Guide to Fisheries Science and Stock Assessments

Total Page:16

File Type:pdf, Size:1020Kb

Guide to Fisheries Science and Stock Assessments ATLANTIC STATES MARINE FISHERIES COMMISSION Guide to Fisheries Science and Stock Assessments von Bertalanffy Growth Curve Maximum 80 Yield 70 60 50 40 Carrying 1/2 Carrying Length (cm) 30 Fishery Yield Fishery Capacity Capacity Observed 20 Estimated 10 0 Low Population Population size High Population 0 1 2 3 4 5 6 7 8 9 10 Age (years) June 2009 Guide to Fisheries Science and Stock Assessments Written by Patrick Kilduff, Atlantic States Marine Fisheries Commission John Carmichael, South Atlantic Fishery Management Council Robert Latour, Ph.D., Virginia Institute of Marine Science Editor, Tina L. Berger June 2009 i Acknowledgements Reviews of this document were provided by Doug Vaughan, Ph.D., Brandon Muffley, Helen Takade, and Kim McKown, as members of the Atlantic States Marine Fisheries Commission’s Assessment Science Committee. Additional reviews and input were provided by ASMFC staff members Melissa Paine, William Most, Joe Grist, Genevieve Nesslage, Ph.D., and Patrick Campfield. Tina Berger, Jessie Thomas-Blate, and Kate Taylor worked on design layout. Special thanks go to those who allowed us use their photographs in this publication. Cover photographs are courtesy of Joseph W. Smith, National Marine Fisheries Service (Atlantic menhaden), Gulf States Marine Fisheries Commission (fish otolith) and the Northeast Area Monitoring and Assessment Program. This report is a publication of the Atlantic States Marine Fisheries Commission pursuant to National Oceanic and Atmospheric Administration Grant No. NA05NMF4741025, under the Atlantic Coastal Fisheries Cooperative Management Act. ii Table of Contents Guide to Fisheries Science and Stock Assessments ACKNOWLEDGEMENTS ....................................................................................................................................... II ACRONYMS ................................................................................................................................................................... V PREFACE ........................................................................................................................................................................ VI INTRODUCTION ......................................................................................................................................................... 1 WHY ASSESS FISH STOCKS? ................................................................................................................................. 1 CHAPTER 1. SOME BASIC CONCEPTS ......................................................................................................... 3 STOCKS AND POPULATIONS ............................................................................................................................. 3 STOCK AND RECRUITMENT ............................................................................................................................... 3 SURPLUS PRODUCTION AND CARRYING CAPACITY ............................................................................. 4 HOW TO READ A GRAPH ................................................................................................................................... 5 CHAPTER 1: “SOME BASIC CONCEPTS” SUMMARY ................................................................................... 6 CHAPTER 2. DATA SOURCES ............................................................................................................................ 7 WHAT ARE FISHERY-DEPENDENT DATA? ..................................................................................................... 7 WHY COLLECT FISHERY-DEPENDENT DATA? ............................................................................................ 8 HOW ARE FISHERY-DEPENDENT DATA COLLECTED? ............................................................................ 9 COMMERCIAL FISHERY DATA ..................................................................................................................... 9 RECREATIONAL FISHERY DATA .............................................................................................................. 10 BIOLOGICAL DATA ...................................................................................................................................... 11 WHAT ARE FISHERY-INDEPENDENT DATA AND WHY ARE THEY COLLECTED? ..................... 12 SEAMAP & NEAMAP ...................................................................................................................................... 12 HOW ARE SURVEYS DESIGNED & HOW ARE FISHERY-INDEPENDENT DATA USED? .............. 14 WHAT GEARS ARE USED TO CAPTURE FISH? ........................................................................................... 14 WEIRS AND POUND NETS ........................................................................................................................ 14 POTS ................................................................................................................................................................... 15 GILL NETS ......................................................................................................................................................... 15 TRAWLS AND DREDGES ............................................................................................................................ 15 SEINES................................................................................................................................................................. 16 HOOK-AND-LINE .......................................................................................................................................... 17 USING DIFFERENT GEARS AT DIFFERENT TIMES AND PLACES ......................................................... 17 CHAPTER 2: “DATA SOURCES” SUMMARY ................................................................................................ 18 CHAPTER 3. LIFE HISTORY & BIOLOGY .................................................................................................. 19 AGE & GROWTH ................................................................................................................................................... 19 FEEDING ................................................................................................................................................................... 22 iii REPRODUCTIVE BIOLOGY ........................................................................................................................ 23 HABITAT AND MIGRATION ..................................................................................................................... 25 NATURAL MORTALITY ............................................................................................................................... 26 CHAPTER 3. “LIFE HISTORY AND BIOLOGY” SUMMARY .............................................................. 26 CHAPTER 4. POPULATION CONCEPTS ........................................................................................... 27 RECRUITMENT ................................................................................................................................................ 28 GROWTH ......................................................................................................................................................... 28 MORTALITY ..................................................................................................................................................... 28 CHAPTER 4. “POPULATION CONCEPTS” SUMMARY ..................................................................... 29 CHAPTER 5. STOCK ASSESSMENT MODELS ................................................................................. 30 INTRODUCTION TO MATHEMATICAL MODELS ............................................................................. 31 CATCH CURVE ANALYSIS ......................................................................................................................... 33 SURPLUS PRODUCTION MODELS .......................................................................................................... 35 VIRTUAL POPULATION ANALYSIS ......................................................................................................... 35 RETROSPECTIVE PATTERNS IN FISHERIES STOCK ASSESSMENT MODELS ............................. 37 STATISTICAL CATCH-AT-AGE ................................................................................................................. 39 MULTISPECIES VIRTUAL POPULATION ANALYSIS (MSVPA-X) ..................................................... 40 TAGGING MODELS ....................................................................................................................................... 42 ASMFC STOCK ASSESSMENT TRAINING WORKSHOPS................................................................. 43 CHAPTER 5. “STOCK ASSESSMENT MODELS” SUMMARY ............................................................. 43 CHAPTER 6. REFERENCE POINTS ........................................................................................................ 44 YIELD-BASED REFERENCE POINTS ......................................................................................................... 44 SPAWNING STOCK BIOMASS PER RECRUIT & SPAWNING POTENTIAL RATIO ................. 46 REPLACEMENT ...............................................................................................................................................
Recommended publications
  • SUSTAINABLE FISHERIES and RESPONSIBLE AQUACULTURE: a Guide for USAID Staff and Partners
    SUSTAINABLE FISHERIES AND RESPONSIBLE AQUACULTURE: A Guide for USAID Staff and Partners June 2013 ABOUT THIS GUIDE GOAL This guide provides basic information on how to design programs to reform capture fisheries (also referred to as “wild” fisheries) and aquaculture sectors to ensure sound and effective development, environmental sustainability, economic profitability, and social responsibility. To achieve these objectives, this document focuses on ways to reduce the threats to biodiversity and ecosystem productivity through improved governance and more integrated planning and management practices. In the face of food insecurity, global climate change, and increasing population pressures, it is imperative that development programs help to maintain ecosystem resilience and the multiple goods and services that ecosystems provide. Conserving biodiversity and ecosystem functions are central to maintaining ecosystem integrity, health, and productivity. The intent of the guide is not to suggest that fisheries and aquaculture are interchangeable: these sectors are unique although linked. The world cannot afford to neglect global fisheries and expect aquaculture to fill that void. Global food security will not be achievable without reversing the decline of fisheries, restoring fisheries productivity, and moving towards more environmentally friendly and responsible aquaculture. There is a need for reform in both fisheries and aquaculture to reduce their environmental and social impacts. USAID’s experience has shown that well-designed programs can reform capture fisheries management, reducing threats to biodiversity while leading to increased productivity, incomes, and livelihoods. Agency programs have focused on an ecosystem-based approach to management in conjunction with improved governance, secure tenure and access to resources, and the application of modern management practices.
    [Show full text]
  • Virtual Population Analysis
    1 INTRODUCTION 1.1 OVERVIEW There are a variety of VPA-type methods, which form powerful tools for stock assessment. At first sight, the large number of methods and their arcane names can put off the newcomer. However, this complexity is based on simple common components. All these methods use age-structured data to assess the state of a stock. The stock assessment is based on a population dynamics model, which defines how the age-structure changes through time. This model is the simplest possible description of numbers of similar aged fish where we wish to account for decreases in stock size through fishing activities. The diversity of VPA methods comes from the way they use different types of data and the way they are fitted. This manual is structured to describe the different components that make up a VPA stock assessment model: Population Model (Analytical Model) The population model is the common element among all VPA methods. The model defines the number of fish in a cohort based on the fishing history and age of the fish. A cohort is a set of fish all having (approximately) the same age, which gain no new members after recruitment, but decline through mortality. The fisheries model attempts to measure the impact catches have on the population. The population model usually will encapsulate the time series aspects of change and should include any random effects on the population (process errors), if any. Link Model Only rarely can variables in which we are interested be observed directly. Usually data consists of observations on variables that are only indirectly linked to variables of interest in the population model.
    [Show full text]
  • Fishers and Fish Traders of Lake Victoria: Colonial
    FISHERS AND FISH TRADERS OF LAKE VICTORIA: COLONIAL POLICY AND THE DEVELOPMENT OF FISH PRODUCTION IN KENYA, 1880-1978. by PAUL ABIERO OPONDO Student No. 34872086 submitted in accordance with the requirement for the degree of DOCTOR OF LITERATURE AND PHILOSOPHY in the subject HISTORY at the UNIVERSITY OF SOUTH AFRICA PROMOTER: DR. MUCHAPARARA MUSEMWA, University of the Witwatersrand CO-PROMOTER: PROF. LANCE SITTERT, University of Cape Town 10 February 2011 DECLARATION I declare that ‘Fishers and Fish Traders of Lake Victoria: Colonial Policy and the Development of Fish Production in Kenya, 1895-1978 ’ is my original unaided work and that all the sources that I have used or quoted have been indicated and acknowledged by means of complete references. I further declare that the thesis has never been submitted before for examination for any degree in any other university. Paul Abiero Opondo __________________ _ . 2 DEDICATION This work is dedicated to several fishers and fish traders who continue to wallow in poverty and hopelessness despite their daily fishing voyages, whose sweat and profits end up in the pockets of big fish dealers and agents from Nairobi. It is equally dedicated to my late father, Michael, and mother, Consolata, who guided me with their wisdom early enough. In addition I dedicate it to my loving wife, Millicent who withstood the loneliness caused by my occasional absence from home, and to our children, Nancy, Michael, Bivinz and Barrack for whom all this is done. 3 ABSTRACT The developemnt of fisheries in Lake Victoria is faced with a myriad challenges including overfishing, environmental destruction, disappearance of certain indigenous species and pollution.
    [Show full text]
  • Southern Resident Killer Whales (Orcinus Orca) Cover: Aerial Photograph of a Mother and New Calf in SRKW J-Pod, Taken in September 2020
    SPECIES in the SPOTLIGHT Priority Actions 2021–2025 Southern Resident killer whales (Orcinus orca) Cover: Aerial photograph of a mother and new calf in SRKW J-pod, taken in September 2020. The photo was obtained using a non-invasive octocopter drone at >100 ft. Photo: Holly Fearnbach (SR3, SeaLife Response, Rehab and Research) and Dr. John Durban (SEA, Southall Environmental Associates); collected under NMFS research permit #19091. Species in the Spotlight: Southern Resident Killer Whales | PRIORITY ACTIONS: 2021–2025 Central California Coast coho salmon adult, Lagunitas Creek. Photo: Mt. Tamalpais Photos. Passengers aboard a Washington State Ferry view Southern Resident killer whales in Puget Sound, an example of low-impact whale watching. Photo: NWFSC. The Species in the Spotlight Initiative In 2015, the National Marine Fisheries Service (NOAA Fisheries) launched the Species in the Spotlight initiative to provide immediate, targeted efforts to halt declines and stabilize populations, focus resources within and outside of NOAA on the most at-risk species, guide agency actions where we have discretion to make investments, increase public awareness and support for these species, and expand partnerships. We have renewed the initiative for 2021–2025. U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service 1 Species in the Spotlight: Southern Resident Killer Whales | PRIORITY ACTIONS: 2021–2025 The criteria for Species in the Spotlight are that they partnerships, and prioritizing funding—providing or are endangered, their populations are declining, and leveraging more than $113 million toward projects that they are considered a recovery priority #1C (84 FR will help stabilize these highly at-risk species.
    [Show full text]
  • Redacted for Privacy Abstract Approved: I
    AN ABSTRACT OF THE THESIS OF Nilton Eduardo Deza Arroyo for the degree of Master of Science in Fisheries Science presented on November 8. 1996. Title: Mercury Accumulation in Fish from Madre de Dios. a Goidmining Area in the Amazon Basin. Peru Redacted for Privacy Abstract approved: I. Weber Redacted for Privacy Wayne K. Seim In this study mercury contamination from goldmining was measured in tissues of fish from Madre de Dios, Amazonia, Peru.Bioaccumulation, biomagnification, the difference in mercury burden among residential and migratory species, and comparison between fish from Puerto Maldonado (a goidmining area) and Manu (a pristine area) were examined. Samples of dorsal-epaxial muscle of dorado (Brachyplatystoma flavicans); fasaco (Hoplias malabaricus),bothcarnivores;boquichico(Prochilodusnigricans),a detritivore;mojarita (Bryconopsaffmelanurus),an insectivore;and carachama (Hypostomus sp.), an detntivore; were analyzed by using the flameless cold vapor atomic absorption spectrophotometry technique. Dorado, a top predator, displayed the highest values of total mercury (699 ugfKg ± 296).Six out of ten dorados showed an average higher than safe values of 0.5 ug/g (WHO, 1991). Lower values reported in this study in the other species suggest that dorado may have gained its mercury burden downstream of Madre de Dios River, in the Madeira River, where goidmining activities are several times greater than that in the Madre de Dios area. Fasaco from Puerto Maldonado displayed higher levels than fasaco from Manu; however, mercury contamination in Puerto Maldonado is lower than values reported for fish from areas with higher quantities of mercury released into the environment. Positive correlation between mercury content and weight of fish for dorado, fasaco and boquichico served to explain bioaccumulation processes in the area of study.
    [Show full text]
  • Why Study Bycatch? an Introduction to the Theme Section on Fisheries Bycatch
    Vol. 5: 91–102, 2008 ENDANGERED SPECIES RESEARCH Printed December 2008 doi: 10.3354/esr00175 Endang Species Res Published online December xx, 2008 Contribution to the Theme Section ‘Fisheries bycatch problems and solutions’ OPENPEN ACCESSCCESS Why study bycatch? An introduction to the Theme Section on fisheries bycatch Candan U. Soykan1,*, Jeffrey E. Moore2, Ramunas ¯ 5ydelis2, Larry B. Crowder2, Carl Safina3, Rebecca L. Lewison1 1Biology Department, San Diego State University, 5500 Campanile Dr., San Diego, California 92182-4614, USA 2Center for Marine Conservation, Nicholas School of the Environment, Duke University Marine Laboratory, 135 Duke Marine Lab Road, Beaufort,North Carolina 28516, USA 3Blue Ocean Institute, PO Box 250, East Norwich, New York 11732, USA ABSTRACT: Several high-profile examples of fisheries bycatch involving marine megafauna (e.g. dolphins in tuna purse-seines, albatrosses in pelagic longlines, sea turtles in shrimp trawls) have drawn attention to the unintentional capture of non-target species during fishing operations, and have resulted in a dramatic increase in bycatch research over the past 2 decades. Although a number of successful mitigation measures have been developed, the scope of the bycatch problem far exceeds our current capacity to deal with it. Specifically, we lack a comprehensive understanding of bycatch rates across species, fisheries, and ocean basins, and, with few exceptions, we lack data on demographic responses to bycatch or the in situ effectiveness of existing mitigation measures. As an introduction to this theme section of Endangered Species Research ‘Fisheries bycatch: problems and solutions’, we focus on 5 bycatch-related questions that require research attention, building on exam- ples from the current literature and the contributions to this Theme Section.
    [Show full text]
  • Electronical Larviculture Newsletter Issue 278 1
    ELECTRONICAL LARVICULTURE NEWSLETTER ISSUE 291 15 JUNE 2008 INFORMATION OF INTEREST • The current state of aquaculture in Korea: article published in AquaInfo Magazine • Snapperfarm – Open Ocean Aquaculture: interesting website with video about cobia farming • Interesting publications of the ESF Marine Board • Book of Abstracts World Aquaculture 2008, Busan-Korea May 2008 • MSc in Aquaculture Internships offered in Asia via new EU Asia Link Program • Catfish Symposium in Can Tho, Vietnam Dec 5-7, 2008: see brochure • Mitigating impact from aquaculture in the Philippines: EU project report aiming to reduce the impact of aquaculture on the environment and help the central and local government plan, manage, monitor and control aquaculture development. • Saline Systems is an on-line journal publishing articles on all aspects of basic and applied research on halophilic organisms and saline environments • “Shellfish News” magazine, a regular publication produced and edited by CEFAS on behalf of the UK Department for Environment, Food and Rural Affairs, as a service to the British shellfish farming and harvesting industry, is available online • New, translated abstracts from Chinese journals click here VLIZ Library Acquisitions no 397 May 30, 2008 398 June 06, 2008 399 June 13, 2008 __________________________________________________________________________________ STRAIN-SPECIFIC VITAL RATES IN FOUR ACARTIA TONSA CULTURES II: LIFE HISTORY TRAITS AND BIOCHEMICAL CONTENTS OF EGGS AND ADULTS Guillaume Drillet, Per M. Jepsen, Jonas K. Højgaard, Niels O.G. Jørgensen, Benni W. Hansen-2008 Aquaculture 279(1-4): 47-54 Abstract: The need of copepods as live feed is increasing in aquaculture because of the limitations of traditionally used preys, and this increases the demand for an easy and sustainable large-scale production of copepods.
    [Show full text]
  • A Fish in Water: Sustainable Canadian Atlantic Fisheries Management and International Law
    COMMENT A FISH IN WATER: SUSTAINABLE CANADIAN ATLANTIC FISHERIES MANAGEMENT AND INTERNATIONAL LAW ANDREW FAGENHOLZ* 1. INTRODUCTION The health and viability of the world's fisheries have declined dramatically over the past twenty years, and today most fisheries are too close to collapse.' Overexploitation of world fisheries has resulted from traditional international law that treated the oceans as a commons, or mare liberum,2 and their fish as susceptible to * J.D. Candidate, University of Pennsylvania Law School, 2004; B.A., Williams College, 1998. The author wishes to thank Professor Jason Johnston for teaching the course that inspired this paper, Professor Harry N. Scheiber for assistance, the members of this Journal, and R. Andrew Price. 1 See The State of the World Fisheries and Aquaculture: Part I - World Review of Fisheries and Aquaculture, U.N. Food and Agriculture Organization ("FAO") (2002) (designating global fisheries in 2002 as forty-seven percent fully exploited, eight- een percent overexploited, twenty-five percent moderately exploited or underex- ploited, ten percent depleted or recovering), available at http://www. fao.org/docrep/ 005/y7300e/y7300e04.htm (last visited Mar. 26, 2004). The U.N. Food and Agriculture Organization has been called the "most authoritative statis- tical source on the subject" of global fisheries populations. Christopher J. Carr & Harry N. Scheiber, Dealing with a Resource Crisis: Regulatory Regimes for Managing the World's Marine Fisheries, 21 STAN. ENVTL. L.J. 45, 46 (2002). 2 HUGO GROTIUS, MARE LIBERUM (THE FREEDOM OF THE SEAS) 28 (James B. Scott ed., Ralph Van Deman Magoffin trans., 1916) (1633). In the seventeenth century it was generally thought that global fish resources were incapable of exhaustion by humankind.
    [Show full text]
  • Models for an Ecosystem Approach to Fisheries
    ISSN 0429-9345 FAO FISHERIES 477 TECHNICAL PAPER 477 Models for an ecosystem approach to fisheries Models for an ecosystem approach to fisheries This report reviews the methods available for assessing the impacts of interactions between species and fisheries and their implications for marine fisheries management. A brief description of the various modelling approaches currently in existence is provided, highlighting in particular features of these models that have general relevance to the field of ecosystem approach to fisheries (EAF). The report concentrates on the currently available models representative of general types such as bionergetic models, predator-prey models and minimally realistic models. Short descriptions are given of model parameters, assumptions and data requirements. Some of the advantages, disadvantages and limitations of each of the approaches in addressing questions pertaining to EAF are discussed. The report concludes with some recommendations for moving forward in the development of multispecies and ecosystem models and for the prudent use of the currently available models as tools for provision of scientific information on fisheries in an ecosystem context. FAO Cover: Illustration by Elda Longo FAO FISHERIES Models for an ecosystem TECHNICAL PAPER approach to fisheries 477 by Éva E. Plagányi University of Cape Town South Africa FOOD AND AGRICULTURE AND ORGANIZATION OF THE UNITED NATIONS Rome, 2007 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Field Experiments Show That Acoustic Pingers Reduce Marine Mammal Bycatch in the California Drift Gill Net Fishery
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications, Agencies and Staff of the U.S. Department of Commerce U.S. Department of Commerce 2003 FIELD EXPERIMENTS SHOW THAT ACOUSTIC PINGERS REDUCE MARINE MAMMAL BYCATCH IN THE CALIFORNIA DRIFT GILL NET FISHERY Jay Barlow National Marine Fisheries Service, [email protected] Grant A. Cameron UCSD Follow this and additional works at: https://digitalcommons.unl.edu/usdeptcommercepub Part of the Environmental Sciences Commons Barlow, Jay and Cameron, Grant A., "FIELD EXPERIMENTS SHOW THAT ACOUSTIC PINGERS REDUCE MARINE MAMMAL BYCATCH IN THE CALIFORNIA DRIFT GILL NET FISHERY" (2003). Publications, Agencies and Staff of the U.S. Department of Commerce. 236. https://digitalcommons.unl.edu/usdeptcommercepub/236 This Article is brought to you for free and open access by the U.S. Department of Commerce at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications, Agencies and Staff of the U.S. Department of Commerce by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. MARINE MAMMAL SCIENCE, 19(2):265-283 (April 2003) 0 2003 by the Society for Marine Mammalogy FIELD EXPERIMENTS SHOW THAT ACOUSTIC PINGERS REDUCE MARINE MAMMAL BYCATCH IN THE CALIFORNIA DRIFT GILL NET FISHERY JAY BARLOW GRANTA. CAMERON’ Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, California 92037, U.S.A. E-mail: [email protected] ABSTRACT A controlled experiment was carried out in 19961997 to determine whether acoustic deterrent devices (pingers) reduce marine mammal bycatch in the California drift gill net fishery for swordfish and sharks.
    [Show full text]
  • Coastal Upwelling Revisited: Ekman, Bakun, and Improved 10.1029/2018JC014187 Upwelling Indices for the U.S
    Journal of Geophysical Research: Oceans RESEARCH ARTICLE Coastal Upwelling Revisited: Ekman, Bakun, and Improved 10.1029/2018JC014187 Upwelling Indices for the U.S. West Coast Key Points: Michael G. Jacox1,2 , Christopher A. Edwards3 , Elliott L. Hazen1 , and Steven J. Bograd1 • New upwelling indices are presented – for the U.S. West Coast (31 47°N) to 1NOAA Southwest Fisheries Science Center, Monterey, CA, USA, 2NOAA Earth System Research Laboratory, Boulder, CO, address shortcomings in historical 3 indices USA, University of California, Santa Cruz, CA, USA • The Coastal Upwelling Transport Index (CUTI) estimates vertical volume transport (i.e., Abstract Coastal upwelling is responsible for thriving marine ecosystems and fisheries that are upwelling/downwelling) disproportionately productive relative to their surface area, particularly in the world’s major eastern • The Biologically Effective Upwelling ’ Transport Index (BEUTI) estimates boundary upwelling systems. Along oceanic eastern boundaries, equatorward wind stress and the Earth s vertical nitrate flux rotation combine to drive a near-surface layer of water offshore, a process called Ekman transport. Similarly, positive wind stress curl drives divergence in the surface Ekman layer and consequently upwelling from Supporting Information: below, a process known as Ekman suction. In both cases, displaced water is replaced by upwelling of relatively • Supporting Information S1 nutrient-rich water from below, which stimulates the growth of microscopic phytoplankton that form the base of the marine food web. Ekman theory is foundational and underlies the calculation of upwelling indices Correspondence to: such as the “Bakun Index” that are ubiquitous in eastern boundary upwelling system studies. While generally M. G. Jacox, fi [email protected] valuable rst-order descriptions, these indices and their underlying theory provide an incomplete picture of coastal upwelling.
    [Show full text]
  • Seafood Watch® Standard for Fisheries
    1 Seafood Watch® Standard for Fisheries Table of Contents Table of Contents ............................................................................................................................... 1 Introduction ...................................................................................................................................... 2 Seafood Watch Guiding Principles ...................................................................................................... 3 Seafood Watch Criteria and Scoring Methodology for Fisheries ........................................................... 5 Criterion 1 – Impacts on the Species Under Assessment ...................................................................... 8 Factor 1.1 Abundance .................................................................................................................... 9 Factor 1.2 Fishing Mortality ......................................................................................................... 19 Criterion 2 – Impacts on Other Capture Species ................................................................................ 22 Factor 2.1 Abundance .................................................................................................................. 26 Factor 2.2 Fishing Mortality ......................................................................................................... 27 Factor 2.3 Modifying Factor: Discards and Bait Use .................................................................... 29 Criterion
    [Show full text]