Manhattan Project

Total Page:16

File Type:pdf, Size:1020Kb

Manhattan Project Jádro ve Pavel Cejnar Ústav částicové a jaderné fyziky službách Matematicko-fyzikální fakulta UK Novosemetrálka Young Minds, Praha, březen 2019 J. E. Lodge, "New triumphs in age-old quest for perfect timepiece" in Popular Science Monthly, New York, Vol. 119, No. 6, Dec. 1931, p. 53 Vazbová energie jádra R ≈ 1-8·10−15 m hmotnost „hmotnostní hmotnost hmotnost 17 3 jádra neutronů protonů schodek“ ρ ≈ 2·10 kg/m m( N ,Z ) N mn Z mp ( N ,Z ) proton −27 −27 mn=1.675·10 kg mp=1.673·10 kg Z Ekvivalence hmotnosti a energie E mc2 N Vazbová energie jádra – energie, která se uvolní, když neutron se protony a neutrony přiblíží a vytvoří vázaný systém (jádro): 2 2 2 B(N ,Z ) N mnc Z mpc m(N ,Z ) c 2 ( N ,Z )c Vazbová energie jádra V roce 1935 odvodil C.von Weizsäcker pro vazbovou energii jader jednoduchou formulku, která vysvětluje B [MeV] stabilitu jader v přírodě a ukazuje, že těžká jádra A mají menší vazbovou energii než středně těžká jádra. Carl Friedrich von Weizsäcker 1912-2007 B [MeV] A von Weiszäckerova formule 2 Z 2 (N Z)2 B a A a A3 a a V S C 1 A A A3 A N Z Vazbová energie jádra V roce 1935 odvodil C.von Weizsäcker pro vazbovou energii jader jednoduchou formulku, která vysvětluje B [MeV] stabilitu jader v přírodě a ukazuje, že těžká jádra A mají menší vazbovou energii než středně těžká jádra. Carl Friedrich von Weizsäcker 1912-2007 Obyčejné Při štěpení 1 jádra 235U hoření, např. se uvolní celkem cca C+O2→CO2, 210 MeV energie uvolní na (z toho cca 180 MeV 1 vzniklou okamžitě a cca 30 MeV molekulu při následných rozpadech) asi 1-10 eV ≈108 x víc energie 1 eV =1.6·10−19 J A N Z Řetězová reakce V r.1932 navrhli John Cockroft a Ernest Walton (vynálezci prvního urychlovače částic) uvolnění energie jádra pomocí reakce s urychlenými protony 7 4 4 p 3Li 2He 2 He . Jejich návrh zkritizoval Ernest Rutherford (objevitel atomového jádra). Podle něj energie jádra nemůže být prakticky využita. John Cockroft Ernest Walton 1897–1967 Ernest Rutherford 1903-95 1871-1937 Ernest Walton a jeho generátor, Cambridge, 1932 Řetězová reakce V r.1932 navrhli John Cockroft a Ernest Walton (vynálezci prvního urychlovače částic) uvolnění energie jádra pomocí reakce s urychlenými protony 7 4 4 p 3Li 2He 2 He . Jejich návrh zkritizoval Ernest Rutherford (objevitel atomového jádra). Leo Szilard 1898-1964 Podle něj energie jádra nemůže být prakticky využita. V r.1934 koná Enrico Fermi pokusy s bombardováním uranu neutrony (částice objevená v r.1932). V témže roce podává Leo Szilard patent předjímající neutrony n vyvolanou řetězovou reakci jader. Jeho návrh byl sice nereálný, 2n ale obsahoval zárodek správné n myšlenky… 2n n Štěpení jader neutron V prosinci 1938 nachází Otto Hahn a Fritz Strassmann (v Berlíně) ve Ida Noddack vzorcích uranu ozářeného neutrony 1896-1978 lehčí jádra (baryum). Lisa Meitner a Robert Frisch (v Dánsku) to vysvětlují jako výsledek štěpení jádra uranu, ke kterému dochází v důsledku „křehkosti“ těžkých jader neutrony dané elektrickým odpuzováním protonů… Pozn.: Možnost štěpení uranu navrhla na základě Fermiho experimentů již Otto Hahn 1879-1968 v r.1934 Ida Noddack. Lise Meitner 1878-1968 Rozdělení hmotnostních čísel štěpných Aparatura, na níž Hahn a Strassmann v Ústavu císaře Wilhelma v Berlíně objevili produktů štěpení (Deutsches Museum, Mnichov) (pro různá štěpená jádra) Štěpení jader neutron Niels Bohr („otec“ kvantové fyziky a spolutvůrce jaderné fyziky) v USA Robert Frisch nechtěně iniciuje „hon“ na přímý 1904-1979 důkaz štěpení (a hájí prvenství Frische v Kodani). Štěpení uranu se stává všeobecně známým jevem... Nature, 11.2.1939 neutrony Otto Hahn 1879-1968 Lise Meitner 1878-1968 Vzniká otázka, jakou roli hrají izotopy ퟐퟑퟖ ퟐퟑퟓ ퟗퟐ푼 a ퟗퟐ퐔, které vzhledem ke štěpení vykazují značně odlišné Nature, 18.2.1939 vlastnosti Štěpení jader neutron Niels Bohr 1885-1962 John Archibald Wheeler 1911- 2008 Štěpení jader neutron !!! Niels Bohr 1885-1962 řetězová reakce! Začátek války 1938 prosinec O.Hahn + F.Strassmann a R.Frisch + L.Meitner objevují 1939 štěpení uranu neutrony, rozebíhá leden se horečné zkoumání (N.Bohr…) březen Německo obsazuje (štěpí) Českoslo- vensko a získává jeho zásoby uranu srpen A.Einstein (na popud L.Szilárda) píše dopis prezidentu USA Rooseveltovi září začátek 2. světové války Rooseveltova odpověď odpověď Rooseveltova 1939 10. 19. dopis Rooseveltovi Einsteinův 1939 8. 2. Začátek války 1938 prosinec O.Hahn + F.Strassmann a R.Frisch + L.Meitner objevují 1939 štěpení uranu neutrony, rozebíhá leden se horečné zkoumání (N.Bohr…) březen Německo obsazuje (štěpí) Českoslo- vensko a získává jeho zásoby uranu srpen A.Einstein (na popud L.Szilárda) píše dopis prezidentu USA Rooseveltovi září začátek 2. světové války prosinec Werner Heisenberg iniciuje 1940 vývoj německého jaderného reaktoru (Uranmaschine) únor květen Německo dobývá Belgii a získává zásoby uranu v belgickém Kongu Heisenbergova tajná zpráva německému úřadu pro červen Německo dobývá Norsko zbraně (Heereswaffenamt, Army Weapons Bureau) a ovládá výrobu těžké vody "O možnosti produkce technické energie štěpením uranu" 6. 12. 1939 (část I) 20. 2. 1940 (část II) Případ Heisenberg Werner Heisenberg (vynikající teoretik, spoluzaklada- tel kvantové mechaniky) navštívil v září 1941 svého přítele Nielse Bohra v Kodani. Obsah jejich setkání dodnes nebyl zcela vyjasněn, ale Bohr jej interpretoval jako důkaz loajality Heisenberga (který sám byl před válkou nacisty napadán) nacistickému Německu. To ještě více urychlilo jaderný výzkum spojenců. Nicméně role Heisenberga v německém Werner Heisenberg 1901–1976 vojenském programu byla pravděpodobně přeceňována. V Kodani s N. Bohrem 1933, 1934, 1937 Případ Heisenberg Zürich, 18.12.1944 Pokus o zabití Heisenberga při jeho návštěvě ve Švýcarsku americkým agentem Morrisem „Moe“ Bergem. Heisenberg se ale zdál být pohlcen svým výzkumem v kvantové teorii a Berg od záměru upouští... Tabule z natáčení seriálu Génius Bomba versus reaktor Bikini test, 25. 7. 1946 Jaderná bomba „Jaderná fáze“ exploze je extrémně rychlý proces ( ≈ 1 μs ) vyžadující vysoce účinný štěpný materiál – ne 238U, ale 235U! Ten se v přírodním uranu nachází s příměsí jen 0,72 %. Uran pro bombu se proto musí obohacovat! Kritická hmota čistého 235U ve sférické geometrii je asi 50 kg (s odrá- žečem neutronů méně!). Heisenberg tuto hmotu silně nadhodnotil… (b) kritické (c) vliv neutronového (a) podkritické odrážeče množství množství Bomba versus reaktor regulační tyč moderátor moderátor moderátor moderátor palivová tyč palivová tyč U štěpení U pomalý rychlé neutron neutrony štěpení zpomalování U U zpomalování aktivní zóna moderního reaktoru Jaderný reaktor Může jako palivo využívat i neobohacený uran. Podmínkou je účinné a bezztrátové zpomalování neutronů. Nejefektivnější zpomalování neutronů probíhá na lehkých jádrech jako vodík, které však nesmí neutrony pohlco- vat – kandidáti: deuterium (těžká voda, D2O) nebo čistý uhlík (grafit). Bonus: V reaktoru s přírodním uranem vzniká plutonium 239Pu, které se dá použít v bombě podobně jako 235U ! krit.hmotnost 10 kg (ve sférické geometrii, bez odrážeče) Plutonium bylo objeveno na přelomu 1940-41 na cyklotronu v Berkeley Lab. Němci možnost výroby štěpitelného jádra v reaktoru začali zvažovat od 1941. Těžká voda 1 jádro D připadá na 6400 jader H. D20 se dá získávat mnohonásobnou elektrolýzou H20. Výroba těžké vody probíhala od r.1935 v Norsku. 1940: odvoz 185 kg těžké vody do Francie Továrna na (později do GB) – Joliot-Curie. těžkou vodu Po úplném obsazení Norska Německem je v Rjukanu, 1935 Norsk Hydro terčem diverzních akcí: říjen 1942: operace Freshman – seskok 4 norských parašutistů, přistání 2 kluzáků s 32 muži, havárie, část zahynula, ostatní zajati a popraveni… únor 1943: operace Gunnerside – seskok 6 norských parašutistů, pochod 50 km na lyžích, průnik do továrny, odpálení náloží, úspěšný návrat listopad 1943: bombardování továrny únor 1944: potopení trajektu SF Hydro, převážejícího barely D2O přes jezero Tinn. Dramatizace operace v roce 1948 Uranprojekt duben–říjen 1941 K.Diebner, A.Esau, W.Gerlach, O.Hahn, W.Bothe, K.Clusius, E.Schumann, P.Harteck, W.Heisenberg, C.v.Weiszäcker ….. Berlin Leipzig Různé návrhy experimentálního „reaktoru“ pro výzkum produkce neutronů při štěpení únor 1942 únor 1942 červen 1942 Uranprojekt – Lipská nehoda Exploze „jaderného reaktoru“ 23. 6. 1942 Příčina: chemické vznícení uranu. Důsledky: zpomalení německého výzkumu, ale paradoxně i zvýšené obavy spojenců... Snímky z natáčení seriálu Génius Uranprojekt – po 1942 Berlin říjen 1942 květen 1943 Nový design: neobohacený U (kovová forma) těžká voda Haigerloch → 1945 Spojenci rozebírají reaktor Útěk Nielse Bohra V září 1943 utíká Niels Bohr z Kodaně do Švédska, odtud je v říjnu transportován do GB a dále do USA, kde se připojuje k Manhattan Project. Cesta do GB se mu málem stala osudnou… rychlý bombardér de Havilland DH.98 Mosquito Manhattan Project Od konce 1939 USA a GB zkoumaly možnost vojenského použití uranu. Na konci 1941 se úsilí sjednotilo v rámci tzv. projektu Manhattan (1942-1946) Někteří známí fyzikové: R. Oppenheimer, N. Bohr, E. Fermi, J.von Neumann, R. Feynman, E. Wigner, L. Szilard, P. Auger, F. Bloch, I. Rabi, S. Anderson, J. Chadwick, R. Glauber, J. Cockroft, E. Condon, B. Pontecorvo, S. Ulam, N. Rosen, E. Teller, E. Segré, F. Reines, R. Peierls, A. Bohr …..………………… Představy o U-bombě kolem 1942 Manhattan Project – Feynman 1941-42: v Princetonu pracuje jako dobrovolník na vojenském výzkumu (balistika, separace uranu) 1943-45: Los Alamos, pracuje na výpočtech výtežku štěpné reakce (v Betheho skupině), ve výpočetním oddělení (koordinace „human computers“, později práce s mechanickými analogovými počítači – metoda děrných štítků), 1918 – 1988 v Oak Ridge na zabezpečení manipulace s obohaceným uranem, na vývoji uranové hybridní bomby (s moderátorem, později Von Neumann Ulam opuštěno), také jako partner v diskusích Feynman s Nielsem Bohrem Manhattan Project – jaderné reaktory 2. 12. 1942 bylo v Chicagu (pod sedadly stadionu Stagg Field ) pod vedením E. Fermiho uskutečněno první řízené štěpení uranu v reaktoru Chicago Pile-1 (přírodní uran, grafitový moderátor).
Recommended publications
  • Radiation Poisoning , Also Called Radiation Sickness Or a Creeping Dose , Is a Form of Damage to Organ Tissue Due to Excessive Exposure to Ionizing Radiation
    Radiation poisoning , also called radiation sickness or a creeping dose , is a form of damage to organ tissue due to excessive exposure to ionizing radiation . The term is generally used to refer to acute problems caused by a large dosage of radiation in a short period, though this also has occurred with long term exposure. The clinical name for radiation sickness is acute radiation syndrome ( ARS ) as described by the CDC .[1][2][3] A chronic radiation syndrome does exist but is very uncommon; this has been observed among workers in early radium source production sites and in the early days of the Soviet nuclear program. A short exposure can result in acute radiation syndrome; chronic radiation syndrome requires a prolonged high level of exposure. Radiation exposure can also increase the probability of contracting some other diseases, mainly cancer , tumours , and genetic damage . These are referred to as the stochastic effects of radiation, and are not included in the term radiation sickness. The use of radionuclides in science and industry is strictly regulated in most countries (in the U.S. by the Nuclear Regulatory Commission ). In the event of an accidental or deliberate release of radioactive material, either evacuation or sheltering in place are the recommended measures. Radiation sickness is generally associated with acute (a single large) exposure. [4][5] Nausea and vomiting are usually the main symptoms. [5] The amount of time between exposure to radiation and the onset of the initial symptoms may be an indicator of how much radiation was absorbed. [5] Symptoms appear sooner with higher doses of exposure.
    [Show full text]
  • Nuclear Fallout and Intelligence As Secrets, Problems, and Limitations on the Arms Race, 1940-1964
    © Copyright 2016 Michael R. Lehman NUISANCE TO NEMESIS: NUCLEAR FALLOUT AND INTELLIGENCE AS SECRETS, PROBLEMS, AND LIMITATIONS ON THE ARMS RACE, 1940-1964 BY MICHAEL R. LEHMAN DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in History in the Graduate College of the University of Illinois at Urbana-Champaign, 2016 Urbana, Illinois Doctoral Committee: Professor Lillian Hoddeson, Chair Professor Kristin Hoganson, Co-Chair Professor Michael Weissman Professor Robert Jacobs, Hiroshima City University Abstract Fallout sampling and other nuclear intelligence techniques were the most important sources of United States strategic intelligence in the early Cold War. Operated as the Atomic Energy Detection System by a covert Air Force unit known as AFOAT-1, the AEDS detected emissions and analyzed fallout from Soviet nuclear tests, as well as provided quantitative intelligence on the size of the Russian nuclear stockpile. Virtually unknown because the only greater Cold War secret than nuclear weapons was intelligence gathered about them, data on the Soviet threat produced by AFOAT-1 was an extraordinary influence on early National Intelligence Estimates, the rapid growth of the Strategic Air Command, and strategic war plans. Official guidance beginning with the first nuclear test in 1945 otherwise suggested fallout was an insignificant effect of nuclear weapons. Following AFOAT-1’s detection of Soviet testing in fall 1949 and against the cautions raised about the problematic nature of higher yield weapons by the General Advisory Committee, the Atomic Energy Commission’s top scientific advisers, President Harry Truman ordered the AEC to quickly build these extraordinarily powerful weapons, testing the first in secrecy in November 1952.
    [Show full text]
  • Reuleaux2019 Vol.1 Iss.1.Pdf (12.49Mb)
    t t REULEAUX 2019 REULEAUX Reuleaux Undergraduate Research Journal Colorado School of Mines Volume 1 Issue 1 Reuleaux McBride Honors Colorado School of Mines Golden, Colorado 80401 ©2019 Reuleaux, Colorado School of Mines Copyright Information Reuleaux is an Open Access journal. All authors retain the copyright work published by Reuleaux. All works are licensed to be shared and used under the Creative Commons CC-BY License or the Creative Commons CC-BY-NC License. The Creative Commons CC-BY License and the Creative Commons CC-BY-NC License permit works to be copied, published, and shared without restrictions as long as the original author(s) is credited with full citation details. The Creative Commons CC-BY-NC License also requires permission for the copyright owner (authors) for any commercial use of the original work. All works in Reuleaux can be shared without restrictions. Proper credit should be given. The Editorial Board can be contacted at [email protected]. T bl o Co e t 1 Demons of Los Alamos 20 Evaluating Eribulin 5 Editor Analysis: Demons of Los Alamos 23 Evaluation of the Paris Agreement 6 Three Years in the CFCC 26 Editor Analysis: Paris Agreement 9 Carreon Lab Spotlight 27 Colorado Fuel Cell Center Spotlight 13 Lunar Ice Extraction 30 Exploring Fractional Derivatives 18 Editor Analysis: Lunar Ice Extraction 32 Meet the Editors 19 Dr. Jeffrey King Spotlight 35 Call for Submissions Peer Review Shit Message from the Editor in Chief As scientific research continues to propel humanity further into the future, the problems facing scientists and engineers become increasingly complex.
    [Show full text]
  • The Manhattan Project John Kenneth Christopher Hunt a Thesis in The
    The Manhattan Project John Kenneth Christopher Hunt A Thesis in The Department of English Presented in Partial Fulfllment of the Requirements for the Degree of Master of Arts in English at Concordia University Montreal, Quebec, Canada Dr. Darren Wershler, Project Supervisor April 2017 © John Kenneth Christopher Hunt 2017 1 2 ABSTRACT The Manhattan Project is a book of lyric poetry that chronicles the discovery of nuclear energy and its subsequent use as both a weapon and a fuel source. The book is grounded in the aesthetic positionality contained in scholar Joyelle McSweeney`s concept of the `necropastoral`, a liminal zone where disparate spaces, such as the classical `urban` and `pastoral`, become blurred. The Manhattan Project examines the enduring impossibility of sufciently responding to the continuing repercussions of the nuclear age and its post-nuclear contaminants through a kind of `resurrection` of lyric meditation, further mutated by both formal constraints and conceptual frameworks. 3 TABLE OF CONTENTS I. THE ATOMS WE CLEAVE 8 II. THE ARMS RACE Below Oklo 14 Radioactivity 18 The World Set Free 20 Ideal Isotopes 22 Critical Mass 38 Thuringia 40 III. TRINITY 44 IV. GHOSTS OF LOS ALAMOS Valles Caldera 50 Industrial Complex 54 The Demon Core 56 V. MILITARY INCIDENTS Dull Swords 66 Broken Arrows 68 Bent Spear 72 Empty Quivers 73 Faded Giants 75 Nucflash 77 4 VI. RAIN OF RUIN Clear Skies 80 Testimony 84 Operation Epsilon 88 VII. CONTAMINATION Christmas Island 92 Plutonium Valley 94 The East Ural Reserve 96 The Argonne Incident 98 The Human Factor 100 The Elephant’s Foot 102 Caveat Clepta 109 Rising Water 110 VIII.
    [Show full text]
  • Nuclear Threat Reduction
    Nuclear Threat Reduction Angela Di Fulvio Nuclear, Plasma, and Radiological Engineering Department 03/24/2020 Presentation developed within the framework of the APS Physicists Coalition for Nuclear Threat Reduction 1 Some technical aspects • Bombs, the world arsenal, and their effects Policy aspects • The long peace and close calls The current nuclear threat and how to reduce it Outline Engagement of the scientific community and the public in nuclear threat reduction • Past efforts • The APS Physicists Coalition for Nuclear Threat Reduction - https://sgs.princeton.edu/physicistscoalition 2 Reuters Photo AP photos Nuclear Threat Reduction The number of nuclear weapons is declining at a slow pace. The US, Russia, and the UK are reducing their nuclear arsenals, France and Israel have stable inventories, while China, Pakistan, India, and North Korea are developing new capabilities. Mikhail Gorbachev and Ronald Reagan after signing the Figures depicting Vladimir Putin and Donald Trump Intermediate Range Nuclear Forces (INF) Treaty in 1987. breaking the INF Treaty during the Rosenmontag parade in Dusseldorf, 2019. 3 The Discovery of Nuclear Fission Dual-use of nuclear energy started in the early days Lise Meitner, Otto R. Frisch • August 2, 1939 Albert Einstein sent a letter to President Roosevelt, advising him to fund research to explore the possibility of using nuclear fission as a weapon. • October 21, 1939 Otto Hahn, Fritz Strassmann The Advisory Committee on achieved fission in Berlin, 1938 Uranium budgeted $6,000 for neutron experiments led by Performed the first Fermi and Szilárd. The fission reaction of uranium with slow Manhattan project has neutrons, 1932-33. officially started.
    [Show full text]
  • Women of the Manhattan Project Coloring Book
    COLORING BOOK Dr. Lilli S. Hornig CHEMIST Blanche Lawrence BIOCHEMIST Irene Joliot-Curie CHEMIST & PHYSICIST Floy Agnes-Lee BIOLOGIST Calutron Girls EQUIPMENT TECHNICIANS Blanche Lawrence BIOCHEMIST ABOUT THE SCIENTISTS Irene Joliot-Curie CHEMIST & PHYSICIST Dr. Lilli S. Hornig CHEMIST DR. LILLI HORNIG BLANCHE LAWRENCE IRÈNE JOLIOT-CURIE Dr. Lilli Hornig was a chemist who Blanche J. Lawrence worked in the Irène Joliot-Curie is the daughter of worked on the Manhattan Project Health Division of the University of famous scientist Marie Curie. But she in Los Alamos, New Mexico. She Chicago’s Metallurgical Laboratory is famous in her own right as a Nobel studied plutonium and chemistry, and or “Met Lab” during the Manhattan Prize winner, science groundbreaker, Project. She was one of the few and talented mathematician. later worked in the explosives group African-American women scientists alongside her husband. of her day. During WWI, she and her mother worked as nurse radiographers in field Hornig was originally offered a job as a She graduated from Tuskegee hospitals — using the X-ray equipment typist, even though she had a bachelors University, where she belonged created by her parents’ research. in chemistry and a masters from Harvard. to the Physical Education Club and She quipped she was an awful typist, the Creative Dance Group. After the war, Irène taught a young and showed her credentials for a chemical engineer, Frédéric Joliot, research position. After World War II, she continued who later became her husband and working at the Met Lab’s successor, research partner. The duo discovered After witnessing the first detonation Argonne National Lab.
    [Show full text]
  • Plutonium an Overview
    Plutonium An overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 09 Jun 2011 13:52:20 UTC Contents Articles Overview 1 Plutonium 1 Allotropes 23 Allotropes of plutonium 23 Isotopes 25 Isotopes of plutonium 25 Compounds and mixtures 34 Plutonium borides 34 Plutonium carbide 35 Plutonium hexafluoride 36 Plutonium hydride 38 Plutonium(III) chloride 39 Plutonium(III) fluoride 40 Plutonium(IV) fluoride 42 Plutonium(IV) oxide 43 Plutonium-gallium alloy 45 MOX fuel 48 Environment 52 Plutonium in the environment 52 References Article Sources and Contributors 61 Image Sources, Licenses and Contributors 62 Article Licenses License 63 1 Overview Plutonium Plutonium Appearance silvery white General properties Name, symbol, number plutonium, Pu, 94 Pronunciation /pluːˈtoʊniəm/ ploo-toe-nee-əm Element category actinide Group, period, block n/a, 7, f −1 Standard atomic weight (244) g·mol Electron configuration [Rn] 5f6 7s2 Electrons per shell 2, 8, 18, 32, 24, 8, 2 (Image) Physical properties Phase solid Density (near r.t.) 19.816 g·cm−3 Liquid density at m.p. 16.63 g·cm−3 Melting point 912.5 K,639.4 °C,1182.9 °F Boiling point 3505 K,3228 °C,5842 °F Heat of fusion 2.82 kJ·mol−1 Heat of vaporization 333.5 kJ·mol−1 Specific heat capacity (25 °C) 35.5 J·mol−1·K−1 Vapor pressure Plutonium 2 P/Pa 1 10 100 1 k 10 k 100 k at T/K 1756 1953 2198 2511 2926 3499 Atomic properties Oxidation states 7, 6, 5, 4, 3 (amphoteric oxide) Electronegativity 1.28 (Pauling scale) Ionization
    [Show full text]
  • The Demon Core and the Strange Death of Louis Slotin
    11/4/2017 Demon Core: The Strange Death of Louis Slotin - The New Yorker | The New Yorker Elements The Demon Core and the Strange Death of Louis Slotin By Alex Wellerstein May 21, 2016 A re-creation of the plutonium core that briey went critical on May 21, 1946, resulting in the death of the Manhattan Project physicist Louis Slotin. Photograph courtesy Los Alamos National Laboratory he demonstration began on the afternoon of May 21, 1946, at a secret laboratory T tucked into a canyon some three miles from Los Alamos, New Mexico, the https://www.newyorker.com/tech/elements/demon-core-the-strange-death-of-louis-slotin 1/7 11/4/2017 Demon Core: The Strange Death of Louis Slotin - The New Yorker | The New Yorker birthplace of the atom bomb. Louis Slotin, a Canadian physicist, was showing his colleagues how to bring the exposed core of a nuclear weapon nearly to the point of criticality, a tricky operation known as “tickling the dragon’s tail.” The core, sitting by itself on a squat table, looked unremarkable—a hemisphere of dull metal with a nub of plutonium sticking out of its center, the whole thing warm to the touch because of its radioactivity. It had been quickly molded into shape after tthhee bboommbbiingng ooff NNaaggaassaakkii, to be used in another attack on Japan, then reallocated when it turned out not to be needed for the war effort. At that time, Slotin was perhaps the world’s foremost expert on handling dangerous quantities of plutonium. He had helped assemble the ffiirrsstt aattoommiicc wweeaappoonn, barely a year earlier, and a contemporary photograph shows him standing beside its innards with his shirt unbuttoned and sunglasses on, cool and collected.
    [Show full text]
  • Project Y Ethan Kolkimeier • Elizabeth Lyle • Leon Staton • Yuna Susake
    Title of Section PROJECT Y Ethan Kolkimeier • Elizabeth Lyle • Leon Staton • Yuna Susake 1 Dedicatation This book is dedicated to Dr. Robles. 3 Title of Section Table of Contents Dedicatation . 3 Introduction . 7 Origins . 7 Nuclear Fission and Atomic Bombs . 7 Bomb Design Concepts . 9 Bomb Laboratory Concept . 10 Site Selection . 11 Organization. .13 Military . 13 Civilian . 15 Gun-type weapon design . 19 Research . .19 Development. .21 Plutonium . 23 Implosion-type Weapon Design and Fat Man . 25 Little Boy . 27 Water Boiler . .30 Super. .32 Trinity . 35 Jumbo . 35 Project Alberta . 37 Health and Safety . .40 5 Project Y Security . 41 Post-war . 42 Z Division . 43 Operation Crossroads . .43 Project Y . .45 Bibliography . 47 6 Introduction Introduction The Los Alamos Laboratory, also known as “Project Y”, was a secret laboratory established by the Manhattan Project and operated by the University of California (UC) during World War II (WWII). Its mission was to design and build the first atomic bombs. Robert Oppenheimer directed it from 1943 to 1945, succeeded by Norris Bradbury. Project Y operated in a remote part of New Mexico so that scientists could freely discuss their work while preserving security. Development initially concentrated on making a nuclear fission weapon using plutonium called “Thin Man”. In 1944, Oppenheimer reorganized the laboratory and orchestrated a successful effort on an alternative design proposed by John von Neumann: a nuclear weapon they called “Fat Man”. They developed a variant of the Thin Man design called “Little Boy”, using the isotope uranium-235. Chemists at the Los Alamos Laboratory developed methods of purifying the elements uranium and plutonium, the latter an uncommon metal when Project Y began.
    [Show full text]
  • Chapter 21: Radioactivity and Nuclear Chemistry
    Chapter 21: Radioactivity and Nuclear Chemistry Chem 102 Jussi Eloranta Other radioactive dating applications • 14C dating works for organic objects < ~50,000 yrs old • Age of rocks can be determined by measuring: 238 206 9 U → Pb (t1/2 = 4.5 x 10 years) This ratio is set when rock forms from magma. • Oldest rocks on Earth are ~4.0 billion years old • Oldest meteorites are ~4.5 billion years old; roughly the age of our solar system 2 Nuclear fission • Lise Meitner, Fritz Strassmann, Otto Hahn in 1939: The bombardment of uranium-235 with neutrons produces elements lighter than uranium: neutron The nucleus is broken apart by neutron! 3 Chain reaction • Initial decay produces more neutrons, so if more 235U is present, the reaction can continue • Can produce a lot of energy! • Need a minimum amount of 235U; critical mass • 235U is <1% of naturally occurring U. Needs to be refined (“enriched”). Accelerating chain reaction! 4 Critical mass ● A ‘runaway’ condition exists if The ‘demon core’ enough neutrons strike enough U-235 atoms: ● If the mass is small, neutrons escape from the surface without causing enough chain reactions (subcritical) ● If the mass is large, neutrons remain inside and cause runaway (supercritical) Pu sphere surrounded by neutron-reflective blocks ● Critical mass of U-235 is ~52 kg goes supercritical if two (17 cm diameter) additional blocks are added 5 Manhattan Project $6 ms after detonation, ,-** m wide) • Development of atomic bomb ,$*!$*+ K during WW II (Oppenheimer et al.) • Especially important: How to enrich enough uranium to produce a bomb? (Oak Ridge, TN) • Bomb assembly at Los Alamos, NM First atomic bomb test in • In 1945 US dropped atomic New Mexico (Trinity test) bombs on Hiroshima and in 1%&5 had the power of Nagasaki, Japan; end of WW II $()**0 tons of TNT 6 Nuclear power • A huge amount of energy is released from nuclear fission.
    [Show full text]
  • Outdoor Travel Ountry & SPECIAL ISSUE N for Peoplewhocare West Aboutthe LOST SANCTUARIES ATOMIC TOURISTS WALKING ITOFF Ews CONTENTS
    outdoor& travel SPECIAL ISSUE High Country ForN people whoews care about the West May 13, 2019 | $5 | Vol. 51 No. 8 | www.hcn.org No. 51 | $5 Vol. 2019 13, May ATOMIC TOURISTS LOST SANCTUARIES WALKING IT OFF CONTENTS High Country News Editor’s note EXECUTIVE DIRECTOR/PUBLISHER Paul Larmer EDITOR-IN-CHIEF Road trip detours Brian Calvert FEATURES ART DIRECTOR and epiphanies Cindy Wehling DIGITAL EDITOR Last year, I found myself driving Gretchen King 12 ASSOCIATE EDITORS from Colorado’s Western Slope Tristan Ahtone to my home in North Idaho, my The Atomic Road Trip Emily Benson car loaded down with books, Maya L. Kapoor In the Land of Enchantment, camping gear and my bike. As ASSOCIATE PHOTO EDITOR histories of violence are packaged, Luna Anna Archey road trips go, it was short but sold and consumed ASSISTANT EDITORS illuminating: I saw, firsthand, a Paige Blankenbuehler fundamental truth of that place, By LuLing Osofsky and Carl Segerstrom Anna V. Smith its desert heat and fire-scarred Key MacFarlane EDITOR AT LARGE hillsides. The first evening, as dusk settled over Betsy Marston the landscape, a sign announced that the narrow COPY EDITOR Diane Sylvain highway I’d meant to take through Utah was closed. 32 CONTRIBUTING EDITORS As I detoured up the next road, I watched the glow Graham Brewer Ruxandra Guidi of a wildfire — the cause of the closure — blossom on Whose Santuario? Michelle Nijhuis the ridge to the east like a brilliant, dreadful flower, Finding and losing The world’s only UFO McDonald’s Jodi Peterson the scent of smoke filling my car.
    [Show full text]
  • PHYS1211—Part 3; Nuclear
    PHYS1211—part 3; nuclear • Chapters 13, 14, and 15 of the textbook: “Energy—Its Use and the Environment”. • Prof. Michael Ashley, Room 137, Old Main Building, [email protected], pph 9385-5465. • http://mcba11.phys.unsw.edu.au/˜mcba/PHYS1211/a.pdf The atomic hypothesis • Question: is matter indefinitely divisible? • Democritus (ca. 420 BC) proposed that all matter was composed of an indivisible component: at atom. • Aristotle: (384 BC–332 BC) matter composed of four “elements”: air, fire, water, earth. • Dalton (1766–1844) proposed that each element (lead, aluminium, hydrogen, etc) consisted of only one kind of “atom”, unique to that element. • Dalton conducted chemical experiments, John Dalton e.g., combining hydrogen & oxygen in precise ratios to produce water, which strongly supported his atom hypothesis. The electron charge-to-mass ratio Thomson’s experiment • J. J. Thomson measured the charge-to-mass ratio of the electron in 1897 using an evacuated tube. http://www.youtube.com/watch?v=IdTxGJjA4Jw • Electrons (blue) are produced by heating a filament, and are then accelerated by a voltage to the right. • Electric & magnetic fields deflect the electron beam. • From the strength of the two fields, the q/m ratio can be found. • We can do this experiment in the UNSW 2nd year laboratory. Protons and neutrons • All nuclei are composed of two particles: I protons—positively charged, with exactly the opposite charge of the electron, I neutrons—no charge • The masses of these particles are: I proton—1.0072766 amu I neutron—1.0086654 amu I electron—0.0005486 amu where an atomic mass unit (amu) is 1.66×10−27 kg.
    [Show full text]