1 Supplemental Table 1. Comparison Among Q-RT-PCR, ISH-TMA And

Total Page:16

File Type:pdf, Size:1020Kb

1 Supplemental Table 1. Comparison Among Q-RT-PCR, ISH-TMA And Supplemental Table 1. Comparison among Q-RT-PCR, ISH-TMA and IHC for the detection of ErbB-2 in breast cancers. IHC ISH-TMA Q-RT-PCR Q-RT-PCR range Q-RT-PCR score 0 0 0* 0 0 0 0* 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 2 0 1 1 2 0 0 0 3 0 0 0 3 0 0 0 3 0 0 0 3 0 0 0 3 x<10 0 1 1 3 0 0 0 4 0 0 0 5 0 0 0 5 0 0 0 5 0 1 1 5 0 0 0 6 0 0 0 8 0 0 0 8 0 1 1 8 0 0 1 8 0 1 1 11 1 1 1 11 1 1 1 11 1 1 0 12 1 1 1 13 10<x<20 1 0 1 13 1 1 1 16 1 1 1 17 1 2 1 17 1 2 2 22 2 2 2 43 2 20<x<100 3 2 74 2 3 2 86 2 3 3 213 3 3 3 259 x>100 3 3 3 362 3 Legend to Supplemental Table 1. This experiment was set up to demonstrate that there is good semi-quantitative correlation between the levels of expression detected by ISH-TMA, IHC and Q-RT-PCR. We compared the three methods on levels of ErbB-2 expression in breast cancer, since ErbB-2 is overexpressed in breast cancers, over a wide range of levels. 1 Thirty-nine primary infiltrating ductal carcinomas were divided into two aliquots, one of which was snap-frozen in liquid nitrogen and stored at –80°C for RNA extraction, and the other was fixed in buffered formalin and embedded in paraffin blocks for TMA construction. All frozen sections were reviewed by a pathologist before analysis and selected for cellularity (at least 70% of tumor cells), before RNA extraction. Column “Q-RT-PCR”: The cohort of 39 breast cancer patients was analyzed by Q-RT-PCR. The housekeeping gene ß-actin was used for the normalization. Results were expressed as relative levels of ErbB-2 mRNA, referred to a sample, called calibrator, chosen to represent 1X expression of this gene. The calibrator was a breast cancer cell line (MCF-7) that was analyzed on every assay plate with the unknown samples. The amount of target, normalized to the endogenous reference (ß-actin) and relative to the calibrator, was defined by ∆∆Ct method as described by Livak K (Sequence Detectro User Bulletin 2; Applied Biosystems). Specifically, the formula is applied as follows: Target amount = 2 -∆∆Ct where ∆∆Ct = [Ct (HER-2/neu sample) – Ct (ß-actin sample)] – [Ct (HER-2/neu calibrator) – Ct (ß-actin calibrator)]. The two samples labeled with an asterisk (0*) gave no amplification after 40 cycles. Cores from paraffin blocks, corresponding to these cases, were then arrayed on a TMA (in duplicate) and subjected to ISH with an ErbB-2-specific riboprobe. ISH scores were assigned as described in Methods (column “ISH-TMA”). Parallel sections of the TMA were also evaluated by IHC. Immunohistochemical staining for ErbB-2 was performed using the primary Ab (anti-HER-2/neu, DAKO, Carpinteria, CA, 1:2000 dilution) followed by detection with the Dako EnVision+ system, peroxidase (DAKO). Briefly, formalin-fixed, paraffin-embedded tissue sections were deparaffinized, rehydrated, pretreated in 0.25 mM EDTA pH 8.0 at 95°C and exposed to the primary antibody for 60 min at room temperature. Positive and negative controls were included in each experiment. ErbB-2 overexpression was evaluated according to the scoring system recommended by the DAKO HercepTest: score 0, no staining or membrane staining in <10% of the tumor cells; score 1, barely perceptible membrane staining in >10% of the tumor cells; score 2, weak-to-moderate staining of the entire membrane in >10% of the tumor cells; score 3, strong staining of the entire membrane in >10% of the tumor cells. Scores of 2 and 3 were considered to represent overexpression. Since data from ISH-TMA and IHC analyses are discontinuous, whereas those obtained by Q-RT-PCR analyses are continuous, we transformed the Q-RT-PCR values into discontinuous data (1). The discontinuous Q-RT-PCR scores (column “Q- RT-PCR score”) are shown along with the ranges of actual values used to attribute the score (column “Q-RT-PCR range”). Pearson Correlation was calculated in Excel Software (Microsoft). The Pearson Correlation Coefficients were Q-RT-PCR vs. ISH- TMA, r = 0.906; Q-RT-PCR vs. IHC, r = 0.909; ISH-TMA vs. IHC, r = 0.910. To test if the frequency of the observed values of expression between ISH, IHC and PCR are evenly distributed, a chi square test was performed (ISH vs. IHC, Chi = 2.15 and P=0.54; ISH vs. PCR, Chi = 3.85 and P = 0.27; IHC vs. PCR, Chi = 2.41 and P = 0.49), confirming that the three method used in the analysis are not significantly different. Twenty of the 39 samples displayed in this Table are the same used in a previously published validation of ISH vs. Q-RT-PCR of ErbB-2 expression (2). 2 References to Supplemental Table 1 1. Ginestier, C., Charafe-Jauffret, E., Bertucci, F., et al. Distinct and complementary information provided by use of tissue and DNA microarrays in the study of breast tumor markers. Am J Pathol 2002;161:1223-33. 2. Nicassio, F., Bianchi, F., Capra, M., et al. A cancer-specific transcriptional signature in human neoplasia. J Clin Invest 2005;115:3015-25. 3 Supplemental Table 2. List of screened kinases. Symbol Sugen Aliases Group Name cDNA Acc AAK1 AAK1 KIAA1048 OTHER AP2 associated kinase 1 NM_014911 ACVR1C ALK7 ALK7, ACVRLK7 TKL Activin A receptor, type IC AY127050 ADCK1 ADCK1 ADCK1 ATYPICAL AarF domain containing kinase 1 BC058906 ADRBK2 BARK2 GRK3, BARK2 AGC Adrenergic, beta, receptor kinase 2 NM_005160 ALS2CR2 STLK6 ILPIP STE Amyotrophic lateral sclerosis 2 (juvenile) chromosome region, candidate 2 NM_018571 ALS2CR7 PFTAIRE2 CMGC Amyotrophic lateral sclerosis 2 (juvenile) chromosome region, candidate 7 BC038807 ANKK1 SgK288 ANKK1, PKK2 TKL Ankyrin repeat and kinase domain containing 1 AF487542 AURKA AurA AIK, STK6 OTHER Aurora kinase A NM_003600 AURKB AurB STK12, AIK2, ARK2 OTHER Aurora kinase B NM_004217 BRSK1 BRSK1 KIAA1811 CAMK BR serine/threonine kinase 1 NM_032430 BRSK2 BRSK2 PEN11B, STK29, SAD1 CAMK BR serine/threonine kinase 2 NM_003957 BUB1 BUB1 BUB1, BUB1L, BUB1A OTHER BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) NM_004336 C9orf96* SgK071 OTHER Chromosome 9 open reading frame 96 NM_153710 CAMK1D CaMK1d CKLIK CAMK Calcium/calmodulin-dependent protein kinase ID AF286366 CAMK2D CaMK2d CAMKD CAMK Calcium/calmodulin-dependent protein kinase (CaM kinase) II delta NM_001221 CAMKK1 CaMKK1 CAMKKA OTHER Calcium/calmodulin-dependent protein kinase kinase 1, alpha AF425301 CAMKK2 CaMKK2 CAMKK, CAMKKB OTHER Calcium/calmodulin-dependent protein kinase kinase 2, beta AF287631 CDKL3 CDKL3 NKIAMRE CMGC Cyclin-dependent kinase-like 3 NM_016508 CDKL4 CDKL4 CMGC Cyclin-dependent kinase-like 4 NM_001009565 CIT CRIK CRIK, STK21 AGC Citron (rho-interacting, serine/threonine kinase 21) NM_007174 CLK2 CLK2 hCLK2 CMGC CDC-like kinase 2 NM_003993 CLK4 CLK4 CMGC CDC-like kinase 4 NM_020666 4 CRK7 CRK7 CRKR, KIAA0904 CMGC CDC2-related protein kinase 7 NM_016507 CSNK1A1L CK1a2 CK1 Casein kinase 1, alpha 1-like BC028723 DCAMKL2 DCAMKL2 DCDC3, DCK2 CAMK Doublecortin and CaM kinase-like 2 NM_152619 DCAMKL3 DCAMKL3 KIAA1765 CAMK Doublecortin and CaM kinase-like 3 AB051552 DYRK3 DYRK3 DYRK5, RED, REDK CMGC Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 3 BC015501 EIF2AK1 HRI HRI, KIAA1369 OTHER Eukaryotic translation initiation factor 2-alpha kinase 1 NM_014413 EIF2AK4 GCN2_d2 GCN2, KIAA1338 OTHER Eukaryotic translation initiation factor 2 alpha kinase 4 NM_001013703 ERN2 IRE2 IRE1b OTHER Endoplasmic reticulum to nucleus signalling 2 NM_033266 FLJ23356* SgK196 OTHER Hypothetical protein FLJ23356 NM_032237 FLJ25006 SgK494 AGC Hypothetical protein FLJ25006 NM_144610 HIPK2 HIPK2 CMGC Homeodomain interacting protein kinase 2 NM_022740 HIPK4 HIPK4 CMGC Homeodomain interacting protein kinase 4 BC034501 HUNK HUNK CAMK Hormonally upregulated Neu-associated kinase NM_014586 IRAK3* IRAK3 IRAK-M TKL Interleukin-1 receptor-associated kinase 3 BC057800 KALRN Trad HAPIP, DUO, TRAD CAMK Kalirin, RhoGEF kinase NM_007064 KIAA0999 QSK KIAA0999 CAMK KIAA0999 protein NM_025164 KSR2 KSR2 TKL Kinase suppressor of ras 2 AY345972 LATS2 LATS2 AGC LATS, large tumor suppressor, homolog 2 (Drosophila) NM_014572 LIMK1 LIMK1 LIMK1, LIMK TKL LIM domain kinase 1 NM_002314 LIMK2 LIMK2 TKL LIM domain kinase 2 NM_016733 LOC340156 SgK085 LOC340156 CAMK hypothetical protein LOC340156 NM_001012418 LOC91461 SgK493 OTHER Hypothetical protein BC007901 NM_138370 LRRK2 LRRK2 DARDARIN TKL Leucine-rich repeat kinase 2 XM_058513 LYK5* STLK5 STRAD STE Protein kinase LYK5 NM_001003786 MAP3K15 MAP3K7 FLJ16518 STE Mitogen-activated protein kinase kinase kinase 15 NM_001001671 5 MAP3K6 MAP3K6 MAPKKK6 STE Mitogen-activated protein kinase kinase kinase 6 AF100318 MAP3K9 MLK1 MLK1 TKL Mitogen-activated protein kinase kinase kinase 9 NM_033141 MAP4K1 HPK1 HPK1 STE Mitogen-activated protein kinase kinase kinase kinase 1 NM_007181 MAP4K3 KHS2 MAPKKKK3, GLK, RAB8IPL1 STE Mitogen-activated protein kinase kinase kinase kinase 3 NM_003618 MAP4K4 ZC1/HGK HGK STE Mitogen-activated protein kinase kinase kinase kinase 4 NM_004834 MAPK15 Erk7 ERK8 CMGC Mitogen-activated protein kinase 15 AY065978 MASK MST4 MST4 STE Mst3 and SOK1-related kinase NM_016542 MASTL MASTL FLJ14813 GENE AGC Microtubule associated serine/threonine kinase-like NM_032844 MELK MELK KIAA0175, HPK38 CAMK Maternal embryonic leucine zipper kinase NM_014791 MGC16169* TBCK OTHER Hypothetical protein MGC16169 NM_033115 MGC42105 NIM1 MGC42105 CAMK Hypothetical protein MGC42105 NM_153361 MINK1 ZC3/MINK MINK, B55, MAP4K6 STE Misshapen-like kinase 1 (zebrafish) NM_015716 MLCK caMLCK LOC91807 CAMK Cardiac-MyBP-C associated Ca/CaM kinase NM_182493 MLKL* MLKL FLJ34389 OTHER Mixed lineage kinase domain-like BC028141 MYLK2 skMLCK KMLC, MLCK CAMK Myosin light chain kinase 2, skeletal muscle NM_033118 MYO3B
Recommended publications
  • ALS2CR2 (STRADB) 406-418) Goat Polyclonal Antibody – AP08962PU-N
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for AP08962PU-N ALS2CR2 (STRADB) 406-418) Goat Polyclonal Antibody Product data: Product Type: Primary Antibodies Applications: ELISA, IHC, WB Recommended Dilution: ELISA: 1/32000. Immunohistochemistry on Paraffin Sections: 3.75 µg/ml. Western Blot: 1 - 3 µg/ml. Reactivity: Canine, Human Host: Goat Clonality: Polyclonal Immunogen: Synthetic peptide from C-terminus of human ALS2CR2 Specificity: This antibody reacts to STE20-Related Kinase Adaptor Beta (STRADB/ALS2CR2) at aa 406-418. It is expected to recognise both human isoforms: ILPIP-alpha (NP_061041.2) and ILPIP-beta (AAF71042.1). Formulation: Tris saline buffer, pH 7.3, 0.5% BSA, 0.02% sodium azide State: Aff - Purified State: Liquid purified Ig Concentration: lot specific Purification: Immunoaffinity Chromatography Conjugation: Unconjugated Storage: Store the antibody undiluted at 2-8°C for one month or (in aliquots) at -20°C for longer. Avoid repeated freezing and thawing. Stability: Shelf life: one year from despatch. Database Link: Entrez Gene 55437 Human Q9C0K7 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 3 ALS2CR2 (STRADB) 406-418) Goat Polyclonal Antibody – AP08962PU-N Background: Amyotrophic lateral sclerosis 2 (juvenile) chromosome region, candidate 2, is connected to transferase/kinase activity and ATP binding, it has recently been shown to interact with XIAP, a member of the IAP (Inhibitor of Apoptosis) protein family.
    [Show full text]
  • Chromosomal Aberrations in Head and Neck Squamous Cell Carcinomas in Norwegian and Sudanese Populations by Array Comparative Genomic Hybridization
    825-843 12/9/08 15:31 Page 825 ONCOLOGY REPORTS 20: 825-843, 2008 825 Chromosomal aberrations in head and neck squamous cell carcinomas in Norwegian and Sudanese populations by array comparative genomic hybridization ERIC ROMAN1,2, LEONARDO A. MEZA-ZEPEDA3, STINE H. KRESSE3, OLA MYKLEBOST3,4, ENDRE N. VASSTRAND2 and SALAH O. IBRAHIM1,2 1Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Jonas Lies vei 91; 2Department of Oral Sciences - Periodontology, Faculty of Medicine and Dentistry, University of Bergen, Årstadveien 17, 5009 Bergen; 3Department of Tumor Biology, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Center, Montebello, 0310 Oslo; 4Department of Molecular Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway Received January 30, 2008; Accepted April 29, 2008 DOI: 10.3892/or_00000080 Abstract. We used microarray-based comparative genomic logical parameters showed little correlation, suggesting an hybridization to explore genome-wide profiles of chromosomal occurrence of gains/losses regardless of ethnic differences and aberrations in 26 samples of head and neck cancers compared clinicopathological status between the patients from the two to their pair-wise normal controls. The samples were obtained countries. Our findings indicate the existence of common from Sudanese (n=11) and Norwegian (n=15) patients. The gene-specific amplifications/deletions in these tumors, findings were correlated with clinicopathological variables. regardless of the source of the samples or attributed We identified the amplification of 41 common chromosomal carcinogenic risk factors. regions (harboring 149 candidate genes) and the deletion of 22 (28 candidate genes). Predominant chromosomal alterations Introduction that were observed included high-level amplification at 1q21 (harboring the S100A gene family) and 11q22 (including Head and neck squamous cell carcinoma (HNSCC), including several MMP family members).
    [Show full text]
  • Targeting Fibrosis in the Duchenne Muscular Dystrophy Mice Model: an Uphill Battle
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427485; this version posted January 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Title: Targeting fibrosis in the Duchenne Muscular Dystrophy mice model: an uphill battle 2 Marine Theret1#, Marcela Low1#, Lucas Rempel1, Fang Fang Li1, Lin Wei Tung1, Osvaldo 3 Contreras3,4, Chih-Kai Chang1, Andrew Wu1, Hesham Soliman1,2, Fabio M.V. Rossi1 4 1School of Biomedical Engineering and the Biomedical Research Centre, Department of Medical 5 Genetics, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada 6 2Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Minia 7 University, Minia, Egypt 8 3Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, 9 Darlinghurst, NSW, 2010, Australia 10 4Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE- 11 ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 12 Santiago, Chile 13 # Denotes Co-first authorship 14 15 Keywords: drug screening, fibro/adipogenic progenitors, fibrosis, repair, skeletal muscle. 16 Correspondence to: 17 Marine Theret 18 School of Biomedical Engineering and the Biomedical Research Centre 19 University of British Columbia 20 2222 Health Sciences Mall, Vancouver, British Columbia 21 Tel: +1(604) 822 0441 fax: +1(604) 822 7815 22 Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427485; this version posted January 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Discovery of the Novel Autophagy Inhibitor Aumitin That Targets Mitochondrial Complex I
    Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2018 Discovery of the novel autophagy inhibitor Aumitin that targets mitochondrial complex I Lucas Robkea,b,c, Yushi Futamurad, Georgios Konstantinidise, Julian Wilkea,b, Harumi Aonod, Zhwan Mahmoudb, Nobumoto Watanabec,f, Yao-Wen Wue, Hiroyuki Osadac,d, Luca Laraiaa,g *, Herbert Waldmanna,b * a: Max-Planck-Institute of Molecular Physiology, department of Chemical Biology, Otto-Hahn-Str. 11, 44227 Dortmund (Germany); b: Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund (Germany); c: RIKEN-Max Planck Joint Research Division for Systems Chemical Biology, RIKEN CSRS, 2-1, Hirosawa, Wako, Saitama 351-0198 (Japan); d: Chemical Biology Research Group, RIKEN CSRS, 2-1, Hirosawa, Wako, Saitama 351-0198 (Japan); e: Chemical Genomics Centre of the Max-Planck-Society, Otto- Hahn-Str. 15, 44227 Dortmund (Germany); f: Bio-Active Compounds Discovery Research Unit, RIKEN CSRS, 2-1, Hirosawa, Wako, Saitama 351-0198 (Japan). g: present address: Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, Room 124, 2800 Kgs. Lyngby, Denmark. * [email protected], [email protected] SI-Table 1: Structure activity relationship of the di-aminopyrimidines. Starvation = starvation induced autophagy assay; Rapamycin = Rapamycin induced autophagy assay; Viability = survival assessed by means of an ADP-glow assay. > 10 = no inhibition at a test concentration of 10
    [Show full text]
  • 'Kinase-Controlled Phase Transition of Membraneless Organelles In
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2018 Kinase-controlled phase transition of membraneless organelles in mitosis Rai, Arpan Kumar ; Chen, Jia-Xuan ; Selbach, Matthias ; Pelkmans, Lucas Abstract: Liquid–liquid phase separation has been shown to underlie the formation and disassembly of membraneless organelles in cells, but the cellular mechanisms that control this phenomenon are poorly understood. A prominent example of regulated and reversible segregation of liquid phases may occur during mitosis, when membraneless organelles disappear upon nuclear-envelope breakdown and reappear as mitosis is completed. Here we show that the dual-specificity kinase DYRK3 acts as a central dissolvase of several types of membraneless organelle during mitosis. DYRK3 kinase activity is essential to prevent the unmixing of the mitotic cytoplasm into aberrant liquid-like hybrid organelles and the over-nucleation of spindle bodies. Our work supports a mechanism in which the dilution of phase-separating proteins during nuclear-envelope breakdown and the DYRK3-dependent degree of their solubility combine to allow cells to dissolve and condense several membraneless organelles during mitosis. DOI: https://doi.org/10.1038/s41586-018-0279-8 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-159872 Journal Article Accepted Version Originally published at: Rai, Arpan Kumar; Chen, Jia-Xuan; Selbach, Matthias; Pelkmans,
    [Show full text]
  • Profiling Data
    Compound Name DiscoveRx Gene Symbol Entrez Gene Percent Compound Symbol Control Concentration (nM) JNK-IN-8 AAK1 AAK1 69 1000 JNK-IN-8 ABL1(E255K)-phosphorylated ABL1 100 1000 JNK-IN-8 ABL1(F317I)-nonphosphorylated ABL1 87 1000 JNK-IN-8 ABL1(F317I)-phosphorylated ABL1 100 1000 JNK-IN-8 ABL1(F317L)-nonphosphorylated ABL1 65 1000 JNK-IN-8 ABL1(F317L)-phosphorylated ABL1 61 1000 JNK-IN-8 ABL1(H396P)-nonphosphorylated ABL1 42 1000 JNK-IN-8 ABL1(H396P)-phosphorylated ABL1 60 1000 JNK-IN-8 ABL1(M351T)-phosphorylated ABL1 81 1000 JNK-IN-8 ABL1(Q252H)-nonphosphorylated ABL1 100 1000 JNK-IN-8 ABL1(Q252H)-phosphorylated ABL1 56 1000 JNK-IN-8 ABL1(T315I)-nonphosphorylated ABL1 100 1000 JNK-IN-8 ABL1(T315I)-phosphorylated ABL1 92 1000 JNK-IN-8 ABL1(Y253F)-phosphorylated ABL1 71 1000 JNK-IN-8 ABL1-nonphosphorylated ABL1 97 1000 JNK-IN-8 ABL1-phosphorylated ABL1 100 1000 JNK-IN-8 ABL2 ABL2 97 1000 JNK-IN-8 ACVR1 ACVR1 100 1000 JNK-IN-8 ACVR1B ACVR1B 88 1000 JNK-IN-8 ACVR2A ACVR2A 100 1000 JNK-IN-8 ACVR2B ACVR2B 100 1000 JNK-IN-8 ACVRL1 ACVRL1 96 1000 JNK-IN-8 ADCK3 CABC1 100 1000 JNK-IN-8 ADCK4 ADCK4 93 1000 JNK-IN-8 AKT1 AKT1 100 1000 JNK-IN-8 AKT2 AKT2 100 1000 JNK-IN-8 AKT3 AKT3 100 1000 JNK-IN-8 ALK ALK 85 1000 JNK-IN-8 AMPK-alpha1 PRKAA1 100 1000 JNK-IN-8 AMPK-alpha2 PRKAA2 84 1000 JNK-IN-8 ANKK1 ANKK1 75 1000 JNK-IN-8 ARK5 NUAK1 100 1000 JNK-IN-8 ASK1 MAP3K5 100 1000 JNK-IN-8 ASK2 MAP3K6 93 1000 JNK-IN-8 AURKA AURKA 100 1000 JNK-IN-8 AURKA AURKA 84 1000 JNK-IN-8 AURKB AURKB 83 1000 JNK-IN-8 AURKB AURKB 96 1000 JNK-IN-8 AURKC AURKC 95 1000 JNK-IN-8
    [Show full text]
  • Kinase Profiling Book
    Custom and Pre-Selected Kinase Prof iling to f it your Budget and Needs! As of July 1, 2021 19.8653 mm 128 196 12 Tyrosine Serine/Threonine Lipid Kinases Kinases Kinases Carna Biosciences, Inc. 2007 Carna Biosciences, Inc. Profiling Assays available from Carna Biosciences, Inc. As of July 1, 2021 Page Kinase Name Assay Platform Page Kinase Name Assay Platform 4 ABL(ABL1) MSA 21 EGFR[T790M/C797S/L858R] MSA 4 ABL(ABL1)[E255K] MSA 21 EGFR[T790M/L858R] MSA 4 ABL(ABL1)[T315I] MSA 21 EPHA1 MSA 4 ACK(TNK2) MSA 21 EPHA2 MSA 4 AKT1 MSA 21 EPHA3 MSA 5 AKT2 MSA 22 EPHA4 MSA 5 AKT3 MSA 22 EPHA5 MSA 5 ALK MSA 22 EPHA6 MSA 5 ALK[C1156Y] MSA 22 EPHA7 MSA 5 ALK[F1174L] MSA 22 EPHA8 MSA 6 ALK[G1202R] MSA 23 EPHB1 MSA 6 ALK[G1269A] MSA 23 EPHB2 MSA 6 ALK[L1196M] MSA 23 EPHB3 MSA 6 ALK[R1275Q] MSA 23 EPHB4 MSA 6 ALK[T1151_L1152insT] MSA 23 Erk1(MAPK3) MSA 7 EML4-ALK MSA 24 Erk2(MAPK1) MSA 7 NPM1-ALK MSA 24 Erk5(MAPK7) MSA 7 AMPKα1/β1/γ1(PRKAA1/B1/G1) MSA 24 FAK(PTK2) MSA 7 AMPKα2/β1/γ1(PRKAA2/B1/G1) MSA 24 FER MSA 7 ARG(ABL2) MSA 24 FES MSA 8 AurA(AURKA) MSA 25 FGFR1 MSA 8 AurA(AURKA)/TPX2 MSA 25 FGFR1[V561M] MSA 8 AurB(AURKB)/INCENP MSA 25 FGFR2 MSA 8 AurC(AURKC) MSA 25 FGFR2[V564I] MSA 8 AXL MSA 25 FGFR3 MSA 9 BLK MSA 26 FGFR3[K650E] MSA 9 BMX MSA 26 FGFR3[K650M] MSA 9 BRK(PTK6) MSA 26 FGFR3[V555L] MSA 9 BRSK1 MSA 26 FGFR3[V555M] MSA 9 BRSK2 MSA 26 FGFR4 MSA 10 BTK MSA 27 FGFR4[N535K] MSA 10 BTK[C481S] MSA 27 FGFR4[V550E] MSA 10 BUB1/BUB3 MSA 27 FGFR4[V550L] MSA 10 CaMK1α(CAMK1) MSA 27 FGR MSA 10 CaMK1δ(CAMK1D) MSA 27 FLT1 MSA 11 CaMK2α(CAMK2A) MSA 28
    [Show full text]
  • Kinaseseeker™ Full-Length Panel (112 Wild-Type Kinases)
    KinaseSeeker™ Full-Length Panel (112 Wild-Type Kinases) Kinase Group Kinase Group ABL1 full-length TK DDR1 intracellular module TK ACVR1 intracellular module TKL DDR2 intracellular module TK AKT1 full-length AGC EGFR intracellular module TK AKT2 full-length AGC EPHA1 intracellular module TK AKT3 full-length AGC EPHA2 intracellular module TK AMPKa1 full-length CAMK EPHA3 intracellular module TK BLK full-length TK EPHA4 intracellular module TK BTK full-length TK EPHA5 intracellular module TK CAMK1D full-length CAMK EPHA6 intracellular module TK CAMK1G full-length CAMK EPHA7 intracellular module TK CAMK2A full-length CAMK EPHA8 intracellular module TK CAMK2B full-length CAMK EPHB3 intracellular module TK CAMK2D full-length CAMK EPHB4 intracellular module TK CAMK2G full-length CAMK ERBB2 intracellular module TK CAMKK1 full-length Other ERBB4 intracellular module TK CAMKK2 full-length Other FAK full-length TK CASK full-length CAMK FGFR2 intracellular module TK CDKL5 full-length CMGC FGFR3 intracellular module TK CK1d full-length CK1 FGR full-length TK CLK1 full-length CMGC FLT1 intracellular module TK CLK2 full-length CMGC FLT2 intracellular module TK CLK3 full-length CMGC FLT4 intracellular module TK CSF1R intracellular module TK FRK full-length TK CSK full-length TK FYN full-length TK DAPK1 full-length CAMK GRK7 full-length AGC Legend: Full-Length: Construct contains Full-length kinase Intracellular Module: Construct contains Cytoplasmic Region in Receptor Tyrosine Kinases Page 1 of 3 KinaseSeeker™ Full-Length Panel (112 Wild-Type Kinases)
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0088532 A1 Alitalo Et Al
    US 20060O88532A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0088532 A1 Alitalo et al. (43) Pub. Date: Apr. 27, 2006 (54) LYMPHATIC AND BLOOD ENDOTHELIAL Related U.S. Application Data CELL GENES (60) Provisional application No. 60/363,019, filed on Mar. (76) Inventors: Kari Alitalo, Helsinki (FI); Taija 7, 2002. Makinen, Helsinki (FI); Tatiana Petrova, Helsinki (FI); Pipsa Publication Classification Saharinen, Helsinki (FI); Juha Saharinen, Helsinki (FI) (51) Int. Cl. A6IR 48/00 (2006.01) Correspondence Address: A 6LX 39/395 (2006.01) MARSHALL, GERSTEIN & BORUN LLP A6II 38/18 (2006.01) 233 S. WACKER DRIVE, SUITE 6300 (52) U.S. Cl. .............................. 424/145.1: 514/2: 514/44 SEARS TOWER (57) ABSTRACT CHICAGO, IL 60606 (US) The invention provides polynucleotides and genes that are (21) Appl. No.: 10/505,928 differentially expressed in lymphatic versus blood vascular endothelial cells. These genes are useful for treating diseases (22) PCT Filed: Mar. 7, 2003 involving lymphatic vessels, such as lymphedema, various inflammatory diseases, and cancer metastasis via the lym (86). PCT No.: PCT/USO3FO6900 phatic system. Patent Application Publication Apr. 27, 2006 Sheet 1 of 2 US 2006/0088532 A1 integrin O9 integrin O1 KIAAO711 KAAO644 ApoD Fig. 1 Patent Application Publication Apr. 27, 2006 Sheet 2 of 2 US 2006/0088532 A1 CN g uueleo-gº US 2006/0O88532 A1 Apr. 27, 2006 LYMPHATIC AND BLOOD ENDOTHELLAL CELL lymphatic vessels, such as lymphangiomas or lymphang GENES iectasis. Witte, et al., Regulation of Angiogenesis (eds. Goldber, I. D. & Rosen, E. M.) 65-112 (Birkauser, Basel, BACKGROUND OF THE INVENTION Switzerland, 1997).
    [Show full text]
  • New Insights in RBM20 Cardiomyopathy
    Current Heart Failure Reports (2020) 17:234–246 https://doi.org/10.1007/s11897-020-00475-x TRANSLATIONAL RESEARCH IN HEART FAILURE (J BACKS & M VAN DEN HOOGENHOF, SECTION EDITORS) New Insights in RBM20 Cardiomyopathy D. Lennermann1,2 & J. Backs1,2 & M. M. G. van den Hoogenhof1,2 Published online: 13 August 2020 # The Author(s) 2020 Abstract Purpose of Review This review aims to give an update on recent findings related to the cardiac splicing factor RNA-binding motif protein 20 (RBM20) and RBM20 cardiomyopathy, a form of dilated cardiomyopathy caused by mutations in RBM20. Recent Findings While most research on RBM20 splicing targets has focused on titin (TTN), multiple studies over the last years have shown that other splicing targets of RBM20 including Ca2+/calmodulin-dependent kinase IIδ (CAMK2D) might be critically involved in the development of RBM20 cardiomyopathy. In this regard, loss of RBM20 causes an abnormal intracellular calcium handling, which may relate to the arrhythmogenic presentation of RBM20 cardiomyopathy. In addition, RBM20 presents clinically in a highly gender-specific manner, with male patients suffering from an earlier disease onset and a more severe disease progression. Summary Further research on RBM20, and treatment of RBM20 cardiomyopathy, will need to consider both the multitude and relative contribution of the different splicing targets and related pathways, as well as gender differences. Keywords RBM20 . Dilated cardiomyopathy . CaMKIIδ . Calcium handling . Gender differences . Titin Introduction (ARVC), where a small number of genes account for most of the genetic causes, DCM-causing mutations have been ob- Dilated cardiomyopathy (DCM), as defined by left ventricular served in a variety of genes of diverse ontology [2].
    [Show full text]
  • Anti-CLK2 Antibody (ARG66787)
    Product datasheet [email protected] ARG66787 Package: 100 μg anti-CLK2 antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes CLK2 Tested Reactivity Hu Tested Application IHC-P, WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name CLK2 Antigen Species Human Immunogen Synthetic peptide between aa. 1-50 of Human CLK2. Conjugation Un-conjugated Alternate Names CDC-like kinase 2; Dual specificity protein kinase CLK2; EC 2.7.12.1 Application Instructions Application table Application Dilution IHC-P 1:100 - 1:300 WB 1:500 - 1:2000 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Positive Control COLO205 and A549 Calculated Mw 60 kDa Observed Size ~ 60 kDa Properties Form Liquid Purification Affinity purification with immunogen. Buffer PBS, 0.02% Sodium azide, 50% Glycerol and 0.5% BSA. Preservative 0.02% Sodium azide Stabilizer 50% Glycerol and 0.5% BSA Concentration 1 mg/ml Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. www.arigobio.com 1/3 Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol CLK2 Gene Full Name CDC-like kinase 2 Background This gene encodes a dual specificity protein kinase that phosphorylates serine/threonine and tyrosine- containing substrates.
    [Show full text]
  • The Dual Role of Micrornas in Colorectal Cancer Progression
    International Journal of Molecular Sciences Review The Dual Role of MicroRNAs in Colorectal Cancer Progression Lei Ding 1,2,†, Zhenwei Lan 1,2,†, Xianhui Xiong 1,2, Hongshun Ao 1,2, Yingting Feng 1,2, Huan Gu 1,2, Min Yu 1,2 and Qinghua Cui 1,2,* 1 Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; [email protected] (L.D.); [email protected] (Z.L.); [email protected] (X.X.); [email protected] (H.A.); [email protected] (Y.F.); [email protected] (H.G.); [email protected] (M.Y.) 2 Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China * Correspondence: [email protected]; Tel.: +86-871-65031412 † These authors contributed equally to this work. Received: 29 August 2018; Accepted: 13 September 2018; Published: 17 September 2018 Abstract: Colorectal cancer (CRC) is responsible for one of the major cancer incidence and mortality worldwide. It is well known that MicroRNAs (miRNAs) play vital roles in maintaining the cell development and other physiological processes, as well as, the aberrant expression of numerous miRNAs involved in CRC progression. MiRNAs are a class of small, endogenous, non-coding, single-stranded RNAs that bind to the 3’-untranslated region (30-UTR) complementary sequences of their target mRNA, resulting in mRNA degradation or inhibition of its translation as a post-transcriptional regulators. Moreover, miRNAs also can target the long non-coding RNA (lncRNA) to regulate the expression of its target genes involved in proliferation and metastasis of CRC. The functions of these dysregulated miRNAs appear to be context specific, with evidence of having a dual role in both oncogenes and tumor suppression depending on the cellular environment in which they are expressed.
    [Show full text]