Appendix A: Standardization of Staining Methods

Total Page:16

File Type:pdf, Size:1020Kb

Appendix A: Standardization of Staining Methods Appendix A: Standardization of Staining Methods H. Lyon, D. Wittekind, E. Schulte No detailed descriptions of staining methods are provided in this book. The reader is referred to one or more of the excellent texts covering this field (cf. Preface). Nevertheless, we have feIt it appropriate to inc1ude this appendix which gives some of our views on the technical aspects of procedures which should be given particular emphasis. It is our opinion that the need for standardization and quan­ titative methods in daily work is pressing. This appendix sets out the appropriate general considerations followed by a few selected methods in order to cover this area. A.l General Considerations According to Boon and Wittekind (1986) the principle aim of standardizing staining methods is to render their application reproducible and therefore reliable. This is of the utmost importance when dyes and stains are used for automated cell pattern recognition (Wittekind, 1985; Wittekind and Schulte, 1987). The theoretical background for standardization of cell and tissue preparation sterns from the fact that any preparatory step - from cell sampling to mounting of the stained slide - will somehow affect the structure of the cell and ultimately lead to the production of a particular staining pattern which, in strict tenns, is an artifact. What we eventually observe by microscopy is, from the perspective of a cell, the product of a rather violent procedure: In cytological preparations the cells have been isolated from their tissue, spread out on the surface of a glass slide and immersed in a liquid poison which abruptly arrests and - sensu stricto - "fixes" the cell in the very last moment of its life. During fixation some components of the cell might be removed by the fixative (alcohols remove lipids), and proteins may be precipitated or cross-linked. In histology the tissue is embedded in molten wax or in polymerizing plastic; the cell is cut into thin slices on a microtome. Finally - and this is true in both cytology and histology - dyes dissolved in aqueous or alcoholic solutions are bound by sometimes unknown mechanisms to one or the other substrate in the cell thus yielding "contrast" between stained and unstained - or less stained - components of the cello H. Lyon (Ed.) Theory and Sttategy in Histochemistry © Springer Verlag 1991 510 H. Lyon, D. Wittekind, E. Schulte What we finally look at has not much to do with the "true" structure of the living cell; this can be easily confirmed by the comparison of a living cell in phase contrast microscopy with the same cell after a conventional fixation and staining procedure in usual light microscopy. Thus the aim of standardization in cell and tissue preparation is to make the staining pattern, Le. the artifact, reproducible; in other words standardized prepara­ tory techniques should guarantee standard artifacts. Finally, we have to answer the question: "Which staining pattern should we choose as the standard". Variation of the preparatory technique will result in varia­ tion of the staining pattern: if for instance the pH of the staining solution is changed, hue and/or intensity of staining can change, and a whole palette of staining patterns will be found when several preparatory steps are changed simultaneously. It seems logical both from a practical and a theoretical point of view to choose as standard the staining pattern which best fulfils the requirements of the observer, be it human or a computer; correspondingly, the preparatory technique yielding this staining pattern is defined as the standard teChnique. This is explained in detail below. Standardization of a method for staining cytological or histological material requires consideration of all steps in the procedure. A.l.l SUde Preparation Cytological material may primarily be air-dried and then fixed or fixation may be carried out on the wet material. The results achieved with a staining method may be quite different according to which of these procedures has been chosen. For instance with the Romanowsky-Giemsa method air drying is preferred, while for the Papanicolaou method air drying has adetrimental effect on the staining result. The choice of fixative also has a pronounced effect on the staining result; with the Papanicolaou method Boon and Drijver (1986) recommend the use of ethanol in concentrations between 50% and 70% and with added polyethylene glycol (300-1000), whereas this fixative cannot be recommended for use with the Romanowsky-Giemsa method. Histological material may also primarily be treated in two different ways. These are either the preparation of cryostat sections (Sects.11.2.2 and 11.3.1) or the use of a chemical fixative (Chap.12) which is usually followed by dehydration (Sect.14.2), clearing (Sect.14.3), and embedding (Sect.14.4) for light microscopy. All of these procedures have a profound effect on the material before the final sections are cut. Rigorous standardization is therefore of paramount importance to achieve repro­ ducible results irrespective of the subsequent staining procedure. Appendix A: Standardization of Staining Methods 511 A.l.2 Staining Methods Concerning the staining methods themselves, assuming that the preparatory tech­ niques have been standardized, the most important reagents are dyes (Sect.3.3). Dyes. In general, dyes are coloured organic molecules with large systems of delo­ calized electrons (conjugated 7r-electronic systems). Dyes are available as crystals or as powders which on solution in a suitable solvent may bind by physico-chemical attractions to a substrate and impart colour to the latter. A stain is a solution of dye in a suitable solvent. Stains may be subdivided into stock solutions and working solutions, where a stock solution is a stable solution of one or more dyes at a con­ centration, which is higher than that usually employed for staining, while a working solution is a solution of one or more dyes in a suitable solvent at concentrations adapted to staining purposes. Finally, it should be mentioned that a chromogenic reagent is a colourless reagent which can react with suitable groups present or in­ duced in the biological substrate with the formation of a dye in situ. Standardized dyes, stains, and chromogenic reagents are of course essential to a standardized method. Standardization of Dyes. This can be carried out by specification of the physical and chemical characteristics of the dyes. Much work of this nature has been per­ formed by the Biological Stain Commission (BSC) (Sect.3.3.1O). However, exact specifications of completely pure dye sampies are still lacking in what are proba­ bly the majority of cases. According to Boon and Wittekind (1986), this form for standardization is in theory sufficient. When a candidate sampie of a dye complies with the specifications of the standard, the staining results would be reproducible if: a. All other components and factors of the stain besides the constituent dyes are also standardized b. The biological substrates to be stained are in reasonably comparable physico­ chemical and technical states c. The slide preparation is standardized The difficulty with this approach is the achievement of sufficiently pure dye sampies at the outset. This has led the BSC to base standardization not only on certain physico-chemical characteristics of the dye, but also according to its per­ formance in the so-called "biological staining tests" (Clark, 1981). Standardization of the Staining Solutions. This includes specification of the sol­ vent to be used and the dye concentration. The latter should take into account possible precipitation and changes in concentration during use. Of further impor­ tance is the pH and content and concentration of ions. Here it must be remembered the addition of a buffer not only has a stabilizing effect on pH, but will also add ions to the solution and can thus give rise to "salting on/salting off' effects (Bennion and Horobin, 1974; Horobin and Goldstein, 1974). 512 H. Lyon, D. Wittekind, E. Schulte Standardization of Technique of Staining. This includes the four factors of stain­ ing time, staining temperature, contact of stain with section, and rinses between or after staining. Staining Time. The importance of this factor varies a great deal depending upon the complexity of the staining process. However, it should be ensured that the staining times are not too short. It should be appreciated that a staining equilibrium is very rarely achieved with most staining methods. Extended staining times nearly always result, therefore, in staining patterns which deviate considerably from the results obtained with "normal" staining times. Standardization of staining time should not, however, normally present any problem. Staining Temperature. The temperature of the staining bath is very important and will of course effect the staining time. At elevated temperatures the transport of molecules and ions and reactions between these are accelerated. This means that increased staining temperature leads to shorter staining time. However, the increase in temperature may have deleterious effect on the staining result as the proteins of the tissue become denatured. It is usual to stain at room temperature which probably can vary between 18°C and 28°C. At the higher temperature chemical processes take place at double the speed of those at the lower. Control of staining temperature can therefore be quite important. The temperature of interest is that of the staining solution and not so much that of the surroundings. It should be remembered that buffers or other reagents taken direct1y from the refrigerator take a considerable amount of time to come into temperature equilibrium with the surroundings. Contact of Stain with the Section or the Cells. This is a difficult factor to control as it is influenced by movement of the slides in the staining bath and also by the space between them in the staining rack. Standardization of this factor can, according to Zimmermann (1983), only be achieved when staining machines are employed Rinses between Baths for Differentiation, Blueing, and Dehydration.
Recommended publications
  • Clinically Pertinent Cytological Diff-Quick and Gram Stain
    Clinically Pertinent Cytological Diff-Quick and Gram Stain Evaluation for the Reptilian Practitioner Kendal E Harr, DVM, MS, Dipl ACVP (Clinical Pathology), April Romagnano, PhD, DVM, DABVP (Avian) Session #214 Affiliation: URIKA, LLC, Mukilteo, WA 98275, USA (Harr), Avian and Exotic Clinic of Palm City, Palm City, Florida and the Animal Health Clinic, Jupiter, FL 33458, USA (Romagnano). Abstract: The goals of this work were to: 1) improve knowledge of preanalytic sampling techniques including blood smears, fine needle aspirates, imprints, smears, and fluid preparation including oral, dermal and cloacal swabs, cystic and solid mass sampling, joint fluids and effusions, and fecal smears and floats; and 2) enable the reptilian practitioner to better identify basic cells, classify disease processes, as well as infectious agents such as bacteria, fungi, and other structures. Discussion of diagnoses and treatment will follow. Generalized disease processes cross species and classes. The most important rule for cytologic interpretation is to not overinterpret the cytologic findings. Cytology helps guide therapeutic decision making by classification of disease process as neoplasia, fungal infection, etc but may not provide a definitive diagnosis. One should only interpret to the correct level of diagnosis and know when to refer the cytology and biopsy the lesion. Preanalytical Blood collection Collect less than < 1% of a reptile’s body weight. Use heparinized, size appropriate pediatric microtainers or Capijects®. Use the jugular vein in species where possible as the large bore vein decreases the likelihood of lymph dilution common in samples from the caudal vein. The right jugular may be larger in some species of lizard and tortoise but the size difference is not as dramatic as in avian species.
    [Show full text]
  • Wright's Stain
    WRIGHT’S STAIN - For in vitro use only - Catalogue No. SW80 Our Wright’s Stain can be used to stain blood Interpretation of Results smears in the detection of blood parasites. Wright’s Stain is named for James Homer If malaria parasites are present, the Wright, who devised the stain in 1902 based on a cytoplasm stains pale blue and the nuclear modification of the Romanowsky stain. The stain material stains red. Schüffner’s dots and other distinguishes easily between blood cells and RBC inclusions usually do not stain or stain became widely used for performing differential very pale with Wright’s stain. Nuclear and white blood cell counts, which are routinely cytoplasmic colors that are seen in the malarial ordered when infections are expected. The stain parasites will also be seen in the trypanosomes contains a fixative, methanol, and the stain in one and any intracellular leishmaniae that are solution. Thin films of blood are fixed with present. methanol to preserve the red cell morphology so Refer to an appropriate text for a detailed that the relationship between parasites to the red description of characteristic morphological cells can be seen clearly. structures of different parasitic organisms and human cell types. Formula per Litre • Make sure all slides are clean prior to Wright’s Stain .............................................. 1.8 g making the blood smear to ensure that the Methanol .................................................. 1000 mL stain absorbs properly • Tap water is unacceptable for the rinsing Recommended Procedure solution as the chlorine may bleach the stain 1. Dip slide for a few seconds in methanol as a fixative step and allow slide to air dry • Finding no parasites in one set of blood completely.
    [Show full text]
  • An Improved Silver Staining Technique for Nucleolus Organizer Regions by Using Nylon Cloth
    Jpn. J. Human Genet. 25, 229-233, 1980 AN IMPROVED SILVER STAINING TECHNIQUE FOR NUCLEOLUS ORGANIZER REGIONS BY USING NYLON CLOTH Yoshiaki KODAMA, Michihiro C. YOSHIDA, and Motomichi SASAKI Chromosome Research Unit, Faculty of Science, Hokkaido University, Sapporo 060, Japan Summary A simple and reproducible silver-staining technique for nu- cleolus organizer regions (NORs) was developed, use being made of nylon cloth as a coverslip for even impregnation of the sliver solution. Ag-NORs were clearly and selectively visualized in human and mouse chromosomes, without equivocal staining of centrometric heterochromatin and back- ground silver grains. INTRODUCTION Nucleolus organizer regions (NORs) of chromosomes in various organisms can be selectively stained by the N-banding (Matsui and Sasaki, 1973; Funaki et aL, 1975) or silver-staining techniques (Howell et al., 1975; Goodpasture and Bloom, 1975), the latter technique being simplified and much improved by Bloom and Goodpasture (1976). Even though this improved technique is widely used, there are still several problems in its practical use such as those hampered by occasional appearance of excessive background silver-grains and non-uniform staining in a given slide. We have devised a simple and reproducible silver-staining technique to over- come the above problems by using nylon cIoth as a coverslip during silver impreg- nation of the slides. MATERIALS AND METHODS Air-dried chromosome preparations were made from PHA-stimulated human lymphocyte cultures and from a hyperdiploid mouse Ehrlich asites tumor (EAT). The staining procedure employed was essentially the same as the Ag-I method described by Bloom and Goodpasture (1976), with minor modifications. The silver nitrate (Ag-) solution was prepared by dissolving 1 g AgNO8 in 2 ml distilled- Received February 27, 1980 229 230 Y.
    [Show full text]
  • Robust Amyloid Clearance in a Mouse Model of Alzheimer's Disease Provides Novel Insights Into the Mechanism of Amyloid-ßimmun
    4124 • The Journal of Neuroscience, March 16, 2011 • 31(11):4124–4136 Neurobiology of Disease Robust Amyloid Clearance in a Mouse Model of Alzheimer’s Disease Provides Novel Insights into the Mechanism of Amyloid-␤ Immunotherapy Allan Wang,1,2 Pritam Das,6 Robert C. Switzer III,7 Todd E. Golde,8 and Joanna L. Jankowsky2,3,4,5 1Department of Psychology, Rice University, Houston, Texas 77251, Departments of 2Neuroscience, 3Neurosurgery, and 4Neurology, and 5Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, 6Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida 32224, 7NeuroScience Associates, Knoxville, Tennessee 37934, and 8Department of Neuroscience, McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida 32610 Many new therapeutics for Alzheimer’s disease delay the accumulation of amyloid-␤ (A␤) in transgenic mice, but evidence for clearance of preexisting plaques is often lacking. Here, we demonstrate that anti-A␤ immunotherapy combined with suppression of A␤ synthesis allows significant removal of antecedent deposits. We treated amyloid-bearing tet-off APP (amyloid precursor protein) mice with doxycycline to suppress transgenic A␤ production before initiating a 12 week course of passive immunization. Animals remained on doxycycline for 3 months afterward to assess whether improvements attained during combined treatment could be maintained by monotherapy. This strategy reduced amyloid load by 52% and A␤42 content by 28% relative to pretreatment levels, with preferential clearance of small deposits and diffuse A␤ surrounding fibrillar cores. We demonstrate that peripherally administered anti-A␤ antibody crossed the blood–brain barrier, bound to plaques, and was still be found associated with a subset of amyloid deposits many months after the final injection.
    [Show full text]
  • Original Article Sensitivities of Periodic Acid-Schiff Staining, Grocott's Silver Staining and Calcofluor White Staining in T
    Int J Clin Exp Pathol 2019;12(9):3459-3464 www.ijcep.com /ISSN:1936-2625/IJCEP0099282 Original Article Sensitivities of periodic acid-Schiff staining, Grocott’s silver staining and calcofluor white staining in the diagnosis of human sporotrichosis Sha Lv1, Han-Fei Wu2, Bing Wang1, Ming-Rui Zhang1, Lian-Lian Song3, Fu-Qiu Li1 1Department of Dermatology, The Second Hospital of Jilin University, Jilin, China; Departments of 2General Surgery, 3Pathology, The First Clinical Hospital of Academy of Science of TCM in Jilin Province, Jilin, China Received July 5, 2019; Accepted August 26, 2019; Epub September 1, 2019; Published September 15, 2019 Abstract: Objective: This study aimed to investigate the sensitivity of periodic acid-Schiff (PAS) staining, Grocott’s silver staining (GSS) and calcofluor white (CFW) staining in the diagnosis of sporotrichosis. Methods: Paraffin em- bedded tissues (n = 100) which were diagnosed with sporotrichosis by fungal culture were subjected to PAS, GSS, and CFW staining, and the detection rate of sporotrichosis was determined. Results: The sensitivity of PAS, GSS, and CFW staining was 31%, 40% and 74%, respectively, in the diagnosis of sporotrichosis. Conclusion: CFW staining has a high sensitivity in the diagnosis of sporotrichosis, and sections are easily observed and can be repeatedly stained after CFW staining. For patients suspected to have sporotrichosis, CFW staining may be employed for early diagnosis before a fungal culture. Keywords: Sporotrichosis, special histopathological staining, calcofluor white Introduction lymphocutaneous, disseminated cutaneous, and extracutaneous forms [7]. Recently, a new Sporotrichosis is a subacute or chronic infec- classification was proposed as new clinical pre- tion caused by thermodimorphic fungi of the sentations were identified, to better describe genus Sporothrix [1], and in recent years, the the clinical features of sporotrichosis [8].
    [Show full text]
  • Special Techniques Applicable to Bone Marrow Diagnosis
    TWO SPECIAL TECHNIQUES APPLICABLE TO BONE MARROW DIAGNOSIS Peripheral blood samples, bone marrow aspirates and niques that may be applied to trephine biopsy trephine biopsy specimens are suitable for many sections include: (i) a wider range of cytochemical diagnostic investigations, in addition to routine stains; (ii) immunohistochemistry; (iii) cytogenetic microscopy of Romanowsky-stained blood and bone and molecular genetic analysis; and (iv) ultrastruc- marrow films and haematoxylin and eosin-stained tural examination. histological sections. Some of these techniques, for example Perls’ stain to demonstrate haemosiderin Cytochemical and histochemical stains in a bone marrow aspirate, are so often useful that they are performed routinely, whereas other tech- Cytochemical stains on bone marrow niques are applied selectively. This chapter will deal aspirates predominantly with special techniques that are applicable to bone marrow aspirates and trephine Perls’ stain for iron biopsy sections but reference will be made to the peripheral blood where this is the more appropriate A Perls’ or Prussian blue stain (Figs 2.1 and 2.2) tissue for study. demonstrates haemosiderin in bone marrow macro- Bone marrow aspirate films are stained routinely phages and within erythroblasts. Consequently, it with a Romanowsky stain such as a May– allows assessment of both the amount of iron in Grünwald–Giemsa (MGG) or a Wright–Giemsa stain. reticulo-endothelial stores and the availability of Other diagnostic procedures that may be of use iron to developing erythroblasts. in individual cases include: (i) cytochemistry; (ii) Assessment of storage iron requires that an ade- immunophenotyping (by immunocytochemistry or quate number of fragments are obtained. A bone flow cytometry); (iii) cytogenetic and molecular marrow film or squash will contain both intracellu- genetic analysis; (iv) ultrastructural examination; lar and extracellular iron, the latter being derived (v) culture for micro-organisms; and (vi) culture for from crushed macrophages.
    [Show full text]
  • Improved Method for Assessing Iron Stores in the Bone Marrow
    Original article View metadata, citation and similar papers at core.ac.uk brought to you by CORE Improved method for assessing iron stores inprovided the by PubMed Central bone marrow K S Phiri,1 J C J Calis,1,2 D Kachala,1 E Borgstein,3 J Waluza,3 I Bates,4 B Brabin,4 M Boele van Hensbroek1,2,4 1 Malawi–Liverpool–Wellcome ABSTRACT hypothesised to be particularly important when Trust Clinical Research Background: Bone marrow iron microscopy has been iron in fragments is absent and may signify the Programme, College of the ‘‘gold standard’’ method of assessing iron deficiency. Medicine, Blantyre, Malawi; lowest level of iron stores depletion. 2 Emma Children’s Hospital However, the commonly used method of grading marrow In areas where there is a high prevalence of AMC, University of Amsterdam, iron remains highly subjective. inflammatory conditions, functional iron defi- 3 Netherlands; Department of Aim: To improve the bone marrow grading method by ciency commonly occurs. Erythroblast iron may Surgery, College of Medicine, 4 developing a detailed protocol that assesses iron in be indicative of cellular iron utilisation and Blantyre, Malawi; Liverpool 11 School of Tropical Medicine, fragments, in macrophages around fragments and in decreased in functional iron deficiency ; however Liverpool, UK erythroblasts. there has been little research on the use of Methods: A descriptive study of marrow aspirates of 303 erythroblast iron as a marker of cellular iron Correspondence to: children (aged 6–60 months) with severe anaemia and 22 availability.12 Furthermore, in malaria endemic Dr K Phiri, Malawi–Liverpool– Wellcome Trust Clinical controls (children undergoing elective surgery) was areas, interpretation of iron status may be con- Research Programme, PO Box conducted at hospitals in southern Malawi (2002–04).
    [Show full text]
  • A General-Purpose Method of Silver Staining by A. PETERS (Frovijhe Department of Zoology, University of Bristol)
    323 A General-Purpose Method of Silver Staining By A. PETERS (Frovijhe Department of Zoology, University of Bristol) SUMMARY A method of silver staining for paraffin sections has been described. Sections should be fixed in either Nonidez fixative, 4% formaldehyde, or 4% formaldehyde saturated with mercuric chloride. The sections are impregnated for 16 hours in 1/20,000 silver nitrate at pH 8 or 9 and developed in a glycine physical developer after the reducible silver has been removed with a 2% solution of sodium sulphite. The effect of pH on impregnation has been described. A spectrum of staining was obtained in which nerve fibres began to stain appreciably at pH 7, cell nuclei at pH 8, cell cytoplasm at pH 9, and connective tissue at higher pH values. Therefore, impreg- nation should be carried out at pH 8 to obtain a good staining of nerve fibres and at pH 9 if some staining of cell bodies is also required. N recent years, a number of methods for the silver staining of paraffin sections of nervous tissue have been described. Probably the most impor- Itant have been those of Holmes (1947), Romanes (1950), and Samuel (19536). Although these methods vary in detail, they have the common factor that impregnation is carried out at a controlled pH in a dilute solution of a silver salt. Holmes and Samuel used silver nitrate and Romanes used silver chloride. While Holmes and Romanes employed a hydroquinone-sulphite developer, which reduced the silver taken up by the sections during impregnation, Samuel removed the reducible silver with a sodium sulphite solution and developed in a physical developer.
    [Show full text]
  • STAINING TECHNIQUES — Staining Is an Auxiliary Technique Used in Microscopy to Enhance Contrast in the Microscopic Image
    STAINING TECHNIQUES Staining is an auxiliary technique used in microscopy to enhance contrast in the microscopic image. Stains or dyes are used in biology and medicine to highlight structures in biological tissues for viewing with microscope. Cell staining is a technique that can be used to better visualize cells and cell components under a microscope. Using different stains, it is possible to stain preferentially certain cell components, such as a nucleus or a cell wall, or the entire cell. Most stains can be used on fixed, or non-living cells, while only some can be used on living cells; some stains can be used on either living or non-living cells. In biochemistry, staining involves adding a class specific (DNA, lipids, proteins or carbohydrates) dye to a substrate to qualify or quantify the presence of a specific compound. Staining and fluorescence tagging can serve similar purposes Purposes of Staining The most basic reason that cells are stained is to enhance visualization of the cell or certain cellular components under a microscope. Cells may also be stained to highlight metabolic processes or to differentiate between live and dead cells in a sample. Cells may also be enumerated by staining cells to determine biomass in an environment of interest. Stains may be used to define and examine bulk tissues (e.g. muscle fibers or connective tissues), cell populations (different blood cells) or organelles within individual cells. Biological staining is also used to mark cells in flow cytometry, flag proteins or nucleic acids on gel electrophoresis Staining is not limited to biological materials, it can also be used to study the morphology (form) of other materials e.g.
    [Show full text]
  • Dr.Sithy Athiya Munavarah Dr. Johnsy Merla J* Original Research Paper
    Original Research Paper Volume-9 | Issue-2 | February-2019 | PRINT ISSN - 2249-555X Pathology CYTOMORPHOLOGY OF NODULAR THYROID LESIONS : A COMPARATIVE ANALYSIS OF WET AND AIR DRIED SMEARS Dr.Sithy Athiya PG, Director & HOD, Department of pathology,Karpaga Vinayaga Institute of Medical Munavarah Sciences&Reseacrh center Dr. Meenakshi Assistant Professor , Department of pathology, Karur Medical College. Dr. Suresh Durai J Professor, Department of pathology, Tirunelveli Medical College Dr. Johnsy Merla Assistant Professor, Department of pathology, Tirunelveli Medical College J* *Corresponding Author Dr. Chandru Mari Assistant Professor, Department of pathology, Tirunelveli Medical College Dr. Shantaraman Professor&HOD, Department of pathology, Tirunelveli Medical College. K ABSTRACT FNAC of thyroid lesions have sensitivity as high as 93.4% with a positive predictive value of malignancy 98.6 % and 74.9 %specicity. Two fundamentally different methods of xation and staining are used in FNAC: air-drying followed by a Romanowsky stain such as May Grunwalds Gimsa (MGG), Jenner-Giemsa, Wright's stain or Diff-Quik; and alcohol-xation followed by Papanicolaou (Pap) or hematoxylin and eosin (H&E) staining. Combining the morphological features of various stains often improve the diagnostic accuracy.In the present study, cytoplasmic granularity, paravacuolar granules and thin colloid are very well demonstrated using Wright Giemsa stain. Cell borders and crisp nuclear features such as chromatin pattern, intranuclear inclusions are best appreciated using wet xed smears stained with H&E and Pap stains. The cytomorphologic features of nodular thyroid lesions using multiple cytological staining techniques to enhance diagnostic sensitivity is evaluated in this study. KEYWORDS : : Cytology ,Fine Needle Aspiration, Romanowsky stain, Thyroid.
    [Show full text]
  • Lesson-11 Staining Methods to Demonstrate Special/Special Tissue
    Staining Methods to Demonstrate Special/ Specific Tissues MODULE Histology and Cytology 11 STAINING METHODS TO Notes DEMONSTRATE SPECIAL/ SPECIFIC TISSUES 11.1 INTRODUCTION Biological tissue has little inherent contrast in either the light or electron microscope. Staining is employed to give both contrast to the tissue as well as highlighting particular features of interest. Where the underlying mechanistic chemistry of staining is understood, the term histochemistry is used. OBJECTIVES After reading this lesson, you will be able to: z describe various staining methods for demonstrating special tissues. z demonstrate various staining methods. 11.2 TRICHROME STAIN A combination of three different dyes is used to identify different cells and tissue elements. Aim: To identify the collagen and muscle fibers in a histological section. Reagents 1. Bouin’s solution z Saturated picric acid 75ml z Formaldehyde (37-40%) 25ml z Glacial acetic acid 5ml HISTOLOGY AND CYTOLOGY 65 MODULE Staining Methods to Demonstrate Special/ Specific Tissues Histology and Cytology z Mix all the reagents well. This solution improves the trichrome stain quality. 2. Weigert’s iron hematoxylin stock solution Stock solution A z Hematoxylin 1gm z 95% alcohol 100ml Notes Stock solution B z 29% Ferric chloride in water 4ml z Distilled water 100ml z Hydrochloric acid, concentrated 1.0ml 3. Weigert’s iron hematoxylin working solution - Mix equal parts of solution A and B (This solution works for three months.) 4. Biebrich scarlet acid fuchsin solution z 1% Biebric Scarlet-Acid Fuchsin solution (aqueous solution) 90ml z 1% Acid Fuchsin (Aqueous) 10ml z 1% Glacial acitic acid 1ml 5. Phosphomolybdic acid-Phosphotungstic Acid Solution z 5% Phosphomolybdic Acid 25ml z 5%phosphotungstic Acid 25ml 6.
    [Show full text]
  • A Modified Silver Methenamine Masson Trichrome Stain Using Methyl Green for Staining of Renal Biopsies
    Journal of Histotechnology ISSN: 0147-8885 (Print) 2046-0236 (Online) Journal homepage: http://www.tandfonline.com/loi/yhis20 A modified silver methenamine Masson trichrome stain using methyl green for staining of renal biopsies Alex Laslowski To cite this article: Alex Laslowski (2016): A modified silver methenamine Masson trichrome stain using methyl green for staining of renal biopsies, Journal of Histotechnology, DOI: 10.1179/2046023615Y.0000000012 To link to this article: http://dx.doi.org/10.1179/2046023615Y.0000000012 Published online: 16 Mar 2016. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=yhis20 Download by: [University of California, San Diego] Date: 27 March 2016, At: 19:44 Technical Note A modified silver methenamine Masson trichrome stain using methyl green for staining of renal biopsies Alex Laslowski Monash Medical Centre Clayton, Medical Scientist, Anatomical Pathology, VIC, Australia Renal pathology uses a battery of stains to allow proper assessment of all renal components. One of the most useful of these stains is the silver methenamine with a Masson Trichrome counterstain (SMMT). The SMMT stain uses thin 1-um sections to identify immune complexes deposits on the basement membranes and in the mesangium of the glomerulus and can be an excellent and inexpensive method. Problems can, however, occur when the stain is not performed by a technician or the stain needs to be performed in large numbers. A variation to the SMMT method has proved to provide a better, more robust and reproducible counterstain.
    [Show full text]