Review of Fish Sustainability Information Schemes Final Report

Total Page:16

File Type:pdf, Size:1020Kb

Review of Fish Sustainability Information Schemes Final Report Review of Fish Sustainability Information Schemes Final Report Prepared for the Fish Sustainability Information Group by October 2009 Project no: ZO1141 Issue ref: Review of Fish Sustainability Information Schemes ‐ Final Report Date of issue: October 2009 Prepared by: G. Parkes, S. Walmsley, T. Cambridge, R. Trumble, S. Clarke, D. Lamberts, D. Souter, & C. White. Checked/Approved by: GP CONTENTS EXECUTIVE SUMMARY .................................................................................................................. VII 1. INTRODUCTION ........................................................................................................................ 1 1.1. Structure of the report ........................................................................................................ 2 1.2. The state of world fisheries and aquaculture ..................................................................... 2 1.3. Fish sustainability information ............................................................................................ 4 1.3.1. The rise of certification schemes and recommendation lists in fisheries and aquaculture ........................................................................................................................ 4 1.3.2. Certification Schemes ........................................................................................................ 6 1.3.3. Recommendation lists........................................................................................................ 7 1.4. FAO Ecolabelling Guidelines ............................................................................................... 7 1.4.1. Marine capture fisheries .................................................................................................... 8 1.4.2. Aquaculture ........................................................................................................................ 9 1.5. Comments on relevant literature ..................................................................................... 10 2. APPROACH AND METHODOLOGY ........................................................................................... 12 2.1. Scoping and selection of schemes .................................................................................... 12 2.2. Framework for the collection and compilation of information ........................................ 13 2.3. Reviewing the schemes ..................................................................................................... 14 2.3.1. Desk‐based research ........................................................................................................ 14 2.3.2. Contacting organisations ................................................................................................. 14 2.3.3. Compilation of information ............................................................................................. 15 2.4. Analysis and synthesis ....................................................................................................... 15 3. DISCUSSION AND ANALYSIS .................................................................................................... 16 3.1. Summary of schemes reviewed ........................................................................................ 16 3.2. Relationships between schemes ....................................................................................... 20 3.2.1. Timeline and history ........................................................................................................ 20 3.2.2. Equivalence and links between schemes ......................................................................... 21 3.3. Certification schemes........................................................................................................ 23 3.3.1. Organisation and participation ........................................................................................ 23 3.3.2. Minimum substantive requirements ............................................................................... 24 3.3.3. Assessing compliance with the standard ......................................................................... 32 3.3.4. Developing countries ....................................................................................................... 34 3.3.5. Data‐deficient fisheries .................................................................................................... 35 3.3.6. Budgets and funding sources .......................................................................................... 36 3.4. Recommendation lists ...................................................................................................... 37 3.4.1. Organisation and participation ........................................................................................ 37 3.4.2. Content of the recommendation lists .............................................................................. 37 3.4.3. Methodologies for compiling the lists ............................................................................. 38 3.4.4. Developing countries ....................................................................................................... 43 3.4.5. Data‐deficient fisheries .................................................................................................... 43 3.4.6. Budgets and funding sources ........................................................................................... 43 3.5. Stakeholder perspectives .................................................................................................. 44 3.5.1. Industry ............................................................................................................................ 44 3.5.2. Retailers ........................................................................................................................... 49 3.5.3. Consumers ....................................................................................................................... 53 3.6. Measuring success ............................................................................................................ 56 3.6.1. Market share .................................................................................................................... 57 3.6.2. Economic incentives ......................................................................................................... 59 3.6.3. Environmental gains ........................................................................................................ 60 i MRAG Review of Fish Sustainability Information Schemes 3.6.4. Social benefits .................................................................................................................. 61 4. CONCLUSIONS ........................................................................................................................ 62 4.1. What makes a good fish sustainability information scheme? .......................................... 62 4.1.1. Scope ................................................................................................................................ 63 4.1.2. Accuracy ........................................................................................................................... 64 4.1.3. Independence .................................................................................................................. 66 4.1.4. Precision ........................................................................................................................... 67 4.1.5. Transparency .................................................................................................................... 68 4.1.6. Standardisation ................................................................................................................ 69 4.1.7. Cost‐effectiveness ............................................................................................................ 70 4.2. Recommendations and future challenges ........................................................................ 71 5. REFERENCES ........................................................................................................................... 75 ANNEX 1: DETAILED REVIEW OF SELECTED FISH SUSTAINABILITY INFORMATION SCHEMES ........... 77 1. CERTIFICATION SCHEMES ........................................................................................................ 78 1.1. Friend of the Sea ............................................................................................................... 78 1.1.1. Background ...................................................................................................................... 78 1.1.2. What do they claim? ........................................................................................................ 79 1.1.3. How do they do it? ........................................................................................................... 79 1.1.4. What are the results? ....................................................................................................... 87 1.1.5. Organisational costs and funding ..................................................................................... 88 1.2. Marine Ecolabel Japan ...................................................................................................... 89 1.2.1. Background .....................................................................................................................
Recommended publications
  • Fishers and Fish Traders of Lake Victoria: Colonial
    FISHERS AND FISH TRADERS OF LAKE VICTORIA: COLONIAL POLICY AND THE DEVELOPMENT OF FISH PRODUCTION IN KENYA, 1880-1978. by PAUL ABIERO OPONDO Student No. 34872086 submitted in accordance with the requirement for the degree of DOCTOR OF LITERATURE AND PHILOSOPHY in the subject HISTORY at the UNIVERSITY OF SOUTH AFRICA PROMOTER: DR. MUCHAPARARA MUSEMWA, University of the Witwatersrand CO-PROMOTER: PROF. LANCE SITTERT, University of Cape Town 10 February 2011 DECLARATION I declare that ‘Fishers and Fish Traders of Lake Victoria: Colonial Policy and the Development of Fish Production in Kenya, 1895-1978 ’ is my original unaided work and that all the sources that I have used or quoted have been indicated and acknowledged by means of complete references. I further declare that the thesis has never been submitted before for examination for any degree in any other university. Paul Abiero Opondo __________________ _ . 2 DEDICATION This work is dedicated to several fishers and fish traders who continue to wallow in poverty and hopelessness despite their daily fishing voyages, whose sweat and profits end up in the pockets of big fish dealers and agents from Nairobi. It is equally dedicated to my late father, Michael, and mother, Consolata, who guided me with their wisdom early enough. In addition I dedicate it to my loving wife, Millicent who withstood the loneliness caused by my occasional absence from home, and to our children, Nancy, Michael, Bivinz and Barrack for whom all this is done. 3 ABSTRACT The developemnt of fisheries in Lake Victoria is faced with a myriad challenges including overfishing, environmental destruction, disappearance of certain indigenous species and pollution.
    [Show full text]
  • European Anchovy Engraulis Encrasicolus (Linnaeus, 1758) From
    European anchovy Engraulis encrasicolus (Linnaeus, 1758) from the Gulf of Annaba, east Algeria: age, growth, spawning period, condition factor and mortality Nadira Benchikh, Assia Diaf, Souad Ladaimia, Fatma Z. Bouhali, Amina Dahel, Abdallah B. Djebar Laboratory of Ecobiology of Marine and Littoral Environments, Department of Marine Science, Faculty of Science, University of Badji Mokhtar, Annaba, Algeria. Corresponding author: N. Benchikh, [email protected] Abstract. Age, growth, spawning period, condition factor and mortality were determined in the European anchovy Engraulis encrasicolus populated the Gulf of Annaba, east Algeria. The age structure of the total population is composed of 59.1% females, 33.5% males and 7.4% undetermined. The size frequency distribution method shows the existence of 4 cohorts with lengths ranging from 8.87 to 16.56 cm with a predominance of age group 3 which represents 69.73% followed by groups 4, 2 and 1 with respectively 19.73, 9.66 and 0.88%. The VONBIT software package allowed us to estimate the growth parameters: asymptotic length L∞ = 17.89 cm, growth rate K = 0.6 year-1 and t0 = -0.008. The theoretical maximum age or tmax is 4.92 years. The height-weight relationship shows that growth for the total population is a major allometry. Spawning takes place in May, with a gonado-somatic index (GSI) of 4.28% and an annual mean condition factor (K) of 0.72. The total mortality (Z), natural mortality (M) and fishing mortality (F) are 2.31, 0.56 and 1.75 year-1 respectively, with exploitation rate E = F/Z is 0.76 is higher than the optimal exploitation level of 0.5.
    [Show full text]
  • Seafood Group Project Final Report
    University of California, Santa Barbara Bren School of Environmental Science and Management From Sea to Table: Recommendations for Tracing Seafood 2010 Group Project Jamie Gibbon Connor Hastings Tucker Hirsch Kristen Hislop Eric Stevens Faculty Advisors: Hunter Lenihan John Melack Client: Monterey Bay Aquarium’s Sustainable Seafood Initiative From Sea to Table: Recommendations for Tracing Seafood From Sea to Table: Recommendations for Tracing Seafood As authors of this Group Project report, we are proud to archive this report on the Bren School’s website such that the results of our research are available for all to read. Our signatures on the document signify our joint responsibility to fulfill the archiving standards set by the Bren School of Environmental Science & Management. Jamie Gibbon Connor Hastings Tucker Hirsch Kristen Hislop Eric Stevens The mission of the Bren School of Environmental Science & Management is to produce professionals with unrivaled training in environmental science and management who will devote their unique skills to the diagnosis, assessment, mitigation, prevention, and remedy of the environmental problems of today and the future. A guiding principal of the School is that the analysis of environmental problems requires quantitative training in more than one discipline and an awareness of the physical, biological, social, political, and economic consequences that arise from scientific or technological decisions. The Group Project is required of all students in the Master’s of Environmental Science and Management (MESM) Program. It is a three-quarter activity in which small groups of students conduct focused, interdisciplinary research on the scientific, management, and policy dimensions of a specific environmental issue.
    [Show full text]
  • Southern Resident Killer Whales (Orcinus Orca) Cover: Aerial Photograph of a Mother and New Calf in SRKW J-Pod, Taken in September 2020
    SPECIES in the SPOTLIGHT Priority Actions 2021–2025 Southern Resident killer whales (Orcinus orca) Cover: Aerial photograph of a mother and new calf in SRKW J-pod, taken in September 2020. The photo was obtained using a non-invasive octocopter drone at >100 ft. Photo: Holly Fearnbach (SR3, SeaLife Response, Rehab and Research) and Dr. John Durban (SEA, Southall Environmental Associates); collected under NMFS research permit #19091. Species in the Spotlight: Southern Resident Killer Whales | PRIORITY ACTIONS: 2021–2025 Central California Coast coho salmon adult, Lagunitas Creek. Photo: Mt. Tamalpais Photos. Passengers aboard a Washington State Ferry view Southern Resident killer whales in Puget Sound, an example of low-impact whale watching. Photo: NWFSC. The Species in the Spotlight Initiative In 2015, the National Marine Fisheries Service (NOAA Fisheries) launched the Species in the Spotlight initiative to provide immediate, targeted efforts to halt declines and stabilize populations, focus resources within and outside of NOAA on the most at-risk species, guide agency actions where we have discretion to make investments, increase public awareness and support for these species, and expand partnerships. We have renewed the initiative for 2021–2025. U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service 1 Species in the Spotlight: Southern Resident Killer Whales | PRIORITY ACTIONS: 2021–2025 The criteria for Species in the Spotlight are that they partnerships, and prioritizing funding—providing or are endangered, their populations are declining, and leveraging more than $113 million toward projects that they are considered a recovery priority #1C (84 FR will help stabilize these highly at-risk species.
    [Show full text]
  • Assessing CITES Non-Detriment Findings Procedures for Arapaima In
    Journal of Applied Ichthyology J. Appl. Ichthyol. (2009), 1–8 Received: February 19, 2009 Ó 2009 The Authors Accepted: June 22, 2009 Journal compilation Ó 2009 Blackwell Verlag, Berlin doi:10.1111/j.1439-0426.2009.01355.x ISSN 0175–8659 Assessing CITES non-detriment findings procedures for Arapaima in Brazil By L. Castello1,2 and D. J. Stewart3 1The Woods Hole Research Center, Falmouth, MA, USA; 2The Mamiraua´ Institute for Sustainable Development, Tefe´, Amazonas, Brazil; 3Department of Environmental and Forest Biology, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, USA Summary problems in making non-detrimental findings result mainly Arapaima are listed as endangered fishes according to the from lack of capacity and resources to implement monitoring Convention on International Trade of Endangered Species of schemes across the wide range of species in international Wild Fauna and Flora (CITES), thus their international trade trade.Õ Consequently, the CITES Secretariat has been seeking is regulated by non-detriment finding (NDF) procedures. The to improve existing NDF procedures: in 2008 an international authors critically assessed BrazilÕs regulations for NDF pro- workshop on the topic included a series of case studies cedures for Arapaima using IUCNÕs checklist for making covering various regions and taxa worldwide. The present NDFs, and found that those regulations cannot ensure the study was developed for that workshop, contributing to the sustainability of Arapaima populations. Arapaima are among implementation of more effective NDF procedures for tropical the largest fishes in the world, migrate short distances among fishes. several floodplain habitats, and are very vulnerable to fishing Tropical fishes are affected by the same broad range of during spawning.
    [Show full text]
  • Oklahoma Aquatic Nuisance Species Management Plan
    OKLAHOMA AQUATIC NUISANCE SPECIES MANAGEMENT PLAN Zebra Mussels White Perch Golden Alga Hydrilla TABLE OF CONTENTS Table of Contents……..................................................................................................... 3 Executive Summary......................................................................................................... 4 Introduction.......................................................................................................................6 Problem Definition..........................................................................................................10 Goals..............................................................................................................................23 Existing Authorities and Programs.................................................................................24 Objectives, Strategies, Actions & Cost Estimates..........................................................32 Objective 1: Coordinate and implement a comprehensive management plan..........32 Objective 2: Prevent the introduction of new ANS into Oklahoma............................35 Objective 3: Detect, monitor, and eradicate ANS......................................................38 Objective 4: Control & eradicate established ANS that have significant impacts…..40 Objective 5: Educate resource user groups..............................................................43 Objective 6: Conduct/support research.....................................................................45
    [Show full text]
  • Redacted for Privacy Abstract Approved: I
    AN ABSTRACT OF THE THESIS OF Nilton Eduardo Deza Arroyo for the degree of Master of Science in Fisheries Science presented on November 8. 1996. Title: Mercury Accumulation in Fish from Madre de Dios. a Goidmining Area in the Amazon Basin. Peru Redacted for Privacy Abstract approved: I. Weber Redacted for Privacy Wayne K. Seim In this study mercury contamination from goldmining was measured in tissues of fish from Madre de Dios, Amazonia, Peru.Bioaccumulation, biomagnification, the difference in mercury burden among residential and migratory species, and comparison between fish from Puerto Maldonado (a goidmining area) and Manu (a pristine area) were examined. Samples of dorsal-epaxial muscle of dorado (Brachyplatystoma flavicans); fasaco (Hoplias malabaricus),bothcarnivores;boquichico(Prochilodusnigricans),a detritivore;mojarita (Bryconopsaffmelanurus),an insectivore;and carachama (Hypostomus sp.), an detntivore; were analyzed by using the flameless cold vapor atomic absorption spectrophotometry technique. Dorado, a top predator, displayed the highest values of total mercury (699 ugfKg ± 296).Six out of ten dorados showed an average higher than safe values of 0.5 ug/g (WHO, 1991). Lower values reported in this study in the other species suggest that dorado may have gained its mercury burden downstream of Madre de Dios River, in the Madeira River, where goidmining activities are several times greater than that in the Madre de Dios area. Fasaco from Puerto Maldonado displayed higher levels than fasaco from Manu; however, mercury contamination in Puerto Maldonado is lower than values reported for fish from areas with higher quantities of mercury released into the environment. Positive correlation between mercury content and weight of fish for dorado, fasaco and boquichico served to explain bioaccumulation processes in the area of study.
    [Show full text]
  • Anchovy Early Life History and Its Relation to Its Surrounding Environment in the Western Mediterranean Basin
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC SCI. MAR., 60 (Supl. 2): 155-166 SCIENTIA MARINA 1996 THE EUROPEAN ANCHOVY AND ITS ENVIRONMENT, I. PALOMERA and P. RUBIÉS (eds.) Anchovy early life history and its relation to its surrounding environment in the Western Mediterranean basin ALBERTO GARCÍA1 and ISABEL PALOMERA2 1Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, Aptdo. 285. Fuengirola, 29640 Málaga, Spain. 2Institut de Ciències del Mar. CSIC, Passeig Joan de Borbó, s/n, 08039 Barcelona, Spain. SUMMARY: This paper is a review on the anchovy early life history in the western Mediterranean. There is evidence of latitudinal differences in the duration of the spawning period associated with regional temperature variations. The main spawning areas of the anchovy are located in the Gulf of Lyons and at the shelf surrounding the Ebro river delta. The exten- sions of spawning grounds seem to be linked to the size of the shelf and to the degree of hydrographic enriching-process- es. Punctual studies on egg and larval ecology have been made mainly in the areas of the main spawning grounds, report- ing preliminary results on growth, feeding, condition and mortality estimates. Biomass estimation by the Daily Egg Pro- duction Method (DEPM) has also been applied at the northern region. Key words: Anchovy, Engraulis encrasicolus, eggs and larvae, reproduction, Western Mediterranean. RESUMEN: PRIMEROS ESTADIOS DE DESARROLLO DE LA ANCHOA Y SU RELACIÓN CON EL AMBIENTE EN EL MEDITERRÁNEO OCCI- DENTAL. – Este trabajo es una revisión de los estudios realizados sobre las primeras fases de desarrollo de la anchoa del Mediterráneo occidental.
    [Show full text]
  • Abundance and Distribution of Eggs and Larvae of Anchovy
    Turkish Journal of Zoology Turk J Zool (2013) 37: 773-781 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1212-31 Abundance and distribution of eggs and larvae of anchovy (Engraulis encrasicolus, Linnaeus, 1758) and horse mackerel (Trachurus mediterraneus, Steindachner, 1868) on the coasts of the eastern Black Sea 1, 2 Cemalettin ŞAHİN *, Necati HACIMURTAZAOĞLU 1 Faculty of Fisheries, Recep Tayyip Erdoğan University, Rize, Turkey 2 Republic of Turkey Ministry of Food, Agriculture, and Livestock, Trabzon, Turkey Received: 27.12.2012 Accepted: 08.07.2013 Published Online: 04.10.2013 Printed: 04.11.2013 Abstract: Sampling for this survey was performed in 5 stations located in the bays of Sürmene and Rize in the eastern Black Sea between April and October 2006. During the sampling, the quantities and distributions of eggs and larvae of anchovies (Engraulis encrasicolus) and horse mackerel (Trachurus mediterraneus) were determined. For horizontal towing carried out from the surface (0–5 m), a plankton net of 50 cm in diameter and 500 µm mesh. The eggs of anchovy and horse mackerel sampled in plankton tows were found to be 438.33 ind./100 m3 and 5.71 ind./100 m3 for horizontal tows. During horizontal tows, the larvae of anchovy and horse mackerel were found to be 8.00 ind./100 m3 and 0.68 ind./100 m3, respectively. During the surveys, a total of 14,535 anchovy eggs, 147 horse mackerel eggs, 256 anchovy larvae, and 7 horse mackerel larvae were sampled. Mortality rates were calculated as 81.18% for anchovy and 37.41% for horse mackerel.
    [Show full text]
  • FOP Interreg EU Associate Member 2008 a Little Bit of History...The EII 20 Years of Seafood Certification
    FOP Interreg EU Associate Member 2008 A little bit of History...the EII 20 Years of Seafood Certification 1986 DOLPHIN-SAFE Monitoring of the Tuna Industry WW to verify that tuna is caught without harming marine mammals Achievements 98% decrease in dolphin mortality (2M dolphins saved) 95% of Worldwide Tuna Industry and Retailers participate 1991 MANGROVE ACTION PROJECT Promotion of Sustainable Shrimp Aquaculture Achievements 100 aquaculture plants converted to sustainability in Indonesia and Thailand 1994 TURTLE-SAFE Certification of SHRIMP fished with Trawler / Turtle Excluders Devices (TEDs) Achievements No more Turtle mortality in the American Mexican Gulf Shrimp Fleet (from approx. 15.000 per year). 2006 Certification of Products from Sustainable Fisheries and Aquaculture Fish, fresh Fish, preserves Fish, canned Fish, smoked Fish, frozen Sushi Seafood Eggs, caviar Fish Oils Fishmeal The only Industry-wide Certification Scheme The only scheme for both wild and farmed Scheme Wild- Farmed Fishfeed Market caught (Bio in Potential 2010) Friend of the Sea YES YES YES 100% Others wild-catch YES NO NO 50% Others bio-aqua NO YES NO 50% FISHERIES Artisanal Industrial AQUACULTURE Offshore Inland The Market Leader Certification Scheme Metric Tons of Positively Audited Origins Nr 1. Certification Scheme WW WILD-CAUGHT – APPROVED FISHERIES CATCH Peruvian Anchovies – 8.000.000 MT Menhaden – 640.000 MT Pacific Salmon – 300.000 MT European Pilchard – Sardine, Morocco – 760.000 MT Chub Mackerel – 100.000 MT Anchovy, Croatia - 100.000 MT Norway Shrimps – 40.000 MT Skipjack Tuna Pole and Line, Azores, Senegal, Phil. – 25.000 MT TOT APPROX: 10.000.000 MT (+10% of WW Catch) FARMED – APPROVED SITES PRODUCTION Mussels Galicia – 300.000 MT Stolt Seafarm Turbot – 4.000 MT Leroy Cod – 2.500 MT Sturgeon Agroittica – 500 MT Caviar Agroittica – 23 MT Others (Seabream, Sea bass, Trout, Salmon, Halibut, Kingfish) TOT APPROX: 500.000 MT Approved Artisanal Fisheries IRELAND VIETNAM AZORES SENEGAL BRASIL SRI LANKA MALDIVES INDONESIA The Market Leader Certification Scheme Nr of Cert.
    [Show full text]
  • (Colossoma Macropomum, Cuvier, 1818) Under Different Photoperiods
    Revista Brasileira de Zootecnia © 2012 Sociedade Brasileira de Zootecnia ISSN 1806-9290 R. Bras. Zootec., v.41, n.6, p.1337-1341, 2012 www.sbz.org.br Morphometrical development of tambaqui (Colossoma macropomum, Cuvier, 1818) under different photoperiods Pedro Pierro Mendonça1*, Manuel Vazquez Vidal Junior2, Marcelo Fanttini Polese3, Monique Virães Barbosa dos Santos4, Fabrício Pereira Rezende5, Dalcio Ricardo de Andrade2 1 Doutorando em Ciência Animal - LZNA/CCTA/UENF. 2 LZNA/ CCTA/UENF, Campos dos Goytacazes, RJ, Brasil. 3 Mestrando em Ciência Animal - LZNA/CCTA/UENF. 4 Mestranda em Produção Animal - LZNA/CCTA/UENF. 5 Doutorando em Zootecnia/EMBRAPA Pesca e Aquicultura - Palmas, TO. ABSTRACT - The experiment was performed with 160 tambaqui (Colossoma macropomum) with average weight 11.01±2.08 g and total length 7.8±0.18 cm. Fishes were kept in sixteen aquariums with 56 L of water at 29.1±0.4 oC of temperature, initial stocking density 1.97 g/L and constant aeration. The objective of this study was to assess the influence of photoperiod on fish performance. Treatments consisted of four photoperiods: T1 = 6 hours; T2 = 12 hours; T3 = 18 hours and T4 = 24 hours, with four replicates each. Fishes were fed twice a day with commercial extruded feed (28% of crude protein). The experiment was developed in closed circulation system, with volume of water renewal for each experimental unit equivalent to 40 times daily. Fish biometry was performed at the beginning of the experiment and at every 16 days, in order to follow the effects of treatments on juvenile development. Final weight, total length, standard length, height, feed intake, weight gain, feed conversion, survival, specific growth rate, protein efficiency rate and protein retention efficiency were assessed.
    [Show full text]
  • Position Paper: Fish
    DSM’s position on fish oil December 2018 DSM is the world’s leading provider of Omega-3 fatty After qualification, we continue to maintain strong acids, a nutrient that’s good for the brain, eyes and heart. relationships with vendors on an ongoing basis to Some of our solutions are based on fish oil, others on promote sustainable fishing practices. algae. Both can be great sources of Omega-3 for people and animals. Why can’t DSM use alternatives to fish oil? At DSM, we are committed to using natural resources like We do. DSM is one of the leaders in research and fish oil responsibly and to developing alternatives. We development of products based on marine algae. recognize that global demand for fish is putting extreme We currently offer life’sDHA and life’sOMEGA dietary pressure on the world’s oceans. In fact, overfishing is the supplements which are vegetarian sources of Omega-3 main cause of biodiversity loss. made from algae grown in closed systems independent from the oceans. We have also developed and invested As such, all of our fish oil is certified by either Friend of in Veramaris, an algae-based Omega-3 solution for Sea or the Marine Stewardship Council, two organizations sustainable animal nutrition. Veramaris supports healthy that promote responsible and sustainable fisheries and Omega-3 levels in farm-raised salmon, a more sustainable aquaculture. In addition, we offer vegetarian sources of choice than wild caught fish. Omega-3 made from fully sustainable marine algae grown in closed systems that are independent from the oceans.
    [Show full text]