Development and Evaluation of Condition Indices for the Lake Whitefish

Total Page:16

File Type:pdf, Size:1020Kb

Development and Evaluation of Condition Indices for the Lake Whitefish North American Journal of Fisheries Management 28:1270–1293, 2008 [Article] Ó Copyright by the American Fisheries Society 2008 DOI: 10.1577/M06-258.1 Development and Evaluation of Condition Indices for the Lake Whitefish MICHAEL D. RENNIE* Aquatic Ecology Group, University of Toronto at Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada RICHARD VERDON Hydro-Que´bec Production, Unite´ Environnement, 75 Rene´-Le´vesque West, 10th Floor, Montreal, Que´bec H2Z 1A4, Canada Abstract.—Despite frequent use of length-based condition indices by fisheries managers and scientists to describe the overall well-being of fish, these indices are rarely evaluated to determine how well they correlate with more direct measures of physiological or ecological condition. We evaluated common condition indices (Fulton’s condition factor KF, Le Cren’s condition index KLC, and two methods of estimating relative weight Wr) against more direct measures of physiological condition (energy density, percent lipid content, and percent dry mass) and ecological condition (prey availability) for lake whitefish Coregonus clupeaformis in Lake Huron. We developed four standard weight (Ws) equations using the regression length percentile (RLP) method: one for the species as a whole, and three separate equations describing immature, mature male, and mature female lake whitefish from 385 populations in North America. Species RLP-Ws showed less length- related bias and more closely matched empirical quartiles of lake-specific mean weight than did maturity- or sex-specific RLP-Ws equations. Significant length-related bias was detected in EmP-Wr. No biologically significant length-related bias was detected in KLC, but this index was specific to a single population of fish. Species RLP-Wr showed no significant length-related bias, and KF was significantly size dependent. All length-based condition indices were significantly correlated with energy density, percent lipid content, and percent dry mass. The index most strongly correlated with all three measures of physiological condition was KF, likely because both the physiological measures and KF exhibited positive relationships with body size. Across two Lake Huron sites, RLP-Wr was significantly correlated with density of prey (amphipods Diporeia spp.). Of the two condition indices developed in this study, RLP-Wr was consistently more strongly correlated with physiological condition indices than was EmP-Wr. Length-based condition indices have been used by studies manipulating consumption found strong posi- fisheries biologists for nearly 100 years to describe the tive correlations between percent fat (PF; whole-body energetic status, overall well-being, or reproductive composite and percent weight of visceral fat) and status of fish (Froese 2006; Nash et al. 2006). These condition (relative weight Wr) in juvenile striped bass indices describe the body size for fish of a given length Morone saxatilis and hybrid striped bass (striped bass (Gerow et al. 2004, 2005); fish with greater mass than M. saxatilis 3 white bass M. chrysops; Brown and their counterparts of similar length are considered to be Murphy 1991). Condition indices (Wr) in populations in good condition, whereas fish with lower mass at a of pumpkinseeds Lepomis gibbosus and golden shiners given length are considered to be in poor condition. Notemigonus crysoleucas in southern Que´bec were These simple considerations of condition are frequently positively correlated with food availability (Liao et al. utilized because they can be easily estimated from 1995). More recently, a field study demonstrated that Fulton’s condition factor (K ) and W in bluegills L. standard fisheries data (length and weight data from a F r macrochirus were positively and significantly corre- sample of fish in one or more populations). lated with nonpolar lipid density (Neff and Cargnelli Studies evaluating length-based condition indices 2004) and that K was correlated with both parasite against more direct measures of energetic status or F density and male paternity. In contrast, weak correla- physiological stress in fish (e.g., energy density [ED], tions between common condition indices (K ,Le prey availability, and lipid content) are rare, and those F Cren’s condition index KLC, and Wr) and more direct that have done so report mixed conclusions. Laboratory measures of energy content (PF, energy density, and percent dry mass [PD]) were reported for two salmon * Corresponding author: [email protected] species (Trudel et al. 2005), and condition indices Received November 3, 2006; accepted November 16, 2007 (KF and two measures of Wr) in stocked walleyes Published online August 25, 2008 Sander vitreus were poorly correlated with lipid 1270 LAKE WHITEFISH CONDITION INDICES 1271 density (Copeland and Carline 2004). This variation in RLP-Ws; Murphy et al. 1990; based on the technique of findings among studies suggests that the informative Wege and Anderson [1978]). Using linear regression, value of condition indices may vary between species, one estimates the coefficients of the relationship of particularly when applied to wild fish stocks. log10W on log10L for each of the I populations under Any length-based condition index should be free of study. The estimated weight for each population i at ˆ systematic length-related bias to allow comparisons length j (Wi, j) is calculated across a predetermined among populations in space or time (Gerow et al. 2004 range of lengths applicable to the species at hand. This and references therein); if this is not the case, then what range is subdivided into J length-classes with midpoint might be interpreted as a change in condition from Lj ( j ¼ 1, ...J; 10-mm length increments were used in ˆ small to large fish within or among populations might this study). Based on the computation of Wi, j for all simply be an artifact of a change in the average size of combinations of i and j, the 75th percentile of back- a population. To this end, a variety of indices have transformed predicted weights for each 10-mm length ˆ been proposed in the literature. Three frequently used increment, Qj(Wi, j), is estimated (Murphy et al. 1990). The W equation for the species is estimated as the indices are KF (Ricker 1975), KLC (Le Cren 1951), and s linear regression of log (Q [Wˆ ]) against log (L ). Wr (Wege and Anderson 1978). Each has been widely 10 j i, j 10 j utilized and critiqued, as described below. Fulton’s K is Thus, Ws,L is simply the back-transformed predicted expressed as weight at length L from the Ws equation and should represent approximately the 75th percentile of mean 7 3 KF ¼ 10 3ðW=L Þ; ð1Þ weights among populations (Gerow et al. 2004). Estimates of W based on RLP-W have been where W is weight (g) and L is some measure of length r s reported to be superior to the previously mentioned (mm; e.g., total length [TL] as was used here). measures of condition because the RLP-W relationship However, the assumption of a cubic relationship s is empirically derived using data from many popula- between the length and weight of a fish is frequently tions and therefore is thought to offer a more thorough violated, making K highly subject to length-related F characterization of the relationship between length and bias. weight for a particular species as a whole (Brown and The following equation describes KLC: Murphy 1991). However, the RLP-Ws method has m KLC ¼½W=ðb 3 L Þ 3 100; ð2Þ recently been critiqued (Gerow et al. 2004, 2005) and an alternative W estimation method, the empirical where b and m are empirically derived constants from s quartile method (EmP-Ws), has been proposed. In this the relationship between W and L. The major limitation case, mean log observed weights (W ) is estimated of K is that it is often too specific to be ecologically 10 i, j LC for each population over the J defined length-classes. informative. Slopes of length–weight regressions differ The third quartile of these, Q (W ), is estimated. These among fish populations (e.g., Table A.1), and such j i, j empirical quartiles are then fitted against log10(Lj) differences may be due to variation in ecological niches using polynomial regression weighted by the number between populations rather than energetic status of populations represented in each length-class (Gerow specifically (e.g., Svanback and Eklov 2004). This et al. 2004, 2005). effectively limits the application of KLC to single Length-based condition indices have been used to populations only. A simplistic approach of estimating a track recent ecological changes in Great Lakes single b or m parameter over the entire species results populations of lake whitefish Coregonus clupeaformis in an equation that overrepresents populations with (Pothoven et al. 2001; Lumb et al. 2007). The lake large sample sizes and would not provide comparable whitefish is an important commercial species in both weighting of populations that might otherwise describe the Great Lakes and inland lakes of Canada, supporting the legitimate range of body shapes observed in the a multimillion dollar annual fishery that is marketed species. internationally. Recent declines in the condition and Relative weight is described as growth of Great Lakes lake whitefish stocks have been observed in Lake Michigan (Pothoven et al. 2001), Wr ¼ðW=Ws;LÞ 3 100; ð3Þ Lake Ontario (Hoyle et al. 1999; Lumb et al. 2007), where Ws,L is the standard weight (Ws) of a fish of and southwestern Lake Huron (Pothoven et al. 2006). length L, and the equation for Ws is an empirically Given the economic importance of this species to North derived model from representative populations (both American economies (Madenjian et al. 2006) and the morphologically and geographically) of a particular scarcity of historic data on lake whitefish physiological species. The traditional method for estimating Ws is the status (i.e., ED, PF, and water content or PD), regression length percentile (RLP) method (hereafter, knowledge of relationships between physiological 1272 RENNIE AND VERDON and date of capture were compiled from 419 popula- tions for the development of Ws equations.
Recommended publications
  • Southern Resident Killer Whales (Orcinus Orca) Cover: Aerial Photograph of a Mother and New Calf in SRKW J-Pod, Taken in September 2020
    SPECIES in the SPOTLIGHT Priority Actions 2021–2025 Southern Resident killer whales (Orcinus orca) Cover: Aerial photograph of a mother and new calf in SRKW J-pod, taken in September 2020. The photo was obtained using a non-invasive octocopter drone at >100 ft. Photo: Holly Fearnbach (SR3, SeaLife Response, Rehab and Research) and Dr. John Durban (SEA, Southall Environmental Associates); collected under NMFS research permit #19091. Species in the Spotlight: Southern Resident Killer Whales | PRIORITY ACTIONS: 2021–2025 Central California Coast coho salmon adult, Lagunitas Creek. Photo: Mt. Tamalpais Photos. Passengers aboard a Washington State Ferry view Southern Resident killer whales in Puget Sound, an example of low-impact whale watching. Photo: NWFSC. The Species in the Spotlight Initiative In 2015, the National Marine Fisheries Service (NOAA Fisheries) launched the Species in the Spotlight initiative to provide immediate, targeted efforts to halt declines and stabilize populations, focus resources within and outside of NOAA on the most at-risk species, guide agency actions where we have discretion to make investments, increase public awareness and support for these species, and expand partnerships. We have renewed the initiative for 2021–2025. U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service 1 Species in the Spotlight: Southern Resident Killer Whales | PRIORITY ACTIONS: 2021–2025 The criteria for Species in the Spotlight are that they partnerships, and prioritizing funding—providing or are endangered, their populations are declining, and leveraging more than $113 million toward projects that they are considered a recovery priority #1C (84 FR will help stabilize these highly at-risk species.
    [Show full text]
  • Electronical Larviculture Newsletter Issue 278 1
    ELECTRONICAL LARVICULTURE NEWSLETTER ISSUE 291 15 JUNE 2008 INFORMATION OF INTEREST • The current state of aquaculture in Korea: article published in AquaInfo Magazine • Snapperfarm – Open Ocean Aquaculture: interesting website with video about cobia farming • Interesting publications of the ESF Marine Board • Book of Abstracts World Aquaculture 2008, Busan-Korea May 2008 • MSc in Aquaculture Internships offered in Asia via new EU Asia Link Program • Catfish Symposium in Can Tho, Vietnam Dec 5-7, 2008: see brochure • Mitigating impact from aquaculture in the Philippines: EU project report aiming to reduce the impact of aquaculture on the environment and help the central and local government plan, manage, monitor and control aquaculture development. • Saline Systems is an on-line journal publishing articles on all aspects of basic and applied research on halophilic organisms and saline environments • “Shellfish News” magazine, a regular publication produced and edited by CEFAS on behalf of the UK Department for Environment, Food and Rural Affairs, as a service to the British shellfish farming and harvesting industry, is available online • New, translated abstracts from Chinese journals click here VLIZ Library Acquisitions no 397 May 30, 2008 398 June 06, 2008 399 June 13, 2008 __________________________________________________________________________________ STRAIN-SPECIFIC VITAL RATES IN FOUR ACARTIA TONSA CULTURES II: LIFE HISTORY TRAITS AND BIOCHEMICAL CONTENTS OF EGGS AND ADULTS Guillaume Drillet, Per M. Jepsen, Jonas K. Højgaard, Niels O.G. Jørgensen, Benni W. Hansen-2008 Aquaculture 279(1-4): 47-54 Abstract: The need of copepods as live feed is increasing in aquaculture because of the limitations of traditionally used preys, and this increases the demand for an easy and sustainable large-scale production of copepods.
    [Show full text]
  • Guide to Fisheries Science and Stock Assessments
    ATLANTIC STATES MARINE FISHERIES COMMISSION Guide to Fisheries Science and Stock Assessments von Bertalanffy Growth Curve Maximum 80 Yield 70 60 50 40 Carrying 1/2 Carrying Length (cm) 30 Fishery Yield Fishery Capacity Capacity Observed 20 Estimated 10 0 Low Population Population size High Population 0 1 2 3 4 5 6 7 8 9 10 Age (years) June 2009 Guide to Fisheries Science and Stock Assessments Written by Patrick Kilduff, Atlantic States Marine Fisheries Commission John Carmichael, South Atlantic Fishery Management Council Robert Latour, Ph.D., Virginia Institute of Marine Science Editor, Tina L. Berger June 2009 i Acknowledgements Reviews of this document were provided by Doug Vaughan, Ph.D., Brandon Muffley, Helen Takade, and Kim McKown, as members of the Atlantic States Marine Fisheries Commission’s Assessment Science Committee. Additional reviews and input were provided by ASMFC staff members Melissa Paine, William Most, Joe Grist, Genevieve Nesslage, Ph.D., and Patrick Campfield. Tina Berger, Jessie Thomas-Blate, and Kate Taylor worked on design layout. Special thanks go to those who allowed us use their photographs in this publication. Cover photographs are courtesy of Joseph W. Smith, National Marine Fisheries Service (Atlantic menhaden), Gulf States Marine Fisheries Commission (fish otolith) and the Northeast Area Monitoring and Assessment Program. This report is a publication of the Atlantic States Marine Fisheries Commission pursuant to National Oceanic and Atmospheric Administration Grant No. NA05NMF4741025, under the Atlantic
    [Show full text]
  • Review and Comparison of Three Methods of Cohort Analysis
    Northwest and Alaska Fisheries Center National Marine Fisheries Service u.s. DEPARTMENT OF COMMERCE NWAFC PROCESSED REPORT 83-12 Review and Comparison of Three Methods of Cohort Analysis July 1983 This report does not constitute a publication and is for information only. All data herein are to be considered provisional. Review and Comparison of Three Methods of Cohort Analysis by Bernard A. Megrey NORFISH Research Group Center for Quantitative Sciences in Forestry, Fisheries, and Wildlife University of Washington Seattle, Washington 98195 July 1983 1.0 INTRODUCTION Cohort analysis is a descriptive name given to a general class of analytical techniques used by fisheries managers to estimate fishing mortality and population numbers given catch-at-age data. Several methods are available, however each has its own strengths and weaknesses and different methods contain different sources of error. Moreover, application of more than one method to a common data set may give conflicting results. It is not clear which method is best to use under a given set of circumstances since few comparative studies have been carried out. Consequently, confusion exists among scientists as to which method to use and how to interpret the results. This report describes the reasons why cohort analysis plays an important role in fisheries management, describes the mathematical models in a consistent notation, and compares current methods paying particular attention to solution methods, underlying assumptions, strengths, weaknesses, similarities and differences. 1 • 1 Etymology Derzhavin (1922) was perhaps the first to conceive of the idea of applying observed data describing the age structure of a population to catch records in order to calculate the contribution of each cohort to each years total catch.
    [Show full text]
  • Virtual Population Analyses of Atlantic Bluefin Tuna with Alternative Models of Transatlantic Migration: 1970-1997
    SCRS/00/98 VIRTUAL POPULATION ANALYSES OF ATLANTIC BLUEFIN TUNA WITH ALTERNATIVE MODELS OF TRANSATLANTIC MIGRATION: 1970-1997 Clay E. Porch, Stephen C. Turner, Joseph E. Powers1 SUMMARY This paper presents a VPA implementation of a model for two-stocks with overlapping ranges. The model is applied to catch, abundance, and tag-recapture data for Atlantic bluefin tuna (Thunnus thynnus). The resulting estimates of abundance, mortality, and mixing are compared with the corresponding estimates from the diffusion VPA model used previously by the SCRS and NRC. The overlap model provides the best fit to the index data and the diffusion model provides the best fit to the tagging data. The estimated values for the mixing coefficients are significantly different from zero with both the overlap and diffusion models, but the corresponding abundance trends are similar to those of the VPA without mixing. The use of tagging data has a greater impact on the assessment than the choice of abundance models. RÉSUMÉ Le présent document fait état de l’application par VPA d’un modèle pour deux stocks dont les zones se chevauchent. Le modèle est appliqué aux données de capture, d’abondance et de marquage-recapture du thon rouge de l’Atlantique (Thunnus thynnus). Les estimations qui en découlent sur l’abondance, la mortalité et le mélange sont comparées aux estimations correspondantes du modèle VPA de diffusion utilisé antérieurement par le SCRS et par la NRC. Le modèle de chevauchement donne le meilleur ajustement aux données de l’indice et le modèle de diffusion est celui qui s’ajuste le mieux aux données de marquage.
    [Show full text]
  • FISH to 2030: PROSPECTS for FISHERIES and AQUACULTURE CONTENTS V
    AGRICULTURE AND ENVIRONMENTAL SERVICES DISCUSSION PAPER 03 FISH TO 2030 Public Disclosure Authorized Prospects for Fisheries and Aquaculture WORLD BANK REPORT NUMBER 83177-GLB Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized DECEMBER 2013 AGRICULTURE AND ENVIRONMENTAL SERVICES DISCUSSION PAPER 03 FISH TO 2030 Prospects for Fisheries and Aquaculture WORLD BANK REPORT NUMBER 83177-GLB © 2013 International Bank for Reconstruction and Development / International Development Association or The World Bank 1818 H Street NW Washington DC 20433 Telephone: 202-473-1000 Internet: www.worldbank.org This work is a product of the staff of The World Bank with external contributions. The fi ndings, interpretations, and conclusions expressed in this work do not necessarily refl ect the views of The World Bank, its Board of Executive Directors, or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Rights and Permissions The material in this work is subject to copyright. Because The World Bank encourages dissemination of its knowledge, this work may be reproduced, in whole or in part, for noncommercial purposes as long as full attribution to this work is given. Any queries on rights and licenses, including subsidiary rights, should be addressed to the Offi ce of the Publisher, The World Bank, 1818 H Street NW, Washington, DC 20433, USA; fax: 202-522-2422; e-mail: [email protected].
    [Show full text]
  • The State of World Fisheries and Aquaculture 2020
    2018 2020 2018 2018 THE STATE OF WORLD FISHERIES AND AQUACULTURE SUSTAINABILITY IN ACTION This flagship publication is part of THE STATE OF THE WORLD series of the Food and Agriculture Organization of the United Nations. Required citation: FAO. 2020. The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome. https://doi.org/10.4060/ca9229en The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The designations employed and the presentation of material in the maps do not imply the expression of any opinion whatsoever on the part of FAO concerning the legal or constitutional status of any country, territory or sea area, or concerning the delimitation of frontiers. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISSN 1020-5489 [PRINT] ISSN 2410-5902 [ONLINE] ISBN 978-92-5-132692-3 © FAO 2020 Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo).
    [Show full text]
  • Progress Toward Sustainable Seafood – by the Numbers 2015 Edition
    Progress toward Sustainable Seafood – By the Numbers 2015 Edition California Environmental Associates Packard Foundation | Seafood Metrics Report | June 2015 | Page 1 INTRODUCTION Report Outline Page Page EXECUTIVE SUMMARY 3 Business relationships & supply chain engagement 45 Corporate-NGO partnerships PROJECT OVERVIEW 5 Greenpeace’s scorecard data METRICS AND DATA 6 Conditions for business change 56 Media and literature penetration Impact On The Water 7 Industry event attendance Global trends in fishery exploitation U.S. seafood consumption U.S. trends in fishery exploitation Consumer interest and preferences Enabling businesses and initiatives Producer-level progress 23 Certification data Policy change 72 Fishery Improvement Projects Policy timeline E.U. policy update Trade dynamics 38 U.S. policy update Seafood trade flow data Port State Measures Agreement Key commodity trade flow trends Packard Foundation | Seafood Metrics Report | June 2015 | Page 2 INTRODUCTION Executive Summary There are signs the sustainable seafood movement is reaching maturity, as Of the top 38 North American and European growth in corporate commitments, certification,* and fisheries improvement retailers, those representing more than 80% of projects* (FIPs) appears to have plateaued. sales have some level of commitment to sustainable seafood, either through an NGO • Most major North American and European retailers now have commitments partnership or an MSC chain of custody or partnerships related to wild-caught seafood issues. certification (Chart shows total sales of top U.S. and European • In response to overwhelming retailer demand, other companies throughout retailers.) the supply chain have started to make their own commitments to sourcing 71% Commitments involving NGO partners sustainable seafood as well as supporting certified fisheries and FIPs through preferential sourcing and direct investment.
    [Show full text]
  • Sourcing Seafood Second Edition
    Sourcing Seafood A Professional’s Guide to Procuring SECOND EDITION Ocean-friendly Fish and Shellfish Sourcing Seafood A Professional’s Guide to Procuring Ocean-friendly Fish and Shellfish Second Edition, 2007 CONTRIBUTING AUTHORS: Carrie Brownstein, Howard Johnson, Peter Redmayne and Seafood Choices Alliance EDITORIAL BOARD: Alison Barratt, Mike Boots, Joey Brookhart, Valerie Craig, Shannon Crownover, Brendan O’Neill, Julia Roberson DESIGNER: Janin/Cliff Design, Inc., Washington D.C. ILLUSTRATOR: All fish and shellfish illustrations are the artistry of B. Guild/ChartingNature, www.chartingnature.com COVER PHOTOS: FRONT COVER: Crabbers in Oregon, courtesy of Oregon Dungeness Crab Commission; salmon on ice, © 2006, Buck Meloy; Shrimp with limes, courtesy of OceanBoy Farms: The best tasting shrimp on and for the planet; Fishermen with salmon, © 2006, GIRAUDIER. BACK COVER: Greg Higgins filleting wild salmon, photographed by Basil Childers. ISBN: 978-0-9789806-0-3 Sourcing Seafood A Professional’s Guide to Procuring SECOND EDITION Ocean-friendly Fish and Shellfish INTRODUCTION .................................................................3 KEY TO SYMBOLS .............................................................7 SEASONALITY ...................................................................9 THE FISH & SHELLFISH GUIDE ......................................11 Abalone (farmed)................................12 Sablefish (wild Alaska & Arctic Char ...........................................14 British Columbia)...........................66
    [Show full text]
  • An Analysis of Seafood Sustainability at the University of Vermont Sara Cleaver Vermont
    University of Vermont ScholarWorks @ UVM Environmental Studies Electronic Thesis Collection Undergraduate Theses 2012 What's the Catch? An Analysis of Seafood Sustainability at the University of Vermont Sara Cleaver Vermont Follow this and additional works at: https://scholarworks.uvm.edu/envstheses Recommended Citation Cleaver, Sara, "What's the Catch? An Analysis of Seafood Sustainability at the University of Vermont" (2012). Environmental Studies Electronic Thesis Collection. 18. https://scholarworks.uvm.edu/envstheses/18 This Undergraduate Thesis is brought to you for free and open access by the Undergraduate Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Environmental Studies Electronic Thesis Collection by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. What’s the Catch? An Analysis of Seafood Sustainability at the University of Vermont by Sara Cleaver Environmental Studies Senior Thesis In partial fulfillment of a Bachelor of Arts degree The College of Arts and Sciences University of Vermont 2012 Advisors: Stephanie Kaza Joe Roman Amy Seidl Tyler Doggett ii Acknowledgements I would like to thank the many people who generously offered their input and involvement in this process: Stephanie Kaza, who not only inspired me to continue my exploration of environmental studies, but who also provided thoughtful feedback and encouragement throughout the most difficult parts of writing this thesis. Kit Anderson, whose dedication and oversight during the preliminary parts of this process were critical to the final product. Joe Roman, for his suggestions and ideas that led me through my research and who has further motivated me to purse a career related to marine conservation.
    [Show full text]
  • Ecological Impacts of the Tva Coal Ash Spill in Kingston, Tn: a Two Year Assessment
    ECOLOGICAL IMPACTS OF THE TVA COAL ASH SPILL IN KINGSTON, TN: A TWO YEAR ASSESSMENT A Thesis by DANIEL LEE JACKSON Submitted to the Graduate School Appalachian State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2011 Department of Biology ECOLOGICAL IMPACTS OF THE TVA COAL ASH SPILL IN KINGSTON, TN: A TWO YEAR ASSESSMENT A Thesis by DANIEL LEE JACKSON August 2011 APPROVED BY: ___________________________________________ Shea R. Tuberty, Ph.D. Chairperson, Thesis Committee ___________________________________________ Carol Babyak, Ph.D. Member, Thesis Committee ___________________________________________ Susan L. Edwards, Ph.D. Member, Thesis Committee ___________________________________________ Steven W. Seagle, Ph.D. Chairperson, Department of Biology ___________________________________________ Edelma D. Huntley, Ph.D. Dean, Research and Graduate Studies Copyright by Daniel Lee Jackson 2011 All Rights Reserved Foreword The research described in this thesis will be submitted to the Journal of Environmental Science and Technology, which is a peer-reviewed journal published by the American Chemical Society. The material within this document has been prepared in accordance with the specifications outlined by the Journal of Environmental Science and Technology. Abstract ECOLOGICAL IMPACTS OF THE TVA COAL ASH SPILL IN KINGSTON, TN: A TWO YEAR ASSESSMENT (August 2011) Daniel Lee Jackson, B.S., Appalachian State University M.S., Appalachian State University Chairperson: Shea R. Tuberty A two year investigation into the environmental impacts of the largest industrial spill of coal combustion waste (CCW) in the history of the United States (U.S.) at the Tennessee Valley Authority (TVA) Kingston coal-fired power plant revealed several impacts. First, selenium concentrations were identified above criterion continuous concentration (CCC) set by the U.S.
    [Show full text]
  • Marine Fish Carbonates – Contribution to Sediment Production in Temperate Environments
    Marine fish carbonates – contribution to sediment production in temperate environments Submitted by Christine Elizabeth Stephens, to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Biological Sciences, September 2016. This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis/dissertation* which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. Signature…………………………… 1 Acknowledgements Acknowledgements I would like to extend my deepest thanks to my supervisor Professor Rod Wilson for his excellent support and guidance throughout the course of this project and for many enjoyable discussions providing a source of encouragement and enthusiasm. I would also like to thank my supervisor Professor Chris Perry for consistently providing swift, useful feedback and insightful comments and ideas as the project progressed. I am also very grateful to Dr Erin Reardon as a friend and colleague for the extensive help and support she provided throughout many aspects of this project, and I would like to thank Dr Mike Salter for many extensive discussions of ideas and feedback provided. I would like to thank Professor David Simms for the opportunity to work on board the research vessel Plymouth Quest and for use the facilities of the Marine Biological Association (MBA) to collect samples; and I would like to thank Aisling Smith, the Sea-going technician for her support at the MBA.
    [Show full text]