The Extremely Halotolerant Black Yeast Hortaea Werneckii
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Castanedospora, a New Genus to Accommodate Sporidesmium
Cryptogamie, Mycologie, 2018, 39 (1): 109-127 © 2018 Adac. Tous droits réservés South Florida microfungi: Castanedospora,anew genus to accommodate Sporidesmium pachyanthicola (Capnodiales, Ascomycota) Gregorio DELGADO a,b*, Andrew N. MILLER c & Meike PIEPENBRING b aEMLab P&K Houston, 10900 BrittmoorePark Drive Suite G, Houston, TX 77041, USA bDepartment of Mycology,Institute of Ecology,Evolution and Diversity, Goethe UniversitätFrankfurt, Max-von-Laue-Str.13, 60438 Frankfurt am Main, Germany cIllinois Natural History Survey,University of Illinois, 1816 South Oak Street, Champaign, IL 61820, USA Abstract – The taxonomic status and phylogenetic placement of Sporidesmium pachyanthicola in Capnodiales(Dothideomycetes) are revisited based on aspecimen collected on the petiole of adead leaf of Sabal palmetto in south Florida, U.S.A. New evidence inferred from phylogenetic analyses of nuclear ribosomal DNA sequence data together with abroad taxon sampling at family level suggest that the fungus is amember of Extremaceaeand therefore its previous placement within the broadly defined Teratosphaeriaceae was not supported. Anew genus Castanedospora is introduced to accommodate this species on the basis of its distinct morphology and phylogenetic position distant from Sporidesmiaceae sensu stricto in Sordariomycetes. The holotype material from Cuba was found to be exhausted and the Florida specimen, which agrees well with the original description, is selected as epitype. The fungus produced considerably long cylindrical to narrowly obclavate conidia -
Fungi Infections
FUNGAL INFECTIONS mycology mycoses fungemia exo-antigen fungal antigenemia biomarker pre-emptive therapy Fungi FUNGI BACTERIA nucleus eukaryotes prokaryotes cell membrane sterols (ergosterol)* - cell wall chitin, mannan, glucan, murein, teichoic acid, chitosan proteins oxygen almost all strict aerobes facultative and obligate aerobes and anaerobes, - Heterotrophs requiring organic carbon source for growth ( biotrophic, saprophyte) - Extracellular enzymes - host defense: cell-mediated immunity (role of antibodies is minor) -> neutrophil phagocytosis and killing Antifungal agents- mode of action - Polyenes (amphotericinB, nystatines, pimarcin) - Azoles (ketokonazole, itraconazole, fluconazole, vericonazole, posaconazole) - Echinocandins (caspofungin, mikafungin, anidulafungin ) - Nucleoside analogs(antimetabolites): (5 fluorocytosine) - Allylamines: (tebinafine) Fungal morphotypes Unicellular form (Yeast) Yeasts spherical or ellipsoid fungal cells reproduce by budding Mycelial form : moulds, dermathophytes Molds hyphal or mycelial form of growth branching filaments (filamentous) . Fungal morphotypes Unicellular form (Yeast) FUNGUS FAMILY YEAST MOLDs & dermatophytes Candida, Cryptococcus, Dymorphic fungi Malessezia, Geotrichum, Aspergillus, Penicillium, Blastomyces, Coccidioides, Trichosporon, Rodotorula Mucor, Rhizopus, Fusarium, Histoplasma, Paracoccidioides etc. Cladosporium, or Scopulariopsis Dimorphic fungi – have two growth forms: molds & yeast, which develope under different growth conitions phaeohyphomycetes Most authorities use the -
Based on a Newly-Discovered Species
A peer-reviewed open-access journal MycoKeys 76: 1–16 (2020) doi: 10.3897/mycokeys.76.58628 RESEARCH ARTICLE https://mycokeys.pensoft.net Launched to accelerate biodiversity research The insights into the evolutionary history of Translucidithyrium: based on a newly-discovered species Xinhao Li1, Hai-Xia Wu1, Jinchen Li1, Hang Chen1, Wei Wang1 1 International Fungal Research and Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming 650224, China Corresponding author: Hai-Xia Wu ([email protected], [email protected]) Academic editor: N. Wijayawardene | Received 15 September 2020 | Accepted 25 November 2020 | Published 17 December 2020 Citation: Li X, Wu H-X, Li J, Chen H, Wang W (2020) The insights into the evolutionary history of Translucidithyrium: based on a newly-discovered species. MycoKeys 76: 1–16. https://doi.org/10.3897/mycokeys.76.58628 Abstract During the field studies, aTranslucidithyrium -like taxon was collected in Xishuangbanna of Yunnan Province, during an investigation into the diversity of microfungi in the southwest of China. Morpho- logical observations and phylogenetic analysis of combined LSU and ITS sequences revealed that the new taxon is a member of the genus Translucidithyrium and it is distinct from other species. Therefore, Translucidithyrium chinense sp. nov. is introduced here. The Maximum Clade Credibility (MCC) tree from LSU rDNA of Translucidithyrium and related species indicated the divergence time of existing and new species of Translucidithyrium was crown age at 16 (4–33) Mya. Combining the estimated diver- gence time, paleoecology and plate tectonic movements with the corresponding geological time scale, we proposed a hypothesis that the speciation (estimated divergence time) of T. -
The Ppz Protein Phosphatases Are Key Regulators of K+ and Ph Homeostasis: Implications for Salt Tolerance, Cell Wall Integrity and Cell Cycle Progression
The EMBO Journal Vol. 21 No. 5 pp. 920±929, 2002 The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: implications for salt tolerance, cell wall integrity and cell cycle progression Lynne Yenush, Jose M.Mulet, but the mechanisms that regulate their activity to achieve JoaquõÂn ArinÄ o1 and Ramo n Serrano2 cation homeostasis are only starting to be elucidated (Serrano and Rodriguez-Navarro, 2001). Instituto de BiologõÂa Molecular y Celular de Plantas, Universidad PoliteÂcnica de Valencia-CSIC, Camino de Vera s/n, Several lines of evidence have indicated the existence of E-46022 Valencia and 1Departament de BioquõÂmica i Biologia a link between cation homeostasis and the cell cycle. Molecular, Fac. VeterinaÁria, Universitat AutoÁnoma de Barcelona, Speci®cally, previous studies have established a correl- Bellaterra 08193, Barcelona, Spain ation between cytosolic alkalinization and G1 progression 2Corresponding author in yeast (Gillies et al., 1981) and animal cells (Nuccitelli e-mail: [email protected] and Heiple, 1982). This increased intracellular pH may be either a regulatory signal (Perona and Serrano, 1988) or The yeast Ppz protein phosphatases and the Hal3p merely permissive for cell proliferation (Grinstein et al., inhibitory subunit are important determinants of salt 1989). More recently, in the eukaryotic model system tolerance, cell wall integrity and cell cycle progression. Saccharomyces cerevisiae, alterations in the expression of We present several lines of evidence showing that several genes encoding signal transduction proteins have these disparate phenotypes are connected by the fact been shown to affect both intracellular ion homeostasis that Ppz regulates K+ transport. First, salt tolerance, and cell cycle, again suggesting a possible link between cell wall integrity and cell cycle phenotypes of Ppz these two highly regulated cellular processes. -
Teratosphaeria Nubilosa, a Serious Leaf Disease Pathogen of Eucalyptus Spp
MOLECULAR PLANT PATHOLOGY (2009) 10(1), 1–14 DOI: 10.1111/J.1364-3703.2008.00516.X PathogenBlackwell Publishing Ltd profile Teratosphaeria nubilosa, a serious leaf disease pathogen of Eucalyptus spp. in native and introduced areas GAVIN C. HUNTER1,2,*, PEDRO W. CROUS1,2, ANGUS J. CARNEGIE3 AND MICHAEL J. WINGFIELD2 1CBS Fungal Biodiversity Centre, PO Box 85167, 3508 AD, Utrecht, the Netherlands 2Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, Gauteng, South Africa 3Forest Resources Research, NSW Department of Primary Industries, PO Box 100, Beecroft 2119, NSW, Australia Useful websites: Mycobank, http://www.mycobank.org; SUMMARY Mycosphaerella identification website, http://www.cbs.knaw.nl/ Background: Teratosphaeria nubilosa is a serious leaf pathogen mycosphaerella/BioloMICS.aspx of several Eucalyptus spp. This review considers the taxonomic history, epidemiology, host associations and molecular biology of T. nubilosa. Taxonomy: Kingdom Fungi; Phylum Ascomycota; Class INTRODUCTION Dothideomycetes; Order Capnodiales; Family Teratosphaeriaceae; genus Teratosphaeria; species nubilosa. Many species of the ascomycete genera Mycosphaerella and Teratosphaeria infect leaves of Eucalyptus spp., where they cause Identification: Pseudothecia hypophyllous, less so amphig- a disease broadly referred to as Mycosphaerella leaf disease enous, ascomata black, globose becoming erumpent, asci apara- (MLD) (Burgess et al., 2007; Carnegie et al., 2007; Crous, 1998; physate, fasciculate, bitunicate, obovoid to ellipsoid, straight or Crous et al., 2004a, 2006b, 2007a,b). The predominant symptoms incurved, eight-spored, ascospores hyaline, non-guttulate, thin of MLD are leaf spots on the abaxial and/or adaxial leaf surfaces walled, straight to slightly curved, obovoid with obtuse ends, that vary in size, shape and colour (Crous, 1998). -
Cladosporium Lebrasiae, a New Fungal Species Isolated from Milk Bread Rolls in France
fungal biology 120 (2016) 1017e1029 journal homepage: www.elsevier.com/locate/funbio Cladosporium lebrasiae, a new fungal species isolated from milk bread rolls in France Josiane RAZAFINARIVOa, Jean-Luc JANYa, Pedro W. CROUSb, Rachelle LOOTENa, Vincent GAYDOUc, Georges BARBIERa, Jerome^ MOUNIERa, Valerie VASSEURa,* aUniversite de Brest, EA 3882, Laboratoire Universitaire de Biodiversite et Ecologie Microbienne, ESIAB, Technopole^ Brest-Iroise, 29280 Plouzane, France bCBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands cMeDIAN-Biophotonique et Technologies pour la Sante, Universite de Reims Champagne-Ardenne, FRE CNRS 3481 MEDyC, UFR de Pharmacie, 51 rue Cognacq-Jay, 51096 Reims cedex, France article info abstract Article history: The fungal genus Cladosporium (Cladosporiaceae, Dothideomycetes) is composed of a large Received 12 February 2016 number of species, which can roughly be divided into three main species complexes: Cla- Received in revised form dosporium cladosporioides, Cladosporium herbarum, and Cladosporium sphaerospermum. The 29 March 2016 aim of this study was to characterize strains isolated from contaminated milk bread rolls Accepted 15 April 2016 by phenotypic and genotypic analyses. Using multilocus data from the internal transcribed Available online 23 April 2016 spacer ribosomal DNA (rDNA), partial translation elongation factor 1-a, actin, and beta- Corresponding Editor: tubulin gene sequences along with Fourier-transform infrared (FTIR) spectroscopy and Matthew Charles Fisher morphological observations, three isolates were identified as a new species in the C. sphaer- ospermum species complex. This novel species, described here as Cladosporium lebrasiae,is Keywords: phylogenetically and morphologically distinct from other species in this complex. Cladosporium sphaerospermum ª 2016 British Mycological Society. -
Boards' Fodder
boards’ fodder Medical Mycology By Adriana Schmidt, MD, and Natalie M. Curcio, MD, MPH. (Updated July 2015*) SUPERFICIAL ORGANISM CLINICAL HISTO/KOH TREATMENT MYCOSES* Pityriasis Malessezia furfur Hypo- or hyper-pigmented Spaghetti & meatballs: Antifungal shampoos and/or versicolor macules short hyphae + yeast PO therapy Tinea nigra Hortaea werneckii (formerly Brown-black non-scaly Branching septate hyphae Topical imidazoles or palmaris Phaeoannellomyces werneckii) macules + budding yeast allylamines Black piedra Piedraia hortae Hard firm black Dark hyphae around concretions acrospores Cut hair off, PO terbinafine, White piedra Trichosporon ovoides or inkin Soft loose white Blastoconidia, imidazoles, or triazoles (formely beigelii) concretions arthroconidia Fluorescent small Microsporum Canis KOH: spores on outside spore ectothrix: M. audouinii of the hair shaft; “Cats And Dogs M. distortum Wood’s lamp --> yellow Sometimes Fight T. schoenleinii fluorescence & Growl” M. ferrugineum+/- gypseum Large spore Trichophyton spp. (T. tonsurans in North America; T. violaceum in KOH: spores within hair Topical antifungals; PO endothrix Europe, Asia, parts of Africa). shaft antifungals for T. manuum, Tinea corporis T. rubrum > T. mentag. Majocchi’s granuloma: T. rubrum capitis, unguium T. pedis Moccasin: T. rubrum, E. floccosum. Interdigital/vesicular: T. mentag T. unguium Distal lateral, proximal and proximal white subungual: T. rubrum. White superficial: T. mentag. HIV: T. rubrum SUBQ MYCOSES** ORGANISM TRANSMISSION CLINICAL HISTO/KOH TREATMENT -
Black Fungal Extremes
Studies in Mycology 61 (2008) Black fungal extremes Edited by G.S. de Hoog and M. Grube CBS Fungal Biodiversity Centre, Utrecht, The Netherlands An institute of the Royal Netherlands Academy of Arts and Sciences Black fungal extremes STUDIE S IN MYCOLOGY 61, 2008 Studies in Mycology The Studies in Mycology is an international journal which publishes systematic monographs of filamentous fungi and yeasts, and in rare occasions the proceedings of special meetings related to all fields of mycology, biotechnology, ecology, molecular biology, pathology and systematics. For instructions for authors see www.cbs.knaw.nl. EXECUTIVE EDITOR Prof. dr Robert A. Samson, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] LAYOUT EDITOR S Manon van den Hoeven-Verweij, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] Kasper Luijsterburg, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] SCIENTIFIC EDITOR S Prof. dr Uwe Braun, Martin-Luther-Universität, Institut für Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, D-06099 Halle, Germany. E-mail: [email protected] Prof. dr Pedro W. Crous, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] Prof. dr David M. Geiser, Department of Plant Pathology, 121 Buckhout Laboratory, Pennsylvania State University, University Park, PA, U.S.A. 16802. E-mail: [email protected] Dr Lorelei L. Norvell, Pacific Northwest Mycology Service, 6720 NW Skyline Blvd, Portland, OR, U.S.A. -
Indoor Wet Cells As a Habitat for Melanized Fungi, Opportunistic
www.nature.com/scientificreports OPEN Indoor wet cells as a habitat for melanized fungi, opportunistic pathogens on humans and other Received: 23 June 2017 Accepted: 30 April 2018 vertebrates Published: xx xx xxxx Xiaofang Wang1,2, Wenying Cai1, A. H. G. Gerrits van den Ende3, Junmin Zhang1, Ting Xie4, Liyan Xi1,5, Xiqing Li1, Jiufeng Sun6 & Sybren de Hoog3,7,8,9 Indoor wet cells serve as an environmental reservoir for a wide diversity of melanized fungi. A total of 313 melanized fungi were isolated at fve locations in Guangzhou, China. Internal transcribed spacer (rDNA ITS) sequencing showed a preponderance of 27 species belonging to 10 genera; 64.22% (n = 201) were known as human opportunists in the orders Chaetothyriales and Venturiales, potentially causing cutaneous and sometimes deep infections. Knufa epidermidis was the most frequently encountered species in bathrooms (n = 26), while in kitchens Ochroconis musae (n = 14), Phialophora oxyspora (n = 12) and P. europaea (n = 10) were prevalent. Since the majority of species isolated are common agents of cutaneous infections and are rarely encountered in the natural environment, it is hypothesized that indoor facilities explain the previously enigmatic sources of infection by these organisms. Black yeast-like and other melanized fungi are frequently isolated from clinical specimens and are known as etiologic agents of a gamut of opportunistic infections, but for many species their natural habitat is unknown and hence the source and route of transmission remain enigmatic. Te majority of clinically relevant black yeast-like fungi belong to the order Chaetothyriales, while some belong to the Venturiales. Propagules are mostly hydro- philic1 and reluctantly dispersed by air, infections mostly being of traumatic origin. -
High Diversity and Morphological Convergence Among Melanised Fungi from Rock Formations in the Central Mountain System of Spain
Persoonia 21, 2008: 93–110 www.persoonia.org RESEARCH ARTICLE doi:10.3767/003158508X371379 High diversity and morphological convergence among melanised fungi from rock formations in the Central Mountain System of Spain C. Ruibal1, G. Platas2, G.F. Bills2 Key words Abstract Melanised fungi were isolated from rock surfaces in the Central Mountain System of Spain. Two hundred sixty six isolates were recovered from four geologically and topographically distinct sites. Microsatellite-primed biodiversity PCR techniques were used to group isolates into genotypes assumed to represent species. One hundred and sixty black fungi three genotypes were characterised from the four sites. Only five genotypes were common to two or more sites. Capnodiales Morphological and molecular data were used to characterise and identify representative strains, but morphology Chaetothyriales rarely provided a definitive identification due to the scarce differentiation of the fungal structures or the apparent Dothideomycetes novelty of the isolates. Vegetative states of fungi prevailed in culture and in many cases could not be reliably dis- extremotolerance tinguished without sequence data. Morphological characters that were widespread among the isolates included scarce micronematous conidial states, endoconidia, mycelia with dark olive-green or black hyphae, and mycelia with torulose, isodiametric or moniliform hyphae whose cells develop one or more transverse and/or oblique septa. In many of the strains, mature hyphae disarticulated, suggesting asexual reproduction by a thallic micronematous conidiogenesis or by simple fragmentation. Sequencing of the internal transcribed spacers (ITS1, ITS2) and 5.8S rDNA gene were employed to investigate the phylogenetic affinities of the isolates. According to ITS sequence alignments, the majority of the isolates could be grouped among four main orders of Pezizomycotina: Pleosporales, Dothideales, Capnodiales, and Chaetothyriales. -
Rock-Inhabiting Fungi Studied with the Aid of the Model Black Fungus Knufia Petricola A95 and Other Related Strains
M.Sc. Corrado Nai Rock-inhabiting fungi studied with the aid of the model black fungus Knufi a petricola A95 and other related strains BAM-Dissertationsreihe • Band 119 Berlin 2014 Die vorliegende Arbeit entstand an der BAM Bundesanstalt für Materialforschung und -prüfung. Impressum Rock-inhabiting fungi studied with the aid of the model black fungus Knufi a petricola A95 and other related strains 2014 Herausgeber: BAM Bundesanstalt für Materialforschung und -prüfung Unter den Eichen 87 12205 Berlin Telefon: +49 30 8104-0 Telefax: +49 30 8112029 E-Mail: [email protected] Internet: www.bam.de Copyright © 2014 by BAM Bundesanstalt für Materialforschung und -prüfung Layout: BAM-Referat Z.8 ISSN 1613-4249 ISBN 978-3-9816380-8-0 Rock-inhabiting fungi studied with the aid of the model black fungus Knufia petricola A95 and other related strains Inaugural dissertation to obtain the academic degree Doctor rerum naturalium (Dr. rer. nat.) Submitted to the Department of Biology, Chemistry and Pharmacy of the Freie Universität Berlin by CORRADO NAI from Wallisellen (Switzerland) April 2014 First reviewer Prof. Dr. Rupert Mutzel Second reviewer Prof. Dr. Anna A. Gorbushina Day of disputation 11 July 2014 To Pia & Marco and Emilia & Oscar, without whom I would not be writing this. To Sissi, – always. Considerate la vostra semenza: Fatti non foste a viver come bruti, Ma per seguir virtute e canoscenza. Dante, Inferno XXVI, 118-120 ACKNOWLEDGMENTS ACKNOWLEDGMENTS This work was primarily conducted at the Federal Institute for Materials Research & Testing (BAM) in Berlin, Germany, in the framework of its Ph.D. Programme, between August 2010 and February 2014. -
AR TICLE Additions to the Mycosphaerella Complex
GRLLPDIXQJXV IMA FUNGUS · VOLUME 2 · NO 1: 49–64 Additions to the Mycosphaerella complex ARTICLE 3HGUR:&URXV1.D]XDNL7DQDND%UHWW$6XPPHUHOODQG-RKDQQHV=*URHQHZDOG1 1&%6.1$:)XQJDO%LRGLYHUVLW\&HQWUH8SSVDODODDQ&78WUHFKW7KH1HWKHUODQGVFRUUHVSRQGLQJDXWKRUHPDLOSFURXV#FEVNQDZQO )DFXOW\RI$JULFXOWXUH /LIH6FLHQFHV+LURVDNL8QLYHUVLW\%XQN\RFKR+LURVDNL$RPRUL-DSDQ 5R\DO%RWDQLF*DUGHQVDQG'RPDLQ7UXVW0UV0DFTXDULHV5RDG6\GQH\16:$XVWUDOLD Abstract: Species in the present study were compared based on their morphology, growth characteristics in culture, Key words: DQG '1$ VHTXHQFHV RI WKH QXFOHDU ULERVRPDO 51$ JHQH RSHURQ LQFOXGLQJ ,76 ,76 6 QU'1$ DQG WKH ¿UVW Anthracostroma ESRIWKH6QU'1$ IRUDOOVSHFLHVDQGSDUWLDODFWLQDQGWUDQVODWLRQHORQJDWLRQIDFWRUDOSKDJHQHVHTXHQFHV Camarosporula for Cladosporium VSHFLHV 1HZ VSHFLHV RI Mycosphaerella Mycosphaerellaceae LQWURGXFHG LQ WKLV VWXG\ LQFOXGH Cladosporium M. cerastiicola RQCerastium semidecandrum7KH1HWKHUODQGV DQGM. etlingerae RQEtlingera elatior+DZDLL Mycosphaerella Mycosphaerella holualoana is newly reported on Hedychium coronarium +DZDLL (SLW\SHVDUHDOVRGHVLJQDWHGIRU phylogeny Hendersonia persooniae, the basionym of Camarosporula persooniae, and for Sphaerella agapanthi, the basionym Sphaerulina of Teratosphaeria agapanthi FRPE QRY Teratosphaeriaceae RQ Agapathus umbellatus IURP 6RXWK $IULFD 7KH taxonomy latter pathogen is also newly recorded from A. umbellatusLQ(XURSH 3RUWXJDO )XUWKHUPRUHWZRVH[XDOVSHFLHVRI Teratosphaeria Cladosporium Davidiellaceae DUHGHVFULEHGQDPHO\C. grevilleae RQGrevilleaVS$XVWUDOLD DQGC. silenes