 Hubbardston – Station sign 76” Arnold Wilder 10 14 Winchester “Wood” Station sign 68” 11 14 Wedgmere “Wood” Station Sign 56” 12 14 Salem – Station sign 48” 13 14 Whately – Station sign 52”x 11” 14 14 Mt Tom – Station sign 42”x 10 ½” 15 14 Middlesex “Wood” Station sign 54” Carl Byron 16 15 Railway Express Agency - sign 72” 17 15 B&MRR Passenger Waiting Room - sign 32”x 11” 18 15 B&M Outing - sign 23”x 14” 19 15 Yard Limit – sign 16”x 14” 20 15 Notice no Deliveries “Wood” – sign 18”x 24” 21 15 Private Crossing “Plastic” – sign 18”x 6” 22 15 Free Parking “Wood” – sign 24 ½”x 8” 23 15 Railroad Crossing – Sign 36”x 36” 24 15 2 Tracks sign “White /w Black lettering (2 each) 27”x 18” 25 15 Railroad Crossbuck /w reflectors (2 each) 26 14 Lowell Station – sign reproduction Property of the Boston & Maine Railroad Historical Society Boston & Maine Railroad Historical Society Inc. Hardware Collection Tag No. File No: Inventory: Size: Donor: 27 15 Hand Held Stop – sign Donald S.
    [Show full text]
  • Relative Capacity and Performance of Fixed- and Moving-Block Control
    Research Article Transportation Research Record 1–12 Ó National Academy of Sciences: Relative Capacity and Performance of Transportation Research Board 2019 Article reuse guidelines: sagepub.com/journals-permissions Fixed- and Moving-Block Control DOI: 10.1177/0361198119841852 Systems on North American Freight journals.sagepub.com/home/trr Railway Lines and Shared Passenger Corridors C. Tyler Dick1, Darkhan Mussanov1,2, Leonel E. Evans1, Geordie S. Roscoe1, and Tzu-Yu Chang1 Abstract North American railroads are facing increasing demand for safe, efficient, and reliable freight and passenger transportation. The high cost of constructing additional track infrastructure to increase capacity and improve reliability provides railroads with a strong financial motivation to increase the productivity of their existing mainlines by reducing the headway between trains. The objective of this research is to assess potential for advanced Positive Train Control (PTC) systems with virtual and moving blocks to improve the capacity and performance of Class 1 railroad mainline corridors. Rail Traffic Controller software is used to simulate and compare the delay performance and capacity of train operations on a representative rail cor- ridor under fixed wayside block signals and moving blocks. The experiment also investigates possible interactions between the capacity benefits of moving blocks and traffic volume, traffic composition, and amount of second main track. Moving blocks can increase the capacity of single-track corridors by several trains per day, serving as an effective substitute to con- struction of additional second main track infrastructure in the short term. Moving blocks are shown to have the greatest capacity benefit when the corridor has more second main track and traffic volumes are high.
    [Show full text]
  • Federal Railroad Administration, DOT § 235.7
    Federal Railroad Administration, DOT § 235.7 railroads that operate on standard gage (5) Removal of an intermittent auto- track which is part of the general rail- matic train stop system in conjunction road system of transportation. with the implementation of a positive (b) This part does not apply to rail train control system approved by FRA rapid transit operations conducted over under subpart I of part 236 of this chap- track that is used exclusively for that ter. purpose and that is not part of the gen- (b) When the resultant arrangement eral system of railroad transportation. will comply with part 236 of this title, it is not necessary to file for approval § 235.5 Changes requiring filing of ap- to decrease the limits of a system as plication. follows: (a) Except as provided in § 235.7, ap- (1) Decrease of the limits of an inter- plications shall be filed to cover the locking when interlocked switches, de- following: rails, or movable-point frogs are not in- (1) The discontinuance of a block sig- volved; nal system, interlocking, traffic con- (2) Removal of electric or mechanical trol system, automatic train stop, lock, or signal used in lieu thereof, train control, or cab signal system or from hand-operated switch in auto- other similar appliance or device; matic block signal or traffic control (2) The decrease of the limits of a territory where train speed over the block signal system, interlocking, traf- switch does not exceed 20 miles per fic control system, automatic train hour; or stop, train control, or cab signal sys- (3) Removal of electric or mechanical tem; or lock, or signal used in lieu thereof, (3) The modification of a block signal from hand-operated switch in auto- system, interlocking, traffic control matic block signal or traffic control system, automatic train stop, train territory where trains are not per- control, or cab signal system.
    [Show full text]
  • Developing Standards for New Technology Signal Systems for Rail Transit Applications
    Transactions on the Built Environment vol 34, © 1998 WIT Press, www.witpress.com, ISSN 1743-3509 Developing standards for new technology signal systems for rail transit applications A. F. Rumsey Parsons Transportation, New York, U.S.A. Abstract Radio communications-based train control (CBTC) systems, also referred to as transmission-based signalling (TBS) systems, permit more effective utilization of rail transit infrastructure by allowing trains to operate safety at much closer headways, by permitting greater flexibility and greater precision in train control, and by providing continuous safe train separation assurance and overspeed protection. One of the challenges facing transit agencies who are considering the introduction of CBTC systems, however, is the lack of industry standards for this emerging technology, and the current inability of trains equipped with CBTC equipment from one supplier to operate on track equipped with CBTC equipment from a second supplier. This paper reports on the status of two separate initiatives being taken in North America to develop standards for CBTC systems for rail transit applications; one based on a voluntary consensus development approach, and the second based on a competitive procurement approach. 1 Background Conventional signalling and train control systems rely almost exclusively on track circuits to detect the presence of trains. Information on the status of the track ahead is provided to train operators either through wayside signals or trainborne cab signals. Ensuring compliance with the signals is achieved either through strict observance of operating procedures, or through automatic train protection features such as wayside electro-mechanical train stops, or trainborne supervisory equipment linked to the train's braking system.
    [Show full text]
  • Approved Signalling Items for the ARTC Network ESA-00-01
    Division / Business Unit: Corporate Services & Safety Function: Signalling Document Type: Catalogue Approved Signalling Items for the ARTC Network ESA-00-01 Applicability ARTC Network Wide SMS Publication Requirement Internal / External Primary Source Existing ARTC Type Approvals Document Status Version # Date Reviewed Prepared by Reviewed by Endorsed Approved 1.3 03 May 2021 Standards Stakeholders Manager General Manager Signalling Technical Standards Standards 03/05/2021 Amendment Record Amendment Date Reviewed Clause Description of Amendment Version # 1.0 23 Mar 20 First issue of catalogue that lists signalling items and communication items related to signalling systems approved for use on the ARTC network. 1.1 26 Jun 20 New approved items added based on type approval and compliance to ARTC specification 1.2 24 Nov 20 New approved items added based on type approval and compliance to ARTC specification © Australian Rail Track Corporation Limited (ARTC) Disclaimer This document has been prepared by ARTC for internal use and may not be relied on by any other party without ARTC’s prior written consent. Use of this document shall be subject to the terms of the relevant contract with ARTC. ARTC and its employees shall have no liability to unauthorised users of the information for any loss, damage, cost or expense incurred or arising by reason of an unauthorised user using or relying upon the information in this document, whether caused by error, negligence, omission or misrepresentation in this document. This document is uncontrolled when printed. Authorised users of this document should visit ARTC’s extranet (www.artc.com.au) to access the latest version of this document.
    [Show full text]
  • Consulting and Feasibility Study for Establishing Railway Electronic Interlocking System for Egypt
    Establishment of Algeria's2013 KSP National System VisionConsulting 2030 Chapter 12 2013 System Consulting: Cadastre, Transportation 1. Vision 2030 and Indicator Analysis 2. Algeria and the Global Economy 1. Consulting and Feasibility Study for Establishing Railway 3. Current Issues Facing Algeria’s Economy Electronic Interlocking System for Egypt 4.Vision Scenarios 2. Support for the Establishment of the Chile Cadastral 5. Conclusions Information Management System Establishment of Algeria's2013 KSP National System VisionConsulting 2030 Chapter 1 Consulting and Feasibility Study for Establishing Railway Electronic Interlocking System for Egypt 1. Vision 2030 and Indicator Analysis 2. Algeria and the Global Economy Hwang Gook-hwan, Director General, Korea Eximbank 3. Current Issues Facing Algeria’s Economy Young-Seok Kim, Director, Korea Eximbank 4.Vision Scenarios In-sik Bang, Loan Officer, Korea Eximbank 5. Conclusions Yea-seul Lim, Research officer, Korea Eximbank List of Abbreviations List of Abbreviations Abbreviation Full Description ABS Automatic Block System AC Alternative Current AF Audio Frequency ATC Automatic Train Control ATO Automatic Train Operation ATP Automatic Train Protection ATS Automatic Train Stop BTM Balise Transmission Module CAU Compact Antenna Unit CCTV Closed-circuit television COD Corrugated Optic Duct COMC Communication Operator CPU Central processing unit CTC Centralized Traffic Control DC Direct Current DLP Digtal Light Processing EDCF Economic Development Cooperation Fund EIS Electronic Interlocking System
    [Show full text]