Design and Analysis of Substrate Integrated Waveguide (SIW) for High Frequency Applications

Total Page:16

File Type:pdf, Size:1020Kb

Design and Analysis of Substrate Integrated Waveguide (SIW) for High Frequency Applications International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-8 Issue-11, September 2019 Design and Analysis of Substrate Integrated Waveguide (SIW) for High Frequency Applications Manvinder Sharma, Harjinder Singh Abstract:In this paper, substrate integrated waveguide has been designed and analyzed for high frequency applications. As high frequency suffers attenuation due to metal waveguide, atmospheric attenuation and Rain fade etc.A improved waveguide method is adapted known as Substrate Integrated Waveguide. SIW is transition between micro-strip antenna and Dielectric filled Waveguide antenna. SIWs are planar structures so they can be fabricated over PCBs and can be easily integrated with supplementary transmission lines. In the study, the different parameters like electric field generated, transmission gain and return loss is evaluated. Results are calculated over a frequency ranging from 6 GHz to 11 GHz. Index Terms: Substrate Integrated Waveguide; Vias; EHF or VHF; design SIW; Transmission Fig. 1: Structure of Substrate Integrated Waveguide I. INTRODUCTION II. DESIGN PARAMETERS In Era of Faster data transfer with better reliability, 5G is A. Design under test which make use of millimeter wave also known as First, The Vertical Perfect Conductor walls are formed by mmW or mm Wave which consents higher data rates upto 10 metallic Vias inside a dielectric substrate which can be easily Gbps. mmW are the waves having frequency ranges from 30 unified with other elements of the system on a single GHz to 300 Ghz wedged between microwave and infrared substrate platform without tuning. Horizontal walls are made waves. These waves are also known as Extremely High up from metallic layers of substrate. The length, width and Frequency (EHF) or Very High Frequency (VHF) waves. height of the cavity are given by L, W and H respectively. The Millimeter wave communication is currently used for fixed diameter of the vias are given by d and spacing between the links between cell towers which are generally known as vias is denoted by p. the spacing of the vias should be less Blackhaul. But on limitations side, due to shorter wavelength than half guided wavelength of the high frequency the mmW suffers from various attenuations like atmospheric equation[4]. Because of the vias at the sidewalls TM mode attenuation and absorption by gases in environment. These does not exist Only TE mode is dominant mode and is are also affected by rain and humidity, which reduces its considered. [3] signal strength and range [12]. Substrate Integrated Waveguide (SIW) is a planar structure contrived having two B. Cutoff frequency of waveguide for SIW rows of metallic vias linking upper and lower metallic ground For TE mode to be considered, the dimension “b” is not planes and dielectric substrate which acts as a High Pass much important as it does not affect the cut off frequency of Filter. SIW when compared with traditional waveguides the waveguide [8]. cavity, it brings various advantage of low profile, small fabrication tolerance also easier integration with microstrip circuit. On the other hand if related with microstrip resonators, it exhibits advantages of easier integration with heat sink, self packaging and tiny radiation loss specifically for mm-Waves. SIW resonator is completely compatible with PCB and Low Temperature Co-fired Ceramic (LTCC).Also SIW structures have benefits of very low production cost, they are compact in size. Fig. 2: Design parameters the cut off frequency is expressed as [2,3] fc (1) Revised Manuscript Received on September 03, 2019 Manvinder Sharma, Department of Electronics and Communication, Punjab University,Patiala, India. Harjinder Singh, Department of Electronics and Communication, Punjab University ,Patiala, India. Published By: Retrieval Number E3060038519/2019©BEIESP Blue Eyes Intelligence Engineering DOI: 10.35940/ijitee.E3060.0981119 944 & Sciences Publication Design and analysis of Substrate Integrated Waveguide for High Frequency Applications These losses are due to gaps between metal vias. these are where c is speed of light and is given as 3x108 m/sec , m and mostly negligible however if gap is large between the vias, n are modes, a and b are the dimensions of the waveguide. the losses can be more.[11] it is given by For TE10 mode the cutoff frequency is [4] (14) (2) λc is can be found as these losses are measured in dB/m λc= 2 x ad (3) where ad is the width of rectangular waveguide. G. Quality Factor The Design equation for SIW is given by as (4) The unloaded quality factor of the waveguide which includes three types of losses is given by equation [6] C. Dielectric losses The dielectric loss αd in a waveguide is given by Qu= _____Qc.Qd.Qr_______ (15) (5) Qc..Qd+ Qd.Qr+Qr.Qc Where is dielectric loss Where Qc is the conductor losses by upper and lower D. Conductor losses ground plane, Qdis the dielectric loss conveyed by Conductor losses are given by dielectric substrate and Qr is the radiation losses between the adjacent vias. (6) Conversely as discussed, the radiation losses can be β represents phase constant controlled by spacing the via distance p smaller than half k-free space wave number, η is medium's intrinsic guided wavelength of highest operation frequency. impedance and is given by III. MODELING OF SUBSTRATE INTEGRATED (7) WAVEGUIDE σ is conductivity of material, Rs is surface resistivity of the The design of substrate integrated waveguide is coupled with conductors microstrip line using taper. The microstrip line is designed as perfect electric conductor 0.1524 m thick substrate of (8) dielectric. Width of line is 3.2 mm, length of line is 30 mm. Width of taper is 12.5 mm and length of taper is 20 mm. radius of via is taken as 0.5 mm. Width of microstrip line is (9) matched to 50 Ω line. Except the ground plane, model E. Waveguide losses domain is surrounded by scattering boundaries that signify an open space. With a is designed as 9.5 mm, the calculated cut Leakage losses αl also affects losses, including this loss the dielectric losses can be rewritten as of frequency is 8.5 GHz. The design of model is shown in figure 3. PCB is taken as substrate which has relative permittivity as 3.38 and relative permeability as 1. The (10) applied frequency range is 6 GHz to 11 GHz is given to and conductor losses can be rewritten as lumped port. Table 1. Model design parameters (11) Description Value Substrate thickness 0.1524 cm Width of feed line 3.2 mm whereaeis equivalent width of SIW[9] Length of feed line 30 mm (12) Width of taper 12.5 mm Length of taper 20 mm Radius of via 0.5 mm (13) Minimum frequency 6 GHz wherer is real part of wave impedance of surface[10],f is s Maximum frequency 11 GHz operating frequency and fc is cutoff frequency. F. Radiation losses Published By: Retrieval Number E3060038519/2019©BEIESP Blue Eyes Intelligence Engineering DOI: 10.35940/ijitee.E3060.0981119 945 & Sciences Publication International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-8 Issue-11, September 2019 Wave equation used using solving for electric field is given vias are composed like this so that only patterns with vertical as current distributed on the side wall can survive in structure. TE can be supported in SIW as current path is not cut by via (16) 10 fences. Current paths will cut in SIW which results in Equation used for scattering boundary is radiation. As a result the Figure 5 shows electric field (17) generated for the range of frequency from 6 GHz to 11 GHz. Fig. 5: Electric field generated in SIW Figure 3. Designed model of substrate integrated waveguide The s-parameter plot shown in Fig. 6, indicates return Figure 4 shows meshing of design. Normal meshing is losses and transmission gains. conducted on SIW structure than extra fine meshing so to reduce computational load. The meshing is done by tetrahedral mesh with five elements per wavelength. In meshing 59822 tetrahedron values, 4860 prisms, 8796 triangles 500 quad, 676 edge elements and 36 vertex elements are used. Inside design of patch maximum element size of 23.060 is taken with curvature factor of 0.6. Fig. 6: s-parameter plot of design The plotted s-parameter shows the transmission gain increases to 9 GHz and saturates. The frequency response behaves as high pass filter. The cutoff is observed near the calculated expected frequency. S11 falls after 8.3 GHz to 9.5 GHz then it rises. The gain -20 dB band between 9.2 GHz to 9.4 GHz hence it is useful bandwidth. Figure 4. Meshing of design IV. RESULTS AND DISSCUSSIONS The design of the SIW structure was modeled and simulated on computational machine having 2.60 GHz. 3.2 GB was the virtual memory used while computation. The Published By: Retrieval Number E3060038519/2019©BEIESP Blue Eyes Intelligence Engineering DOI: 10.35940/ijitee.E3060.0981119 946 & Sciences Publication Design and analysis of Substrate Integrated Waveguide for High Frequency Applications V. CONCLUSIONS Numerous pros over the micro-strip and DFW, SIW is low loss waveguide for the transmission of higher frequency ranges. However the leakage loss can be substantial. Simulated experiment is carried out using designed substrate integrated waveguide to analyze electromagnetic wave propagation over structure. Electric field generated and s-parameter was calculated analyzed. The design acts as high pass filter with usable frequency band from 9.2 GHz to 9.4 GHz. The proposed design can be used in applications includes communication over 5G, Ultra-Wide band Antenna. REFERENCES 1. TarekDjerafi and K.
Recommended publications
  • Ec6503 - Transmission Lines and Waveguides Transmission Lines and Waveguides Unit I - Transmission Line Theory 1
    EC6503 - TRANSMISSION LINES AND WAVEGUIDES TRANSMISSION LINES AND WAVEGUIDES UNIT I - TRANSMISSION LINE THEORY 1. Define – Characteristic Impedance [M/J–2006, N/D–2006] Characteristic impedance is defined as the impedance of a transmission line measured at the sending end. It is given by 푍 푍0 = √ ⁄푌 where Z = R + jωL is the series impedance Y = G + jωC is the shunt admittance 2. State the line parameters of a transmission line. The line parameters of a transmission line are resistance, inductance, capacitance and conductance. Resistance (R) is defined as the loop resistance per unit length of the transmission line. Its unit is ohms/km. Inductance (L) is defined as the loop inductance per unit length of the transmission line. Its unit is Henries/km. Capacitance (C) is defined as the shunt capacitance per unit length between the two transmission lines. Its unit is Farad/km. Conductance (G) is defined as the shunt conductance per unit length between the two transmission lines. Its unit is mhos/km. 3. What are the secondary constants of a line? The secondary constants of a line are 푍 i. Characteristic impedance, 푍0 = √ ⁄푌 ii. Propagation constant, γ = α + jβ 4. Why the line parameters are called distributed elements? The line parameters R, L, C and G are distributed over the entire length of the transmission line. Hence they are called distributed parameters. They are also called primary constants. The infinite line, wavelength, velocity, propagation & Distortion line, the telephone cable 5. What is an infinite line? [M/J–2012, A/M–2004] An infinite line is a line where length is infinite.
    [Show full text]
  • Waveguides Waveguides, Like Transmission Lines, Are Structures Used to Guide Electromagnetic Waves from Point to Point. However
    Waveguides Waveguides, like transmission lines, are structures used to guide electromagnetic waves from point to point. However, the fundamental characteristics of waveguide and transmission line waves (modes) are quite different. The differences in these modes result from the basic differences in geometry for a transmission line and a waveguide. Waveguides can be generally classified as either metal waveguides or dielectric waveguides. Metal waveguides normally take the form of an enclosed conducting metal pipe. The waves propagating inside the metal waveguide may be characterized by reflections from the conducting walls. The dielectric waveguide consists of dielectrics only and employs reflections from dielectric interfaces to propagate the electromagnetic wave along the waveguide. Metal Waveguides Dielectric Waveguides Comparison of Waveguide and Transmission Line Characteristics Transmission line Waveguide • Two or more conductors CMetal waveguides are typically separated by some insulating one enclosed conductor filled medium (two-wire, coaxial, with an insulating medium microstrip, etc.). (rectangular, circular) while a dielectric waveguide consists of multiple dielectrics. • Normal operating mode is the COperating modes are TE or TM TEM or quasi-TEM mode (can modes (cannot support a TEM support TE and TM modes but mode). these modes are typically undesirable). • No cutoff frequency for the TEM CMust operate the waveguide at a mode. Transmission lines can frequency above the respective transmit signals from DC up to TE or TM mode cutoff frequency high frequency. for that mode to propagate. • Significant signal attenuation at CLower signal attenuation at high high frequencies due to frequencies than transmission conductor and dielectric losses. lines. • Small cross-section transmission CMetal waveguides can transmit lines (like coaxial cables) can high power levels.
    [Show full text]
  • Wave Guides Summary and Problems
    ECE 144 Electromagnetic Fields and Waves Bob York General Waveguide Theory Basic Equations (ωt γz) Consider wave propagation along the z-axis, with fields varying in time and distance according to e − . The propagation constant γ gives us much information about the character of the waves. We will assume that the fields propagating in a waveguide along the z-axis have no other variation with z,thatis,the transverse fields do not change shape (other than in magnitude and phase) as the wave propagates. Maxwell’s curl equations in a source-free region (ρ =0andJ = 0) can be combined to give the wave equations, or in terms of phasors, the Helmholtz equations: 2E + k2E =0 2H + k2H =0 ∇ ∇ where k = ω√µ. In rectangular or cylindrical coordinates, the vector Laplacian can be broken into two parts ∂2E 2E = 2E + ∇ ∇t ∂z2 γz so that with the assumed e− dependence we get the wave equations 2E +(γ2 + k2)E =0 2H +(γ2 + k2)H =0 ∇t ∇t (ωt γz) Substituting the e − into Maxwell’s curl equations separately gives (for rectangular coordinates) E = ωµH H = ωE ∇ × − ∇ × ∂Ez ∂Hz + γEy = ωµHx + γHy = ωEx ∂y − ∂y ∂Ez ∂Hz γEx = ωµHy γHx = ωEy − − ∂x − − − ∂x ∂Ey ∂Ex ∂Hy ∂Hx = ωµHz = ωEz ∂x − ∂y − ∂x − ∂y These can be rearranged to express all of the transverse fieldcomponentsintermsofEz and Hz,giving 1 ∂Ez ∂Hz 1 ∂Ez ∂Hz Ex = γ + ωµ Hx = ω γ −γ2 + k2 ∂x ∂y γ2 + k2 ∂y − ∂x w W w W 1 ∂Ez ∂Hz 1 ∂Ez ∂Hz Ey = γ + ωµ Hy = ω + γ γ2 + k2 − ∂y ∂x −γ2 + k2 ∂x ∂y w W w W For propagating waves, γ = β,whereβ is a real number provided there is no loss.
    [Show full text]
  • Uniform Plane Waves
    38 2. Uniform Plane Waves Because also ∂zEz = 0, it follows that Ez must be a constant, independent of z, t. Excluding static solutions, we may take this constant to be zero. Similarly, we have 2 = Hz 0. Thus, the fields have components only along the x, y directions: E(z, t) = xˆ Ex(z, t)+yˆ Ey(z, t) Uniform Plane Waves (transverse fields) (2.1.2) H(z, t) = xˆ Hx(z, t)+yˆ Hy(z, t) These fields must satisfy Faraday’s and Amp`ere’s laws in Eqs. (2.1.1). We rewrite these equations in a more convenient form by replacing and μ by: 1 η 1 μ = ,μ= , where c = √ ,η= (2.1.3) ηc c μ Thus, c, η are the speed of light and characteristic impedance of the propagation medium. Then, the first two of Eqs. (2.1.1) may be written in the equivalent forms: ∂E 1 ∂H ˆz × =− η 2.1 Uniform Plane Waves in Lossless Media ∂z c ∂t (2.1.4) ∂H 1 ∂E The simplest electromagnetic waves are uniform plane waves propagating along some η ˆz × = ∂z c ∂t fixed direction, say the z-direction, in a lossless medium {, μ}. The assumption of uniformity means that the fields have no dependence on the The first may be solved for ∂zE by crossing it with ˆz. Using the BAC-CAB rule, and transverse coordinates x, y and are functions only of z, t. Thus, we look for solutions noting that E has no z-component, we have: of Maxwell’s equations of the form: E(x, y, z, t)= E(z, t) and H(x, y, z, t)= H(z, t).
    [Show full text]
  • Microstrip Solutions for Innovative Microwave Feed Systems
    Examensarbete LiTH-ITN-ED-EX--2001/05--SE Microstrip Solutions for Innovative Microwave Feed Systems Magnus Petersson 2001-10-24 Department of Science and Technology Institutionen för teknik och naturvetenskap Linköping University Linköpings Universitet SE-601 74 Norrköping, Sweden 601 74 Norrköping LiTH-ITN-ED-EX--2001/05--SE Microstrip Solutions for Innovative Microwave Feed Systems Examensarbete utfört i Mikrovågsteknik / RF-elektronik vid Tekniska Högskolan i Linköping, Campus Norrköping Magnus Petersson Handledare: Ulf Nordh Per Törngren Examinator: Håkan Träff Norrköping den 24 oktober, 2001 'DWXP $YGHOQLQJ,QVWLWXWLRQ Date Division, Department Institutionen för teknik och naturvetenskap 2001-10-24 Ã Department of Science and Technology 6SUnN 5DSSRUWW\S ,6%1 Language Report category BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Svenska/Swedish Licentiatavhandling X Engelska/English X Examensarbete ISRN LiTH-ITN-ED-EX--2001/05--SE C-uppsats 6HULHWLWHOÃRFKÃVHULHQXPPHUÃÃÃÃÃÃÃÃÃÃÃÃ,661 D-uppsats Title of series, numbering ___________________________________ _ ________________ Övrig rapport _ ________________ 85/I|UHOHNWURQLVNYHUVLRQ www.ep.liu.se/exjobb/itn/2001/ed/005/ 7LWHO Microstrip Solutions for Innovative Microwave Feed Systems Title )|UIDWWDUH Magnus Petersson Author 6DPPDQIDWWQLQJ Abstract This report is introduced with a presentation of fundamental electromagnetic theories, which have helped a lot in the achievement of methods for calculation and design of microstrip transmission lines and circulators. The used software for the work is also based on these theories. General considerations when designing microstrip solutions, such as different types of transmission lines and circulators, are then presented. Especially the design steps for microstrip lines, which have been used in this project, are described. Discontinuities, like bends of microstrip lines, are treated and simulated.
    [Show full text]
  • EMC Fundamentals
    ITU Training on Conformance and Interoperability for ARB Region CERT, 2-6 April 2013, EMC fundamentals Presented by: Karim Loukil & Kaïs Siala [email protected] [email protected] 1 Basics of electromagnetics 2 Electromagnetic waves A wave is a moving vibration λ Antenna V λ (m) = c(m/s) / F(Hz) 3 Definitions • The wavelength is the distance traveled by a wave in an oscillation cycle • Frequency is measured by the number of cycles per second and the unit is Hz . One cycle per second is one Hertz. 4 Electromagnetic waves (2) • An electromagnetic wave consists of: an electric field E (produced by the force of electric charges) a magnetic field H (produced by the movement of electric charges) • The fields E and H are orthogonal and are m oving at the speed of light 8 c = 3. 10 m/s 5 Electromagnetic waves (3) 6 E and H fields Electric field The field amplitude is l expressed in (V/m). E(V/m) Magnetic field The field amplitude is expressed in (A/m). d H(A /m) Power density Radiated power is perpendicular to a surface, divided by the area of ​​the surface. The power density is expressed as S (W / m²), or (mW /cm ²) , or (µW / cm ²). 7 E and H fields • Near a whip, the dominant field is the E field. The impedance in this area is Zc > 377 ohms. • Near a loop, the dominant field is the H field. The impedance in this area is Z c <377 ohms. 8 Plane wave 9 The EMC way of thinking Electrical domain Electromagnetic domain Voltage V (Volt) Electric Field E (V/m) Current I (Amp) Magnetic field H (A/m) Impedance Z (Ohm) Characteristic
    [Show full text]
  • Substrate Integrated Waveguide (SIW) Is a Very Promising Technique in That We Can Make Use of the Advantages of Both Waveguides and Planar Transmission Lines
    UNIVERSITÉ DE MONTRÉAL TUNABLE FERRITE PHASE SHIFTERS USING SUBSTRATE INTEGRATED WAVEGUIDE TECHNIQUE YONG JU BAN DÉPARTEMENT DE GÉNIE ÉLECTRIQUE ÉCOLE POLYTECHNIQUE DE MONTRÉAL MÉMOIRE PRÉSENTÉ EN VUE DE L‟OBTENTION DU DIPLÔ ME DE MAÎTRISE ÈS SCIENCES APPLIQUÉES (GÉNIE ÉLECTRIQUE) DÉCEMBRE 2010 © Yong Ju Ban, 2010. UNIVERSITÉ DE MONTRÉAL ÉCOLE POLYTECHNIQUE DE MONTRÉAL Ce mémoire intitulé: TUNABLE FERRITE PHASE SHIFTERS USING SUBSTRATE INTEGRATED WAVEGUIDE TECHNIQUE présenté par : BAN, YONG JU en vue de l‟obtention du diplôme de : Maîtrise ès sciences appliquées a été dûment accepté par le jury d‟examen constitué de : M. CARDINAL, Christian, Ph. D., président M. WU, Ke, Ph. D., membre et directeur de recherche M. DESLANDES, Dominic, Ph. D., membre iii DEDICATION To my lovely wife Jeong Min And my two sons Jione & Junone iv ACKNOWLEDGEMENTS I would like to express my sincere gratitude to my supervisor, Prof. Ke Wu, for having accepted me and given me the opportunity to pursue my master study in such a challenging and exciting research field, and for his invaluable guidance and encouragement throughout the work involved in this thesis. I would like to thank Mr. Jules Gauthier, Mr. Jean-Sebastien Décarie and other staffs of Poly-Grames Research Center for their skillful technical supports during my study and experiments. I thank Zhenyu Zhang, Fanfan He and Anthony Ghiotto for their helpful discussions. And many thanks should be extended to Sulav Adhikari for his invaluable supports for my study and thesis. I also appreciate my colleagues Xiaoma Jiang, Nikolay Volobouev, Adrey Taikov, Marie Chantal, Parmeet Chawala, Jawad Abdulnour and Shyam Gupta in SDP for their understanding and endurance for my study.
    [Show full text]
  • CHAPTER-I MICROWAVE TRANSMISSION LINES the Electromagnetic Spectrum Is the Range of All Possible Frequencies of Electromagnetic
    CHAPTER-I MICROWAVE TRANSMISSION LINES The electromagnetic spectrum is the range of all possible frequencies of electromagnetic radiation emitted or absolved. The electromagnetic spectrum extends from below the low frequencies used for modern radio communication to gamma radiation at the short-wavelength (high-frequency) end, thereby covering wavelengths from thousands of kilometers down to a fraction of the size of an atom as shown in Fig 1.1. The limit for long wavelengths is beyond one‟s imagination. One theory existing depicts that the short wavelength limit is in the vicinity of the Planck length. A few scientists do believe that the spectrum is infinite and continuous. Microwaves region forms a small part of the entire electromagnetic spectrum as shown in Fig 1.1. Microwaves are electromagnetic waves generally in the frequency range of 1 G Hz to 300 GHz. However with the advent of technology usage of higher end of the frequencies became possible and now the range is extended almost to 1000 G Hz. Fig:1.1: Electromagnetic Spectrum 1 Brief history of Microwaves • Modern electromagnetic theory was formulated in 1873 by James Clerk Maxwell, a German scientist solely from mathematical considerations. • Maxwell‟s formulation was cast in its modern form by Oliver Heaviside, during the period 1885 to 1887. • Heinrich Hertz, a German professor of physics carried out a set of experiments during 1887-1891 that completely validated Maxwell‟s theory of electromagnetic waves. • It was only in the 1940‟s (World War II) that microwave theory received substantial interest that led to radar development. • Communication systems using microwave technology began to develop soon after the birth of radar.
    [Show full text]
  • A Highly Symmetric Two-Handed Metamaterial Spontaneously Matching the Wave Impedance
    A highly symmetric two-handed metamaterial spontaneously matching the wave impedance Yi- Ju Chiang1 and Ta-Jen Yen1,2† 1 Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C. 2 Institute of NanoEngineering and MicroSystems, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, R.O.C. † E-mail: [email protected]; Tel: 886-3-5742174; Fax: 886-3-5722366 Abstract: We demonstrate a two-handed metamaterial (THM), composed of highly symmetric three-layered structures operated at normal incidence. Not only does the THM exhibit two distinct allowed bands with right- handed and left-handed electromagnetic responses, but posses a further advantage of being independent to the polarizations of external excitations. In addition, the THM automatically matches the wave impedance in free space, leading to maximum transmittances about 0.8 dB in the left-handed band and almost 0 dB in the right-handed band, respectively. Such a THM can be employed for diverse electromagnetic devices including dual-band bandpass filters, ultra-wide bandpass filters and superlenses. ©2008 Optical Society of America OCIS codes: (160.3918) Metamaterials; (350.3618) Left-handed materials; (260.5740) Resonance; (350.4010) Microwaves. References and links 1. J. D. Watson, and F. H. C. Crick, "Molecular Structure of Nucleic Acids," Nature 171, 737-738 (1953). 2. A. H. J. Wang, G. J. Quigley, F. J. Kolpak, J. L. Crawford, J. H. Vanboom, G. Van der Marel, and A. Rich, "Molecular structure of a left-handed double helical DNA fragment at atomic resolution," Nature 282, 680- 686 (1979).
    [Show full text]
  • Transmission Lines TEM Waves
    Tele 2060 Transmission Lines • Transverse Electromagnetic (TEM) Waves • Structure of Transmission Lines • Lossless Transmission Lines Martin B.H. Weiss Transmission of Electromagnetic Energy - 1 University of Pittsburgh Tele 2060 TEM Waves • Definition: A Wave in which the Electric Field, the Magnetic Field, and the Propogation Direction are Orthogonal Use the “Right Hand Rule” to Determine Relative Orientation Thumb of Right Hand Indicates Direction of Propagation Curved Fingers of Right Hand Indicates the Direction of the Magnetic Field The Electric Field is Orthogonal ω β • Electric Field: e(t,x) = Emaxsin( t- x) V/m ω β • Magnetic Field: h(t,x) = Hmaxsin( t- x) A/m β=2π/λ ω=2πf=2π/T x is Distance Martin B.H. Weiss Transmission of Electromagnetic Energy - 2 University of Pittsburgh Tele 2060 TEM Waves λ • Note that =vp/f Same as Distance = (Speed * Time) in Physics vp is the Phase Velocity In Free Space, vp=c, the Speed of Light ==E µε • Wave Impedance: Z0 H = 1 • Phase Velocity: vp µε Martin B.H. Weiss Transmission of Electromagnetic Energy - 3 University of Pittsburgh Tele 2060 Transmission Constants • Electric Permittivity of the Transmission Medium (ε) ε = ε ε r 0 Where ε is r The Relative Permittivity Also the Dielectric Constant Typically Between 1 and 5 -12 ε = 8.85*10 (Farads/meter) 0 • Magnetic Permeability of the Transmission Medium (µ) µ=µ µ r 0 Where µ is the Relative Permeability r -7 µ = 4 *10 Henry/meter 0 Martin B.H. Weiss Transmission of Electromagnetic Energy - 4 University of Pittsburgh Tele 2060 Model of a Transmission Line L∆xR∆x ii-∆i ∆i v C∆xG∆xv-∆v ∆x Martin B.H.
    [Show full text]
  • The Design and Analysis of a Microstrip Line Which Utilizes
    THE DESIGN AND ANALYSIS OF A MICROSTRIP LINE WHICH UTILIZES CAPACITIVE GAPS AND MAGNETIC RESPONSIVE PARTICLES TO VARY THE REACTANCE OF THE SURFACE IMPEDANCE A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Jerika Dawn Cleveland In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Electrical and Computer Engineering April 2019 Fargo, North Dakota North Dakota State University Graduate School Title THE DESIGN AND ANALYSIS OF A MICROSTRIP LINE WHICH UTILIZES CAPACITIVE GAPS AND MAGNETIC RESPONSIVE PARTICLES TO VARY THE REACTANCE OF THE SURFACE IMPEDANCE By Jerika Dawn Cleveland The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of MASTER OF SCIENCE SUPERVISORY COMMITTEE: Dr. Benjamin D. Braaten Chair Dr. Daniel L. Ewert Dr. Jeffery Allen Approved: April 26, 2019 Dr. Benjamin D. Braaten Date Department Chair ABSTRACT This thesis presents the work of using magnetic responsive particles as a method to manipulate the surface impedance reactance of a microstrip line containing uniform capacitive gaps and cavities containing the particles. In order to determine the transmission line’s surface impedances created by each gap and particle containing cavities, a sub-unit cell that centers the gap and cavities was used. Shown in simulation, the magnetic responsive particles can then be manipulated to increase or decrease the reactance of the surface impedance based on the strength of the magnetic field present. The sub-unit cell with the greatest reactance change was then implemented into a unit cell, which is a cascade of sub-unit cells.
    [Show full text]
  • Fields, Waves and Transmission Lines Fields, Waves and Transmission Lines
    Fields, Waves and Transmission Lines Fields, Waves and Transmission Lines F. A. Benson Emeritus Professor Formerly Head of Department Electronic and Electrical Engineering University of Sheffield and T. M. Benson Senior Lecturer Electrical and Electronic Engineering University of Nottingham IUI11 SPRINGER-SCIENCE+BUSINESS MEDIA, B. V. First edition 1991 © 1991 F. A. Benson and T. M. Benson Originally published by Chapman & Hali in 1991 0412 363704 o 442 31470 1 (USA) Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright Designs and Patents Act, 1988, this publication may not be reproduced, stored, or transmitted, in any form or by any means, without the prior permission in writing of the publishers, or in the case of reprographic reproduction only in accordance with the terms of the licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licences issued by the appropriate Reproduction Rights Organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to the publishers at the London address printed on this page. The publisher makes no representation, express or implied, with regard to the accuracy of the informaton contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made. A catalogue record for this book is available from the British Library Library of Congress Cataloging-in-Publication data Benson, F. A. (Frank Atkinson), 1921- Fields, waves, and transmission lines/F. A. Benson and T.
    [Show full text]