Computer Meets Theoretical Physics the New Frontier of Molecular Simulation

Total Page:16

File Type:pdf, Size:1020Kb

Computer Meets Theoretical Physics the New Frontier of Molecular Simulation THE FRONTIERS COLLECTION Giovanni Battimelli Giovanni Ciccotti Pietro Greco COM PU T ER MEETS THEORETICAL PHYSICS The New Frontier of Molecular Simulation THE FRONTIERS COLLECTION Series Editors Avshalom C. Elitzur, Iyar, Israel Institute of Advanced Research, Rehovot, Israel Zeeya Merali, Foundational Questions Institute, Decatur, GA, USA Thanu Padmanabhan, Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, India Maximilian Schlosshauer, Department of Physics, University of Portland, Portland, OR, USA Mark P. Silverman, Department of Physics, Trinity College, Hartford, CT, USA Jack A. Tuszynski, Department of Physics, University of Alberta, Edmonton, AB, Canada Rüdiger Vaas, Redaktion Astronomie, Physik, bild der wissenschaft, Leinfelden-Echterdingen, Germany The books in this collection are devoted to challenging and open problems at the forefront of modern science and scholarship, including related philosophical debates. In contrast to typical research monographs, however, they strive to present their topics in a manner accessible also to scientifically literate non-specialists wishing to gain insight into the deeper implications and fascinating questions involved. Taken as a whole, the series reflects the need for a fundamental and interdisciplinary approach to modern science and research. Furthermore, it is intended to encourage active academics in all fields to ponder over important and perhaps controversial issues beyond their own speciality. Extending from quantum physics and relativity to entropy, consciousness, language and complex systems—the Frontiers Collection will inspire readers to push back the frontiers of their own knowledge. More information about this series at http://www.springer.com/series/5342 Giovanni Battimelli • Giovanni Ciccotti • Pietro Greco Computer Meets Theoretical Physics The New Frontier of Molecular Simulation 123 Giovanni Battimelli Giovanni Ciccotti Department of Physics Department of Physics Sapienza University of Rome Sapienza University of Rome Rome, Italy Rome, Italy IAC “Mauro Picone” CNR Pietro Greco Rome, Italy Città della Scienza Naples, Italy School of Physics University College of Dublin Dublin, Ireland Translated by Giuliana Giobbi Segreteria Scientifica INAF-OAR Osservatorio Astronomico di Roma Monte Porzio Catone, Italy G. Battimelli, G. Ciccotti, P. Greco: Il computer incontra la fisica teorica. La nuova frontiera della simulazione molecolare, Carocci editore, Roma (2020) ISSN 1612-3018 ISSN 2197-6619 (electronic) THE FRONTIERS COLLECTION ISBN 978-3-030-39398-4 ISBN 978-3-030-39399-1 (eBook) https://doi.org/10.1007/978-3-030-39399-1 © Springer Nature Switzerland AG 2020 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Preface The idea of this book first took shape in the head of one of the authors (GC) following a conversation with his late friend Pierre Turq, a chemist from Paris who was among the first scientists in France to foresee the potentialities of computer simulation for the development of his own discipline. We wondered what, if any, mysterious reasons lay behind the fact that the epistemological upheaval brought by molecular simulation techniques into physical chemistry had never found a coun- terpart in some form of public exposition aimed at telling its history and explaining its relevance. Pierre felt that this circumstance was rooted in a sort of reluctance, by the chemistry community, to critically consider, and give a public account of, its own history. In so doing, chemistry would thereby admit, in the epistemological hierarchy of scientific disciplines, its subordinate position to physics, whose practitioners on the contrary have always been rather keen to give a public image of their science as the one best able to handle those problems that most deserve critical attention and historiographical scrutiny. This seemed to be a puzzling contradiction, given that, even at the time of this conversation, simulation had long since asserted itself as a pervasive approach in all fields of theoretical physics, in spite of the fact that its roots, and its first founding fathers, were rather to be found in physical chemistry. The inconsequence of the circumstance was manifest: the creation of a growing set of ideas, techniques, and potentialities that had come to pervade the whole field of fundamental research, redefining the canonical boundaries between contiguous disciplines and radically altering their cognitive procedures, had been substantially ignored as a subject worthy of critical inquiry and public exposition because its origins were not deemed noble enough. An original sin condemning it to oblivion. This seems all the more paradoxical because in the meantime the novelties brought about by the intensive use of computers have not been confined to the emergence of a new way of doing theoretical physics, and to its extension to research fields traditionally regarded as being outside the dominion of the “hard” sciences (such as biology or pharmaceutical chemistry), but have also produced a significant impact on mathematics, giving birth to new sectors of applied mathematics v vi Preface concerned with numerical analysis, mathematical statistics, and construction of the increasingly sophisticated algorithms needed for intensive computation. Only in recent times have a few research projects on the history and assessment of simulation seen the light, along with a few works of historiographical analysis; they have, however, been confined to the academic environment and have in no way contributed to modifying the substantial ignorance on the matter in the wider scientific culture. Be this as it may, the final result is that an outstanding innovation in the practice of fundamental research, one that has substantially reshuffled the traditional disciplinary hierarchies, has grown up and established itself without a collective perception of that novelty in the image of science. This book is an attempt to obviate this incongruence. We thought that the optimal way to proceed would be to present the reader with the historical devel- opment of this transformation, by keeping technical matters down to the indis- pensable minimum, and ending our narration at the moment when it can be considered that the potentialities emerging with the birth of molecular simulation, around the mid-50s, were fully expressed, and the development of the sector had given rise to a clearly defined discipline with its own identity; our reconstruction therefore stops at the end of the 80s, when this first phase of the history of molecular simulation reached its completion. Rome, Italy Giovanni Battimelli Rome, Italy Giovanni Ciccotti Naples, Italy Pietro Greco Acknowledgements Right through this work, we have been helped in various ways by so many friends and colleagues that we have almost certainly overlooked some names; we apologize in advance for any omission. We thank in particular Alin Elena for his careful reading of the text; Sara Bonella, Daniel Borgis, Ignacio Pagonabarraga, Benjamin Rotenberg, and Rodolphe Vuilleumier for their continuous support of the initiative; Mauro Ferrario for being systematically available to help; and Carlo Pierleoni for helping to orient us in the intricacies of the physics questions related to quantum Monte Carlo. Among the protagonists of our history, we have received useful informations and suggestions from Charles Bennett, Jean-Pierre Hansen, Ray Kapral, Mike Klein, Michel Mareschal, Ian McDonald, Thanos Panagiotopoulos, Daniel Schiff, and Glenn Torrie. For the reconstruction of the origins of our history, we have profited invaluably from the long interaction with Berni Alder. We are particularly indebted to Hans Christian Andersen, Kurt Binder, David Ceperley, Daan Frenkel, Mal Kalos, Dominique Levesque, and Mary Ann Mansigh; beside sending precious comments, they have repeatedly intervened directly in our original version, greatly improving the readability of the text and correcting slips and inaccuracies; Daan, in particular, deserves our gratitude for his systematic presence and support all along our adventure. It goes without saying that we take full responsibility for any remaining faults and omissions still present in the text.
Recommended publications
  • 2005 CERN–CLAF School of High-Energy Physics
    CERN–2006–015 19 December 2006 ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH 2005 CERN–CLAF School of High-Energy Physics Malargüe, Argentina 27 February–12 March 2005 Proceedings Editors: N. Ellis M.T. Dova GENEVA 2006 CERN–290 copies printed–December 2006 Abstract The CERN–CLAF School of High-Energy Physics is intended to give young physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures on field theory and the Standard Model, quantum chromodynamics, CP violation and flavour physics, as well as reports on cosmic rays, the Pierre Auger Project, instrumentation, and trigger and data-acquisition systems. iii Preface The third in the new series of Latin American Schools of High-Energy Physics took place in Malargüe, lo- cated in the south-east of the Province of Mendoza in Argentina, from 27 February to 12 March 2005. It was organized jointly by CERN and CLAF (Centro Latino Americano de Física), and with the strong support of CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas). Fifty-four students coming from eleven different countries attended the School. While most of the students stayed in Hotel Rio Grande, a few students and the Staff stayed at Microtel situated close by. However, all the participants ate their meals to- gether at Hotel Rio Grande. According to the tradition of the School the students shared twin rooms mixing nationalities and in particular Europeans together with Latin Americans. María Teresa Dova from La Plata University was the local director for the School.
    [Show full text]
  • Highlights Se- Mathematics and Engineering— the Lead Signers of the Letter Exhibit
    June 2003 NEWS Volume 12, No.6 A Publication of The American Physical Society http://www.aps.org/apsnews Nobel Laureates, Industry Leaders Petition April Meeting Prizes & Awards President to Boost Science and Technology Prizes and Awards were presented to seven- Sixteen Nobel Laureates in that “unless remedied, will affect call for “a Presidential initiative for teen recipients at the Physics and sixteen industry lead- our scientific and technological FY 2005, following on from your April meeting in Philadel- ers have written to President leadership, thereby affecting our budget of FY 2004, and focusing phia. George W. Bush to urge increas- economy and national security.” on the long-term research portfo- After the ceremony, ing funding for physical sciences, The letter, which is dated April lios of DOE, NASA, and the recipients and their environmental sciences, math- 14th, also indicates that “the Department of Commerce, in ad- guests gathered at the ematics, computer science and growth in expert personnel dition to NSF and NIH,” that, Franklin Institute for a engineering. abroad, combined with the di- “would turn around a decade-long special reception. The letter, reinforcing a recent minishing numbers of Americans decline that endangers the future Photo Credit: Stacy Edmonds of Edmonds Photography Council of Advisors on Science and entering the physical sciences, of our nation.” The top photo shows four of the five women recipients in front of a space-suit Technology report, highlights se- mathematics and engineering— The lead signers of the letter exhibit. They are (l to r): Geralyn “Sam” Zeller (Tanaka Award); Chung-Pei rious funding problems in the an unhealthy trend—is leading were Burton Richter, director Michele Ma (Maria-Goeppert Mayer Award); Yvonne Choquet-Bruhat physical sciences and related fields corporations to locate more of emeritus of SLAC, and Craig (Heineman Prize); and Helen Edwards (Wilson Prize).
    [Show full text]
  • Berni Julian Alder, Theoretical Physicist and Inventor of Molecular Dynamics, 1925–2020 Downloaded by Guest on September 24, 2021 9 E
    RETROSPECTIVE BerniJulianAlder,theoreticalphysicistandinventor of molecular dynamics, 1925–2020 RETROSPECTIVE David M. Ceperleya and Stephen B. Libbyb,1 Berni Julian Alder, one of the leading figures in the invention of molecular dynamics simulations used for a wide array of problems in physics and chemistry, died on September 7, 2020. His career, spanning more than 65 years, transformed statistical mechanics, many body physics, the study of chemistry, and the microscopic dynamics of fluids, by making atomistic computational simulation (in parallel with traditional theory and exper- iment) a new pathway to unexpected discoveries. Among his many honors, the CECAM prize, recognizing exceptional contributions to the simulation of the mi- croscopic properties of matter, is named for him. He was awarded the National Medal of Science by President Berni Julian Alder in 2015. Image credit: Lawrence Obama in 2008. Livermore National Laboratory. Alder was born to Ludwig Adler and Otillie n ´ee Gottschalk in Duisburg, Germany on September 9, sampling algorithm that was to revolutionize statistical 1925. Alder’s father Ludwig was a chemist who worked physics (1). Teller recruited Alder to the just-founded in the German aluminum industry. When the Nazis Lawrence Radiation Laboratory (later, the Lawrence Liv- came to power in 1933, Alder, his parents, elder ermore National Laboratory), where he, along with brother Henry, and twin brother Charles fled to Zurich, other young talented scientists, built a unique “can Switzerland. In 1941, they further emigrated to the do” scientific culture that thrives to this day. United States (becoming “Alders” in the process), Beginning in the mid-1950s, Alder, who possessed where they settled in Berkeley, California.
    [Show full text]
  • Real Time Density Functional Simulations of Quantum Scale
    Real Time Density Functional Simulations of Quantum Scale Conductance by Jeremy Scott Evans B.A., Franklin & Marshall College (2003) Submitted to the Department of Chemistry in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2009 c Massachusetts Institute of Technology 2009. All rights reserved. Author............................................... ............... Department of Chemistry February 2, 2009 Certified by........................................... ............... Troy Van Voorhis Associate Professor of Chemistry Thesis Supervisor Accepted by........................................... .............. Robert W. Field Chairman, Department Committee on Graduate Theses This doctoral thesis has been examined by a Committee of the Depart- ment of Chemistry as follows: Professor Robert J. Silbey.............................. ............. Chairman, Thesis Committee Class of 1942 Professor of Chemistry Professor Troy Van Voorhis............................... ........... Thesis Supervisor Associate Professor of Chemistry Professor Jianshu Cao................................. .............. Member, Thesis Committee Associate Professor of Chemistry 2 Real Time Density Functional Simulations of Quantum Scale Conductance by Jeremy Scott Evans Submitted to the Department of Chemistry on February 2, 2009, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract We study electronic conductance through single molecules by subjecting
    [Show full text]
  • SPRING 1991 in This Newsletter You Will Find: 1. Announcement and 2Nd
    NEWSLETTER - SPRING 1991 In this Newsletter you will find: 1. Announcement and 2nd Call for Papers for Physics Computing ’91 2. Announcement of the 14th International Conference on the Numerical Simulation of Plasmas 3. Announcement of the 4th International Conference on Computational Physics in Prague 4. In Memory of Sid Fernbach 5. Transition to Divisional Status Expected 6. Fellowship Nomination Process 7. Message from Chair 8. Other News Items 9. Roster of Executive Committee 10. Voting Instructions and Election Information PHYSICS COMPUTING ’91 including The 3rd International Conference on Computational Physics Announcement and Second Call for Papers The Topical Group on Computational Physics has combined forces with the editors of the AIP journal Computers in Physics to bring you a full week on the many aspects of the use of computers in physics including the traditional topics of computational physics. The meeting will convene on 10 June 1991 in the San Jose Convention Center and run through 14 June 1991. San Jose is located some 40 miles southeast of San Francisco at the south end of the San Francisco Bay, and is in the heart of “Silicon” Valley. The universities, national laboratories, and the large assortment of computer hardware and software companies in the region make San Jose an ideal venue for this meeting. The meeting program consists of plenary, oral, poster, and tutorial sessions, with many invited papers being given in the oral sessions. We are fortunate to have D. Allan Bromley, Assistant to the President for Science and Technology, to give our Keynote Address. Our meeting format consists of several 90-minute sessions arranged such that the plenary sessions do not run in parallel with other sessions and with 3-hour poster sessions held in the exhibit hall.
    [Show full text]
  • Computer Simulations and the Trading Zone
    PETER &A Computer Simulations and the Trading Zone At the root of most accounts of the development of science is the covert premise that science is about ontology: What objects are there? How do they interact? And how do we discover them? It is a premise that underlies three distinct epochs of inquiry into the nature of science. Among the positivists, the later Carnap explicitly advocated a view that the objects of physics would be irretrievably bound up with what he called a "framework," a full set of linguistic relations such as is found in Newtonian or Eiustcini;~mechanics. That these frameworks held little in common did not trouble Car- nap; prediction mattered more than progress. Kuhn molded this notion and gave it a more historical focus. Unlike the positivists, Kuhn and other commentators of the 1960's wanted to track the process by which a community abandoned one framework and adopted another. To more recent scholars, the Kuhnian categoriza- tion of group affiliation and disaffiliation was by and large correct, but its underlying dynamics were deemed deficient because they paid insufficient attention to the sociological forces that bound groups to their paradigms. All three generations embody the root assumption that the analysis of science studies (or ought to study) a science classified and divided according to the objects of its inquiry. All three assume that as these objects change, particular branches of science split into myriad disconnected parts. It is a view of scientific disunity that I will refer to as "framework relativism. 55 In this essay, as before, I will oppose this view, but not by Computer Simulations I 19 invoking the old positivist pipe dreams: no universal protocol languages, no physicalism, no Corntian hierarchy of knowledge, and no radical reductionism.
    [Show full text]
  • The Convergence of Markov Chain Monte Carlo Methods 3
    The Convergence of Markov chain Monte Carlo Methods: From the Metropolis method to Hamiltonian Monte Carlo Michael Betancourt From its inception in the 1950s to the modern frontiers of applied statistics, Markov chain Monte Carlo has been one of the most ubiquitous and successful methods in statistical computing. The development of the method in that time has been fueled by not only increasingly difficult problems but also novel techniques adopted from physics. In this article I will review the history of Markov chain Monte Carlo from its inception with the Metropolis method to the contemporary state-of-the-art in Hamiltonian Monte Carlo. Along the way I will focus on the evolving interplay between the statistical and physical perspectives of the method. This particular conceptual emphasis, not to mention the brevity of the article, requires a necessarily incomplete treatment. A complementary, and entertaining, discussion of the method from the statistical perspective is given in Robert and Casella (2011). Similarly, a more thorough but still very readable review of the mathematics behind Markov chain Monte Carlo and its implementations is given in the excellent survey by Neal (1993). I will begin with a discussion of the mathematical relationship between physical and statistical computation before reviewing the historical introduction of Markov chain Monte Carlo and its first implementations. Then I will continue to the subsequent evolution of the method with increasing more sophisticated implementations, ultimately leading to the advent of Hamiltonian Monte Carlo. 1. FROM PHYSICS TO STATISTICS AND BACK AGAIN At the dawn of the twentieth-century, physics became increasingly focused on under- arXiv:1706.01520v2 [stat.ME] 10 Jan 2018 standing the equilibrium behavior of thermodynamic systems, especially ensembles of par- ticles.
    [Show full text]
  • The Real Holocaust
    THE REAL HOLOCAUST "Hitler will have no war, but he will be forced into it, not this year but later..." Emil Ludwig [Jew], Les Annales, June 1934 "We possess several hundred atomic warheads and rockets and can launch them at targets in all directions, perhaps even at Rome. Most European capitals are targets for our air force. Let me quote General Moshe Dayan: 'Israel must be like a mad dog, too dangerous to bother.' I consider it all hopeless at this point. We shall have to try to prevent things from coming to that, if at all possible. Our armed forces, however, are not the thirtieth strongest in the world, but rather the second or third. We have the capability to take the world down with us. And I can assure you that that will happen before Israel goes under." -- Martin van Creveld, Israeli professor of military history at the Hebrew University in Jerusalem in an interview in the Dutch weekly magazine: Elsevier, 2002, no. 17, p. 52-53. "We may never actually have to use this atomic weapon in military operations as the mere threat of its use will persuade any opponent to surrender to us." –Chaim Weizmann [Jew] "Jews Declared War on Germany. Even before the war started, the Jewish leaders on a worldwide basis had years before, declared that world Jewry was at war with Germany, and that they would utilize their immense financial, moral, and political powers to destroy Hitler and Nazi Germany. Principal among these was Chaim Weizmann, the Zionist leader, who so declared on September 5, 1939.
    [Show full text]
  • Monte Carlo Simulation Techniques
    Monte Carlo Simulation Techniques Ji Qiang Accelerator Modeling Program Accelerator Technology & Applied Physics Division Lawrence Berkeley National Laboratory CERN Accelerator School, Thessaloniki, Greece Nov. 13, 2018 Introduction: What is the Monte Carlo Method? • What is the Monte Carlo method? - Monte Carlo method is a (computational) method that relies on the use of random sampling and probability statistics to obtain numerical results for solving deterministic or probabilistic problems “…a method of solving various problems in computational mathematics by constructing for each problem a random process with parameters equal to the required quantities of that problem. The unknowns are determined approximately by carrying out observations on the random process and by computing its statistical characteristics which are approximately equal to the required parameters.” J. H. Halton, “A retrospective and prospective survey of the Monte Carlo Method,” SIAM Review, Vol. 12, No. 1 (1970). Introduction: What can the Monte Carlo Method Do? • Give an approximate solution to a problem that is too big, too hard, too irregular for deterministic mathematical approach • Two types of applications: a) The problems that are stochastic (probabilistic) by nature: - particle transport, - telephone and other communication systems, - population studies based on the statistics of survival and reproduction. b) The problems that are deterministic by nature: - the evaluation of integrals, - solving partial differential equations • It has been used in areas as diverse as physics, chemistry, material science, economics, flow of traffic and many others. Brief History of the Monte Carlo Method • 1772 Comte de Buffon - earliest documented use of random sampling to solve a mathematical problem (the probability of needle crossing parallel lines).
    [Show full text]
  • Berni Alder (1925–2020)
    Obituary Berni Alder (1925–2020) Theoretical physicist who pioneered the computer modelling of matter. erni Alder pioneered computer sim- undergo a transition from liquid to solid. Since LLNL ulation, in particular of the dynamics hard spheres do not have attractive interac- of atoms and molecules in condensed tions, freezing maximizes their entropy rather matter. To answer fundamental ques- than minimizing their energy; the regular tions, he encouraged the view that arrangement of spheres in a crystal allows more Bcomputer simulation was a new way of doing space for them to move than does a liquid. science, one that could connect theory with A second advance concerned how non- experiment. Alder’s vision transformed the equilibrium fluids approach equilibrium: field of statistical mechanics and many other Albert Einstein, for example, assumed that areas of applied science. fluctuations in their properties would quickly Alder, who died on 7 September aged 95, decay. In 1970, Alder and Wainwright dis- was born in Duisburg, Germany. In 1933, as covered that this intuitive assumption was the Nazis came to power, his family moved to incorrect. If a sphere is given an initial push, Zurich, Switzerland, and in 1941 to the United its average velocity is found to decay much States. After wartime service in the US Navy, more slowly. This caused a re-examination of Alder obtained undergraduate and master’s the microscopic basis for hydrodynamics. degrees in chemistry from the University of Alder extended the reach of simulation. California, Berkeley. While working for a PhD In molecular dynamics, the forces between at the California Institute of Technology in molecules arise from the electronic density; Pasadena, under the physical chemist John these forces can be described only by quan- Kirkwood, he began to use mechanical com- tum mechanics.
    [Show full text]
  • The Struggle for Quantum Theory 47 5.1Aliensignals
    Fundamental Forces of Nature The Story of Gauge Fields This page intentionally left blank Fundamental Forces of Nature The Story of Gauge Fields Kerson Huang Massachusetts Institute of Technology, USA World Scientific N E W J E R S E Y • L O N D O N • S I N G A P O R E • B E I J I N G • S H A N G H A I • H O N G K O N G • TA I P E I • C H E N N A I Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. FUNDAMENTAL FORCES OF NATURE The Story of Gauge Fields Copyright © 2007 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN-13 978-981-270-644-7 ISBN-10 981-270-644-5 ISBN-13 978-981-270-645-4 (pbk) ISBN-10 981-270-645-3 (pbk) Printed in Singapore.
    [Show full text]
  • Lecture #8: Monte Carlo Method
    Lecture #8: Monte Carlo method ENGG304: Uncertainty, Reliability and Risk Edoardo Patelli Institute for Risk and Uncertainty E: [email protected] W: www.liv.ac.uk/risk-and-uncertainty T: +44 01517944079 A MEMBER OF THE RUSSELL GROUP Edoardo Patelli University of Liverpool 18 March 2019 1 / 81 Lecture Outline 1 Introduction 2 Monte Carlo method Random Number Generator Sampling Methods Buffon’s experiment Monte Carlo integration Probability of failure 3 Summary 4 Computer based class Some useful slides Assignments Edoardo Patelli University of Liverpool 18 March 2019 2 / 81 Introduction Programme ENGG304 1 28/01/2019 Introduction 2 08/02/2019 Human error 3 11/02/2019 Qualitative risk assessment: Safety analysis 4 18/02/2019 Qualitative risk assessment: Event Tree and Fault Tree 5 25/02/2019 Tutorial I 6 04/03/2019 Model of random phenomena 7 11/03/2019 Structural reliability 8 18/03/2019 Monte Carlo simulation I + Hands-on session 9 25/03/2019 Tutorial II 10 01/04/2019 Monte Carlo simulation II + Tutorial III (Hands-on session) Edoardo Patelli University of Liverpool 18 March 2019 3 / 81 Introduction Summary Lecture #7 Safety Margin Fundamental problem Performance function defined as “Capacity” - “Demand” Safety margin: M = C − D = g(x) 2 For normal and independent random variables: M ∼ N(µM ; σM ) q 2 2 µM = µC − µD σM = σC + σD Reliability index β β = µM /σM represents the number of standard deviations by which the mean value of the safety margin M exceeds zero Edoardo Patelli University of Liverpool 18 March 2019 4 / 81 Introduction
    [Show full text]