A Quick Guide to Cytological Staining Technology Note
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PAPANICOLAOU STAINING SYSTEM (Procedure No. HT40)
PAPANICOLAOU 6. Tap water......................................................................................................................rinse STAINING SYSTEM 7. Scott’s Tap Water Substitute................................................................................10 dips (Procedure No. HT40) 8. Tap water......................................................................................................................rinse 9. ReagentAlcohol,95%.........................................................................................10dips _______________________________________________ 10. PapanicolaouStainOG6..............................................................................1.5minutes INTENDED USE 11. ReagentAlcohol,95%.........................................................................................10dips _______________________________________________ 12. PapanicolaouStainModifiedEA,OR PapanicolaouStainEA50,OR The Sigma-Aldrich Papanicolaou Staining system is intended for staining exfoliative PapanicolaouStainEA65.............................................................................2.5minutes cells in cytologic specimens. Papanicolaou staining reagents are for “In Vitro Diagnostic 13. ReagentAlcohol,95%,twochanges..........................................................10dipseach Use.” 1 14. ReagentAlcohol,100%.....................................................................................1minute Papanicolaou staining techniques, reviewed in a concise report -
Tender Enquiry No: 8-61/Stores/LHMC/AT/2020-21
Tender Enquiry No: 8-61/Stores/LHMC/AT/2020-21 भारत सरकार Government of India स्वास्थ्य सेवा महानिदेशालय Directorate General of Health Services स्वास्थ्य एवं पररवार कल्याण मंत्रालय Ministry of Health & Family Welfare ग मेनडकल कॉलेज एवं श्रीमती सुचेता कृपलािी अस्पतालﴂलेडी हनड Lady Hardinge Medical College & Smt. Sucheta Kriplani Hospital शहीद भगत नसंह मागग, िई नदल्ली – ११०००१ Shaheed Bhagat Singh Marg, New Delhi-110001 ३ नसतम्बर २०२० / 3rd September 2020 भंडार अिुभाग/Stores Section Tender Documents for Advertised Tender Enquiry for running rate contract of Kits, Chemicals & Reagents required for Lady Hardinge Medical College & Associated Hospitals New Delhi (Two Bid System) Tender Enquiry No: 8-61/Stores/LHMC/AT/2020-21 Dated: 3rd September 2020 Amount of Bid Security: Rs. 2,00,000.00 (Rs. Two Lakh Only) Tender Fee: Rs. 0 (Can be downloaded from Central Public Procurement Portal or LHMC Website) CRITICAL DATES Start Date of Sale of Tender: 04/09/2020 11.00 AM to 1.30 PM and from 2.30 PM to 4.00 PM End Date of Sale of Tender: 12/10/2020 4.00 PM Start Date for Submission of Tender: 13/10/2020, 10.00 AM onwards, Time Schedule for Submission of Tender: 14/10/2020, upto 11.00 AM Time Schedule for Opening of Tender: 14/10/2020, 11.30 AM A. INSTRUCTIONS 1. LHMC & Associated Hospitals proposed to enter into a rate-contract (R/C) for the supply of Chemicals, Reagents & Kits valid for a period of 24 months from the date of opening of the Price Bid, can be extended for a period of 12 months or more on mutual consent on existing terms & conditions. -
Clinically Pertinent Cytological Diff-Quick and Gram Stain
Clinically Pertinent Cytological Diff-Quick and Gram Stain Evaluation for the Reptilian Practitioner Kendal E Harr, DVM, MS, Dipl ACVP (Clinical Pathology), April Romagnano, PhD, DVM, DABVP (Avian) Session #214 Affiliation: URIKA, LLC, Mukilteo, WA 98275, USA (Harr), Avian and Exotic Clinic of Palm City, Palm City, Florida and the Animal Health Clinic, Jupiter, FL 33458, USA (Romagnano). Abstract: The goals of this work were to: 1) improve knowledge of preanalytic sampling techniques including blood smears, fine needle aspirates, imprints, smears, and fluid preparation including oral, dermal and cloacal swabs, cystic and solid mass sampling, joint fluids and effusions, and fecal smears and floats; and 2) enable the reptilian practitioner to better identify basic cells, classify disease processes, as well as infectious agents such as bacteria, fungi, and other structures. Discussion of diagnoses and treatment will follow. Generalized disease processes cross species and classes. The most important rule for cytologic interpretation is to not overinterpret the cytologic findings. Cytology helps guide therapeutic decision making by classification of disease process as neoplasia, fungal infection, etc but may not provide a definitive diagnosis. One should only interpret to the correct level of diagnosis and know when to refer the cytology and biopsy the lesion. Preanalytical Blood collection Collect less than < 1% of a reptile’s body weight. Use heparinized, size appropriate pediatric microtainers or Capijects®. Use the jugular vein in species where possible as the large bore vein decreases the likelihood of lymph dilution common in samples from the caudal vein. The right jugular may be larger in some species of lizard and tortoise but the size difference is not as dramatic as in avian species. -
Eosin Staining
Science of H & E Andrew Lisowski, M.S., HTL (A.S.C.P.) 1 Hematoxylin and Eosin Staining “The desired end result of a tissue stained with hematoxylin and eosin is based upon what seems to be almost infinite factors. Pathologists have individual preferences for section thickness, intensities, and shades. The choice of which reagents to use must take into consideration: cost, method of staining, option of purchasing commercially-prepared or technician-prepared reagents, safety, administration policies, convenience, availability, quality, technical limitations, as well as personal preference.” Guidelines for Hematoxylin and Eosin Staining National Society for Histotechnology 2 Why Do We Stain? In order to deliver a medical diagnosis, tissues must be examined under a microscope. Once a tissue specimen has been processed by a histology lab and transferred onto a glass slide, it needs to be appropriately stained for microscopic evaluation. This is because unstained tissue lacks contrast: when viewed under the microscope, everything appears in uniform dull grey color. Unstained tissue H&E stained tissue 3 What Does "Staining" Do? . Contrasts different cells . Highlights particular features of interest . Illustrates different cell structures . Detects infiltrations or deposits in the tissue . Detect pathogens Superbly contrasted GI cells Placenta’s large blood H&E stain showing extensive vessels iron deposits There are different staining techniques to reveal different structures of the cell 4 What is H&E Staining? As its name suggests, H&E stain makes use of a combination of two dyes – hematoxylin and eosin. It is often termed as “routine staining” as it is the most common way of coloring otherwise transparent tissue specimen. -
Wright's Stain
WRIGHT’S STAIN - For in vitro use only - Catalogue No. SW80 Our Wright’s Stain can be used to stain blood Interpretation of Results smears in the detection of blood parasites. Wright’s Stain is named for James Homer If malaria parasites are present, the Wright, who devised the stain in 1902 based on a cytoplasm stains pale blue and the nuclear modification of the Romanowsky stain. The stain material stains red. Schüffner’s dots and other distinguishes easily between blood cells and RBC inclusions usually do not stain or stain became widely used for performing differential very pale with Wright’s stain. Nuclear and white blood cell counts, which are routinely cytoplasmic colors that are seen in the malarial ordered when infections are expected. The stain parasites will also be seen in the trypanosomes contains a fixative, methanol, and the stain in one and any intracellular leishmaniae that are solution. Thin films of blood are fixed with present. methanol to preserve the red cell morphology so Refer to an appropriate text for a detailed that the relationship between parasites to the red description of characteristic morphological cells can be seen clearly. structures of different parasitic organisms and human cell types. Formula per Litre • Make sure all slides are clean prior to Wright’s Stain .............................................. 1.8 g making the blood smear to ensure that the Methanol .................................................. 1000 mL stain absorbs properly • Tap water is unacceptable for the rinsing Recommended Procedure solution as the chlorine may bleach the stain 1. Dip slide for a few seconds in methanol as a fixative step and allow slide to air dry • Finding no parasites in one set of blood completely. -
Appendix A: Standardization of Staining Methods
Appendix A: Standardization of Staining Methods H. Lyon, D. Wittekind, E. Schulte No detailed descriptions of staining methods are provided in this book. The reader is referred to one or more of the excellent texts covering this field (cf. Preface). Nevertheless, we have feIt it appropriate to inc1ude this appendix which gives some of our views on the technical aspects of procedures which should be given particular emphasis. It is our opinion that the need for standardization and quan titative methods in daily work is pressing. This appendix sets out the appropriate general considerations followed by a few selected methods in order to cover this area. A.l General Considerations According to Boon and Wittekind (1986) the principle aim of standardizing staining methods is to render their application reproducible and therefore reliable. This is of the utmost importance when dyes and stains are used for automated cell pattern recognition (Wittekind, 1985; Wittekind and Schulte, 1987). The theoretical background for standardization of cell and tissue preparation sterns from the fact that any preparatory step - from cell sampling to mounting of the stained slide - will somehow affect the structure of the cell and ultimately lead to the production of a particular staining pattern which, in strict tenns, is an artifact. What we eventually observe by microscopy is, from the perspective of a cell, the product of a rather violent procedure: In cytological preparations the cells have been isolated from their tissue, spread out on the surface of a glass slide and immersed in a liquid poison which abruptly arrests and - sensu stricto - "fixes" the cell in the very last moment of its life. -
New Tetrachromic VOF Stain (Type III-G.S) for Normal and Pathological Fish Tissues C
ORIGINAL PAPER New Tetrachromic VOF Stain (Type III-G.S) for Normal and Pathological Fish Tissues C. Sarasquete,* M. Gutiérrez Instituto de Ciencias Marinas de Andalucía, CSIC Polígono Río San Pedro, Apdo oficial, Puerto Real, Cádiz, Spain richrome methods invariably use dyes in acid ©2005, European Journal of Histochemistry pH solvents, usually diluted in aqueous acetic Tacid, and the concentration of this acid A new VOF Type III-G.S stain was applied to histological sec- matches the concentration of dye. Staining depends tions of different organs and tissues of healthy and pathologi- largely on the attachment of dyes to proteins. The cal larvae, juvenile and adult fish species (Solea senegalensis; acid pH itself is necessary to maximise the amount Sparus aurata; Diplodus sargo; Pagrus auriga; Argyrosomus regius and Halobatrachus didactylus). In comparison to the of dye that will attach to tissue amino groups. original Gutiérrez´VOF stain, more acid dyes of contrasting Proteins have both positively (amino groups) and colours and polychromatic/metachromatic properties were negatively (carboxyl and hydroxyl) charged groups. incorporated as essential constituents of the tetrachromic VOF Usually one predominates and this will have an stain. This facilitates the selective staining of different basic tissues and improves the morphological analysis of histo- overall negative or positive charge (being an acid or chemical approaches of the cell components. The VOF-Type III a basic protein). These charges can, however, bal- G.S stain is composed of a mixture of several dyes of varying ance each other out to some degree. Phosphate size and molecular weight (Orange G< acid Fuchsin< Light green<Methyl Blue<Fast Green), which are used simultane- groups of DNA and binding-proteins are important ously, and it enables the individual tissues to be selectively dif- in nuclear staining.The ionisation of basic groups of ferentiated and stained. -
Special Techniques Applicable to Bone Marrow Diagnosis
TWO SPECIAL TECHNIQUES APPLICABLE TO BONE MARROW DIAGNOSIS Peripheral blood samples, bone marrow aspirates and niques that may be applied to trephine biopsy trephine biopsy specimens are suitable for many sections include: (i) a wider range of cytochemical diagnostic investigations, in addition to routine stains; (ii) immunohistochemistry; (iii) cytogenetic microscopy of Romanowsky-stained blood and bone and molecular genetic analysis; and (iv) ultrastruc- marrow films and haematoxylin and eosin-stained tural examination. histological sections. Some of these techniques, for example Perls’ stain to demonstrate haemosiderin Cytochemical and histochemical stains in a bone marrow aspirate, are so often useful that they are performed routinely, whereas other tech- Cytochemical stains on bone marrow niques are applied selectively. This chapter will deal aspirates predominantly with special techniques that are applicable to bone marrow aspirates and trephine Perls’ stain for iron biopsy sections but reference will be made to the peripheral blood where this is the more appropriate A Perls’ or Prussian blue stain (Figs 2.1 and 2.2) tissue for study. demonstrates haemosiderin in bone marrow macro- Bone marrow aspirate films are stained routinely phages and within erythroblasts. Consequently, it with a Romanowsky stain such as a May– allows assessment of both the amount of iron in Grünwald–Giemsa (MGG) or a Wright–Giemsa stain. reticulo-endothelial stores and the availability of Other diagnostic procedures that may be of use iron to developing erythroblasts. in individual cases include: (i) cytochemistry; (ii) Assessment of storage iron requires that an ade- immunophenotyping (by immunocytochemistry or quate number of fragments are obtained. A bone flow cytometry); (iii) cytogenetic and molecular marrow film or squash will contain both intracellu- genetic analysis; (iv) ultrastructural examination; lar and extracellular iron, the latter being derived (v) culture for micro-organisms; and (vi) culture for from crushed macrophages. -
Basics of Hematology and Patho-Histology
Basics of Hematology and Patho-histology Practical Course in Molecular Pathology Winter Term 2015 Ernst Müllner MFPL (Max F Perutz Laboratories) Department of Medical Biochemistry Medical University of Vienna [email protected] www.mfpl.ac.at/mfpl-group/group/muellner.html (Müllner homepage / research) E. coli + macrophages medicalschool.tumblr.com/post/43914024728/sem-image-of-e-coli-bacteria-and-macrophages medicalschool.tumblr.com/post/18256087351/r ed-blood-cells-erythrocytes-trapped-by-fibrin Overview on main white blood cell (WBC) types – (Wikipedia) Mature white blood cell types I White Blood cells (WBCs) are frequently also referred to as peripheral blood mononuclear cells (PBMCs). Granulocytes in general are part of the innate immune system. Names derive from staining with hematoxylin and eosin. Whereas basophils stain dark blue and eosinophils are bright red, neutrophils stain neutral to pink. Basophil granulocytes Eosinophil granulocytes Neutrophil granulocytes Least common granulocyte type About 1-6% of WBCs; component Most abundant WBC type (40- (0.01- 0.3% of WBCs. Large of innate immune system to com- 75%) and essential part of the cytoplasmic granules obscure the bat parasites and certain infec- innate immune system. A patho- nucleus under the microscope. tions; also associated with allergy gen is likely to first encounter a When unstained, the nucleus is and asthma. Following activation, neutrophil. Normally contain a nu- visible and usually has 2 lobes. eosinophils effector functions in- cleus of 2-5 lobes. Neutrophils Basophils appear in inflammatory clude production and release (de- quickly congregate at a infection reactions, particularly those granulation) of cytotoxic substan- site, attracted by cytokines from causing allergies, mainly via the ces (granule proteins, reactive activated endothelium, mast cells, vasodilator histamine (antihistami- oxygen species …) and production or macrophages. -
Pattern of Cervical Cytology Using Papanicolaou Stain: an Experience from a Tertiary Hospital
Original Article Indian Journal of Forensic Medicine and Pathology Volume 13 Number 1, January - March 2020 DOI: http://dx.doi.org/10.21088/ijfmp.0974.3383.13120.12 Pattern of Cervical Cytology using Papanicolaou Stain: An Experience from a Tertiary Hospital Rashmi Shetty1, Ankitha Hebbar2, Nagarekha Kulkarni3, C Bharath4, Pavithra P5 How to cite this article: Rashmi Shetty, Ankitha Hebbar, Nagarekha Kulkarni et al. Pattern of Cervical Cytology using Papanicolaou Stain: An Experience from a Tertiary Hospital. Indian J. Forensic Med Pathol. 2020;13(1):83–88. Abstract Introduction: Cervical cancer screening using Pap smear is the cornerstone of any cancer control program. The study aimed to know the burden of various cervical lesions which were assessed by conventional Pap smear study. Methodology: We included 500 referred symptomatic patients in the study. The history, deatiled clinical examination, per speculum examination and a vaginal examination were performed for all women. Pap smear was used to screen all women for cervical cancer. Results: Mean age of the study population was 44 years and the most common complaint was whitish discharge per vaginam (54%). Classifying patients according to the Bethesda System 2001 Guidelines, we observed 61% (n = 303) cases to be Negative for Intraepithelial Lesion or Malignancy (NILM), 36% (n = 182) as Atypical Squamous Cells (ASC), 2% (n = 10) as Atypical Endocervical Cells (AEC) and 1% (n = 05) as unsatisfactory. Of the 303 cases of NILM, non-specific inflammatory changes were seen in 63%, reactive cellular changes in 21%, atrophic changes in 10%, candidiasis in 3%, Gardnerella vaginalis in 2% and inflammation with Trichomonas in 1%. -
Rapid-Air-Dry Papanicolaou Stain in Canine and Feline Tumor Cytology: a Quantitative Comparison with the Giemsa Stain
FULL PAPER Clinical Pathology Rapid-Air-Dry Papanicolaou Stain in Canine and Feline Tumor Cytology: A Quantitative Comparison with the Giemsa Stain Mariko SAWA 1), Akira YABUKI1)*, Noriaki MIYOSHI2), Kou ARAI3) and Osamu YAMATO 1) 1)Laboratory of Veterinary Clinical Pathology, Department of Veterinary Medicine, Kagoshima University, Kagoshima 890–0065, Japan 2)Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Kagoshima University, Kagoshima 890–0065, Japan 3)Kagoshima University Veterinary Teaching Hospital, Kagoshima University, Kagoshima 890–0065, Japan (Received 4 February 2012/Accepted 24 April 2012/Published online in J-STAGE 18 May 2012) ABSTRACT. The Papanicolaou stain is a gold-standard staining method for tumor diagnosis in human cytology. However, it has not been used routinely in veterinary cytology, because of its complicated multistep procedure and requirement for wet fixation. Currently, a rapid Papanicolaou stain using air-dried smears is utilized in human cytology, but usefulness of this rapid-air-dry Papanicolaou (RAD-Pap) stain in the veterinary field has not been fully evaluated. The purpose of this study was to evaluate the usefulness of the RAD-Pap stain by using quantitative analysis. Air-dried impression smears were collected from tumor specimens and stained with RAD-Pap and Giemsa. Twelve parameters representing the criteria of malignancy were quantitated, and characteristics of the RAD-Pap were evaluated statistically. The RAD-Pap stain could be applied to all the smears, and images of nucleoli and chromatin patterns were clear and detailed. In quantitative analysis with the RAD-Pap stain, but not with the Giemsa stain, dispersion of nucleolus size and dispersion of nucleolus/nucleus ratio in malignant tumors were significantly higher than those in benign tumors. -
Research Journal of Pharmaceutical, Biological and Chemical Sciences
ISSN: 0975-8585 Research Journal of Pharmaceutical, Biological and Chemical Sciences Connective Tissue Stains: A Review Article. Kalpajyoti Bhattacharjee1, Girish HC2, Sanjay Murgod2*, Alshame M J Alshame3 and Dinesh BS4. 1Department of Oral Pathology, Government Dental College, Ghungoor, Meherpur, Dist-Cachar, Silchar-788014, Assam, India. 2Dept of Oral Pathology, Rajarajeswari Dental College & Hospital, No 14, Ramohally Cross, Kumbalgodu, Mysore Road, Bangalore-560074, Karnataka, India. 3Department of Oral Surgery, Faculty of Dentistry, Sebha University, Sebha, Libya. 4Oral & Maxillofacial Surgeon, Bangalore-560070, Karnataka, India. ABSTRACT Simple things are most commonly overlooked and some of the most common and basic parts of histopathology are stains. Stains are an integral part of routine histopathology and are commonly used in the diagnosis of various lesions and tumors. In this study we perused to collect more information on the various types of stains used to stain the different types of connective tissue components and an attempt has been made to gain more insight into knowledge, applications and also recent advances of connective tissue stains. Keywords: Connective tissue, stains, special stains *Corresponding author November–December 2018 RJPBCS 9(6) Page No. 809 ISSN: 0975-8585 INTRODUCTION Cells are the basic structural and functional units of all multicellular organisms. Tissues are aggregates or groups of cells organized to perform one or more specific functions. Epithelium is an avascular tissue composed of cells that cover the exterior body surfaces and line internal closed cavities (including the vascular system) and body tubes that communicate with the exterior (the alimentary, respiratory, and genitourinary tracts). Epithelium also forms the secretory portion (parenchyma) of glands and their ducts.