Women of the Manhattan Project Coloring Book

Total Page:16

File Type:pdf, Size:1020Kb

Women of the Manhattan Project Coloring Book COLORING BOOK Dr. Lilli S. Hornig CHEMIST Blanche Lawrence BIOCHEMIST Irene Joliot-Curie CHEMIST & PHYSICIST Floy Agnes-Lee BIOLOGIST Calutron Girls EQUIPMENT TECHNICIANS Blanche Lawrence BIOCHEMIST ABOUT THE SCIENTISTS Irene Joliot-Curie CHEMIST & PHYSICIST Dr. Lilli S. Hornig CHEMIST DR. LILLI HORNIG BLANCHE LAWRENCE IRÈNE JOLIOT-CURIE Dr. Lilli Hornig was a chemist who Blanche J. Lawrence worked in the Irène Joliot-Curie is the daughter of worked on the Manhattan Project Health Division of the University of famous scientist Marie Curie. But she in Los Alamos, New Mexico. She Chicago’s Metallurgical Laboratory is famous in her own right as a Nobel studied plutonium and chemistry, and or “Met Lab” during the Manhattan Prize winner, science groundbreaker, Project. She was one of the few and talented mathematician. later worked in the explosives group African-American women scientists alongside her husband. of her day. During WWI, she and her mother worked as nurse radiographers in field Hornig was originally offered a job as a She graduated from Tuskegee hospitals — using the X-ray equipment typist, even though she had a bachelors University, where she belonged created by her parents’ research. in chemistry and a masters from Harvard. to the Physical Education Club and She quipped she was an awful typist, the Creative Dance Group. After the war, Irène taught a young and showed her credentials for a chemical engineer, Frédéric Joliot, research position. After World War II, she continued who later became her husband and working at the Met Lab’s successor, research partner. The duo discovered After witnessing the first detonation Argonne National Lab. the positron and neutron. Although of the atomic bomb from the Sandia they didn’t claim these discoveries and Mountains near Los Alamos, she In September 1949, she was didn’t work directly on the Manhattan featured in an Ebony Magazine Project, Irène and Frédéric’s research later signed a petition advocating for issue focusing on “Atom Scientists.” was instrumental in nuclear science demonstrating the bomb as a warning and creating the atomic bomb. instead of dropping it on a population. She was the widow of a Tuskegee Airman, Captain Erwin Lawrence. Irène was active in promoting women’s After the war, Lilli Hornig founded Higher Her husband died on a mission over education, and had a son and a Education Resource Services (HERS), enemy airfield near Athens, Greece. daughter who also became noted which researches historic discrimination scientists. She died from leukemia against women and challenges sexist at the age of 59, after years of hiring practices. She was also the first radiation exposure. director of the Committee on the Education and Employment of Women in Science and Engineering at the National Academy of Sciences. Floy Agnes-Lee Calutron BIOLOGIST Girls EQUIPMENT TECHNICIANS FLOY AGNES-LEE CALUTRON GIRLS Floy Agnes “Aggie” Lee worked as a hematology “Calutron Girls” were young women hired to work technician, testing the blood of scientists who’d at Y-12 at Oak Ridge National Laboratory. Many been exposed to massive amounts of radiation were just out of high school, and were tasked with during the Manhattan Project. monitoring the Calutron, which was the machine that separated enriched uranium isotopes. One of the scientists whose blood she tested was Louis Slotin, who was exposed to a severe Oak Ridge, Tennessee, where the Calutron was dose of radiation during an experiment in May located, is often called the “Secret City.” It wasn’t 1946. He died nine days after the experiment. on any maps, but at the height of the war, 75,000 The radioactive core that killed him had earlier people lived and worked there. However, the claimed the life of another scientist and became culture of secrecy ran very deep. Because of this, known as the “demon core.” most of these young women didn’t know what they were working on. All they were told was that their Before becoming a scientist, Lee wanted to work would be vital to the war effort. Letters were become a member of the Women’s Airforce heavily censored and some Calutron operators Service Pilots or WASPs. She worked in a grocery saw that when their colleagues asked too many store to pay for flying lessons and was only one questions, they were soon out of a job. flight shy of qualifying when the program was disbanded in 1944. In a contest, Oak Ridge proved the young women were more effective at their work than a group of After the war, Lee moved to Chicago and worked scientists. They also proved to have a better touch for Argonne National Laboratory doing research when adjusting the dials than the scientists who on cancer and radiation biology. She eventually were constantly fiddling with them. earned her doctorate in zoology from University of Chicago. One of these women, Ruth Huddleston, was interviewed for our Direct Current podcast. You can Lee passed away in 2018, but her legacy as hear directly from Ruth and learn more about what a fierce advocate for STEM education and a it was like to work at Y-12 during the Manhattan minority woman who did pioneering research on Project in the episode titled “Ruth’s Story.” radiation and cancer lives on. Listen at energy.gov/podcast. Don’t miss our two-part Direct Current podcast series on the Manhattan Project at energy.gov/podcast. WORDS: Allison Lantero ART: Cortney Kreer LEARN MORE AT.
Recommended publications
  • Building 9731 – Secret City Festival’S Y-12 Public Tour Or: Building 9731 to Be Featured in Secret City Festival's Public Tour (Title Provided by the Oak Ridger)
    Building 9731 – Secret City Festival’s Y-12 public tour Or: Building 9731 to be featured in Secret City Festival's public tour (title provided by The Oak Ridger) In March 1943 the very first structure to be completed at the newly emerging Y-12 Electromagnetic Separation Plant was Building 9731. It was only a little over a month earlier that ground had been broken for the first of nine major buildings designed to hold cautrons (CALifornia University Cyclotron). But the real push had been to complete the construction of a smaller building, one with a high bay and especially designed to house four very special units of newly designed equipment using huge magnets. The Alpha Calutron magnets stand well over 20 feet tall and are still standing there today―the only ones in the world! For the first time ever, the public will have a chance to see these huge magnets and will also be able to tour inside historic Building 9731. This historic event is a part of the Secret City Festival this year. On Saturday, June 19, 2010, from 9:00 AM to 4:00 PM, a major part of the Y-12 public tour will include Building 9731. The public will be allowed to see inside the historic structure and view the magnets of both the two Alpha and two Beta calutrons. These calutron magnets have been designated as Manhattan Project Signature Artifacts by the Depart- ment of Energy’s Federal Preservation Officer in the DOE Office of History and Heritage Resources. The building is being submitted for Historical Landmark status on the National Register of Historic Places.
    [Show full text]
  • Metallurgical Laboratory (HWMF)
    WSRC-TR-94-0615 Unclassified METALLURGICAL LABORATORY HAZARDOUS WASTE MANAGEMENT FACILITY GROUNDWATER MONITORING REPORT (U) FOURTH QUARTER 1994 AND 1994 SUMMARY Publication Date: March 1995 Authorized Derivative Classifier and Reviewing Official: 3-2?-?S UNCLASSIFIED Does Not Contain Unclassified Controlled Nuclear Information Westinghouse Savannah River Company Savannah River Site Aiken, SC 29808 Prepared for the U.S. Department of Energy under Control Contract No. DE-AC09-89SR18035 WSRC-TR-94-0615 Unclassified METALLURGICAL LABORATORY HAZARDOUS WASTE MANAGEMENT FACILITY GROUNDWATER MONITORING REPORT (U) FOURTH QUARTER 1994 AND 1994 SUMMARY Publication Date: March 1995 Authorized Derivative Classifier and Reviewing Official: UNCLASSIFIED Does Not Contain Unclassified Controlled Nuclear Information Westinghouse Savannah River Company Savannah River Site Aiken, SC 29808 DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED'&c Prepared for the U.S. Department of Energy under Control Contract No. DE-AC09-89SR18035 MASTER DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or .assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States * Government or any agency thereof.
    [Show full text]
  • Radiation Poisoning , Also Called Radiation Sickness Or a Creeping Dose , Is a Form of Damage to Organ Tissue Due to Excessive Exposure to Ionizing Radiation
    Radiation poisoning , also called radiation sickness or a creeping dose , is a form of damage to organ tissue due to excessive exposure to ionizing radiation . The term is generally used to refer to acute problems caused by a large dosage of radiation in a short period, though this also has occurred with long term exposure. The clinical name for radiation sickness is acute radiation syndrome ( ARS ) as described by the CDC .[1][2][3] A chronic radiation syndrome does exist but is very uncommon; this has been observed among workers in early radium source production sites and in the early days of the Soviet nuclear program. A short exposure can result in acute radiation syndrome; chronic radiation syndrome requires a prolonged high level of exposure. Radiation exposure can also increase the probability of contracting some other diseases, mainly cancer , tumours , and genetic damage . These are referred to as the stochastic effects of radiation, and are not included in the term radiation sickness. The use of radionuclides in science and industry is strictly regulated in most countries (in the U.S. by the Nuclear Regulatory Commission ). In the event of an accidental or deliberate release of radioactive material, either evacuation or sheltering in place are the recommended measures. Radiation sickness is generally associated with acute (a single large) exposure. [4][5] Nausea and vomiting are usually the main symptoms. [5] The amount of time between exposure to radiation and the onset of the initial symptoms may be an indicator of how much radiation was absorbed. [5] Symptoms appear sooner with higher doses of exposure.
    [Show full text]
  • Bob Farquhar
    1 2 Created by Bob Farquhar For and dedicated to my grandchildren, their children, and all humanity. This is Copyright material 3 Table of Contents Preface 4 Conclusions 6 Gadget 8 Making Bombs Tick 15 ‘Little Boy’ 25 ‘Fat Man’ 40 Effectiveness 49 Death By Radiation 52 Crossroads 55 Atomic Bomb Targets 66 Acheson–Lilienthal Report & Baruch Plan 68 The Tests 71 Guinea Pigs 92 Atomic Animals 96 Downwinders 100 The H-Bomb 109 Nukes in Space 119 Going Underground 124 Leaks and Vents 132 Turning Swords Into Plowshares 135 Nuclear Detonations by Other Countries 147 Cessation of Testing 159 Building Bombs 161 Delivering Bombs 178 Strategic Bombers 181 Nuclear Capable Tactical Aircraft 188 Missiles and MIRV’s 193 Naval Delivery 211 Stand-Off & Cruise Missiles 219 U.S. Nuclear Arsenal 229 Enduring Stockpile 246 Nuclear Treaties 251 Duck and Cover 255 Let’s Nuke Des Moines! 265 Conclusion 270 Lest We Forget 274 The Beginning or The End? 280 Update: 7/1/12 Copyright © 2012 rbf 4 Preface 5 Hey there, I’m Ralph. That’s my dog Spot over there. Welcome to the not-so-wonderful world of nuclear weaponry. This book is a journey from 1945 when the first atomic bomb was detonated in the New Mexico desert to where we are today. It’s an interesting and sometimes bizarre journey. It can also be horribly frightening. Today, there are enough nuclear weapons to destroy the civilized world several times over. Over 23,000. “Enough to make the rubble bounce,” Winston Churchill said. The United States alone has over 10,000 warheads in what’s called the ‘enduring stockpile.’ In my time, we took care of things Mano-a-Mano.
    [Show full text]
  • Foundation Document Manhattan Project National Historical Park Tennessee, New Mexico, Washington January 2017 Foundation Document
    NATIONAL PARK SERVICE • U.S. DEPARTMENT OF THE INTERIOR Foundation Document Manhattan Project National Historical Park Tennessee, New Mexico, Washington January 2017 Foundation Document MANHATTAN PROJECT NATIONAL HISTORICAL PARK Hanford Washington ! Los Alamos Oak Ridge New Mexico Tennessee ! ! North 0 700 Kilometers 0 700 Miles More detailed maps of each park location are provided in Appendix E. Manhattan Project National Historical Park Contents Mission of the National Park Service 1 Mission of the Department of Energy 2 Introduction 3 Part 1: Core Components 4 Brief Description of the Park. 4 Oak Ridge, Tennessee. 5 Los Alamos, New Mexico . 6 Hanford, Washington. 7 Park Management . 8 Visitor Access. 8 Brief History of the Manhattan Project . 8 Introduction . 8 Neutrons, Fission, and Chain Reactions . 8 The Atomic Bomb and the Manhattan Project . 9 Bomb Design . 11 The Trinity Test . 11 Hiroshima and Nagasaki, Japan . 12 From the Second World War to the Cold War. 13 Legacy . 14 Park Purpose . 15 Park Signifcance . 16 Fundamental Resources and Values . 18 Related Resources . 22 Interpretive Themes . 26 Part 2: Dynamic Components 27 Special Mandates and Administrative Commitments . 27 Special Mandates . 27 Administrative Commitments . 27 Assessment of Planning and Data Needs . 28 Analysis of Fundamental Resources and Values . 28 Identifcation of Key Issues and Associated Planning and Data Needs . 28 Planning and Data Needs . 31 Part 3: Contributors 36 Appendixes 38 Appendix A: Enabling Legislation for Manhattan Project National Historical Park. 38 Appendix B: Inventory of Administrative Commitments . 43 Appendix C: Fundamental Resources and Values Analysis Tables. 48 Appendix D: Traditionally Associated Tribes . 87 Appendix E: Department of Energy Sites within Manhattan Project National Historical Park .
    [Show full text]
  • Nuclear Fallout and Intelligence As Secrets, Problems, and Limitations on the Arms Race, 1940-1964
    © Copyright 2016 Michael R. Lehman NUISANCE TO NEMESIS: NUCLEAR FALLOUT AND INTELLIGENCE AS SECRETS, PROBLEMS, AND LIMITATIONS ON THE ARMS RACE, 1940-1964 BY MICHAEL R. LEHMAN DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in History in the Graduate College of the University of Illinois at Urbana-Champaign, 2016 Urbana, Illinois Doctoral Committee: Professor Lillian Hoddeson, Chair Professor Kristin Hoganson, Co-Chair Professor Michael Weissman Professor Robert Jacobs, Hiroshima City University Abstract Fallout sampling and other nuclear intelligence techniques were the most important sources of United States strategic intelligence in the early Cold War. Operated as the Atomic Energy Detection System by a covert Air Force unit known as AFOAT-1, the AEDS detected emissions and analyzed fallout from Soviet nuclear tests, as well as provided quantitative intelligence on the size of the Russian nuclear stockpile. Virtually unknown because the only greater Cold War secret than nuclear weapons was intelligence gathered about them, data on the Soviet threat produced by AFOAT-1 was an extraordinary influence on early National Intelligence Estimates, the rapid growth of the Strategic Air Command, and strategic war plans. Official guidance beginning with the first nuclear test in 1945 otherwise suggested fallout was an insignificant effect of nuclear weapons. Following AFOAT-1’s detection of Soviet testing in fall 1949 and against the cautions raised about the problematic nature of higher yield weapons by the General Advisory Committee, the Atomic Energy Commission’s top scientific advisers, President Harry Truman ordered the AEC to quickly build these extraordinarily powerful weapons, testing the first in secrecy in November 1952.
    [Show full text]
  • Enrico Fermi: Genius
    ANNIVERSARY Enrico Fermi: genius This year marks the centenary of the birth of Enrico Fermi, one of the giants of 20th- • century science, and one of the last physicists to be both an accomplished experimentalist and an influential theorist. Here, Gianni Battimelli of the University of Rome "La Sapienza" traces the life of a genius. Enrico Fermi was born on 29 September 1901 in Rome to a family with no scientific traditions. His passion for natural sciences, and in particular for physics, was stimulated and guided in his school years by an engineer and family friend, Adolph Amidei, who recognized Fermi's exceptional intellectual abilities and suggested admission to Pisa's Scuola Normale Superiore. After finishing high-school studies in Rome, in 1918 Fermi progressed to the prestigious Pisa Institute, after producing for the admission exam an essay on the characteristics of the propagation of sound, the authenticity of which the commissioners initially refused to believe. Studies at Pisa did not pose any particular difficulties for the young Fermi, despite his having to be largely self-taught using mate­ rial in foreign languages because nothing existed at the time in Fermi's group discovered the Italian on the new physics emerging around relativity and quantum radioactivity induced by theory. In those years in Italy, these new theories were absent from university teaching, and only mathematicians likeTullio Levi-Civita neutrons, instead of the had the knowledge and insight to see their implications. alpha particles used in the Working alone, between 1919 and 1922, Fermi built up a solid competence in relativity, statistical mechanics and the applications Paris experiments.
    [Show full text]
  • Reuleaux2019 Vol.1 Iss.1.Pdf (12.49Mb)
    t t REULEAUX 2019 REULEAUX Reuleaux Undergraduate Research Journal Colorado School of Mines Volume 1 Issue 1 Reuleaux McBride Honors Colorado School of Mines Golden, Colorado 80401 ©2019 Reuleaux, Colorado School of Mines Copyright Information Reuleaux is an Open Access journal. All authors retain the copyright work published by Reuleaux. All works are licensed to be shared and used under the Creative Commons CC-BY License or the Creative Commons CC-BY-NC License. The Creative Commons CC-BY License and the Creative Commons CC-BY-NC License permit works to be copied, published, and shared without restrictions as long as the original author(s) is credited with full citation details. The Creative Commons CC-BY-NC License also requires permission for the copyright owner (authors) for any commercial use of the original work. All works in Reuleaux can be shared without restrictions. Proper credit should be given. The Editorial Board can be contacted at [email protected]. T bl o Co e t 1 Demons of Los Alamos 20 Evaluating Eribulin 5 Editor Analysis: Demons of Los Alamos 23 Evaluation of the Paris Agreement 6 Three Years in the CFCC 26 Editor Analysis: Paris Agreement 9 Carreon Lab Spotlight 27 Colorado Fuel Cell Center Spotlight 13 Lunar Ice Extraction 30 Exploring Fractional Derivatives 18 Editor Analysis: Lunar Ice Extraction 32 Meet the Editors 19 Dr. Jeffrey King Spotlight 35 Call for Submissions Peer Review Shit Message from the Editor in Chief As scientific research continues to propel humanity further into the future, the problems facing scientists and engineers become increasingly complex.
    [Show full text]
  • Argonne National Laboratory Was Founded As a Chemistry, Materials
    Physical Sciences and Engineering (PSE) Associate Laboratory Director Requisition 403294 Argonne National Laboratory Lemont, Illinois (Suburb of Chicago) Argonne National Laboratory was founded as a chemistry, materials and nuclear engineering laboratory in 1946, as the successor to the Manhattan Project’s Metallurgical Laboratory. Since then, as part of the Department of Energy (DOE) network of national laboratories, Argonne has built on its original strengths and expanded its mission in response to national needs. Today, Argonne serves America as a leading science and energy laboratory distinguished by the breadth of its research and development (R&D) capabilities combined with a unique portfolio of experimental and computational user facilities. Located just outside Chicago, Argonne has been managed since its founding by The University of Chicago (UChicago), one of the world’s preeminent research universities. Argonne’s workforce of over 3200 includes over 1500 scientists and engineers. The Laboratory operates five world-renowned scientific user facilities, which together support nearly 8,000 researchers annually. Argonne is currently inviting applications for the position of Associate Laboratory Director (ALD) of the Physical Sciences and Engineering (PSE) Directorate, which employs approximately 700 people including scientists, technical and administrative staff, postdocs, fellows, students, visiting scholars and joint appointments and has an annual budget in excess of $200 million. The directorate’s R&D programs have produced a wide range of groundbreaking, internationally recognized discoveries and inventions throughout Argonne’s history. The scope of PSE’s research encompasses materials science, condensed matter physics, chemistry and chemical engineering, and nuclear and particle physics. This work is carried out through five discipline-based operating divisions and is funded primarily by DOE’s Office of Science and Office of Energy Efficiency and Renewable Energy.
    [Show full text]
  • THE NUCLEAR DEATH of a NUCLEAR SCIENTIST to Make Sure It Would Produce the Ex­ Him for Man,L" Hour,; Dul'ing the Twenty­ Plicit Nuclear Oul'st It Wa" Supposed To
    Page Fifteen Thursday, November 30, 1961 THE JEWISH POST deli\·ery from him of thl' epochal A­ death was cal1cell'd hy the ril'cUl1lstances TH1I' Jl"WTSH POST Thursday, November 30, 1961 and the crowding c\'('nts of \'iclory­ Page Fourteen The road to success and death bomb core, the 11rst mle, tested at Ala­ mogordo. For Slutin's ,io!', along with ,~xcept. for Slotin. who as a physicist some others, was to nm Jlnal tests on IH'lped the dodo!'s estimate Daghlian's l'adiation do,;e and as a friend sat with ,, the active core uf each precious A-bomb THE NUCLEAR DEATH OF A NUCLEAR SCIENTIST to make sure it would produce the ex­ him for man,l" hour,; dUl'ing the twenty­ plicit nuclear OUl'st it wa" supposed to. foul' da~'s it took him to die, Louis Siolin: A Tiny Slip, A Terrible Dealh The way it was done was dangerous, It was an ulliqUl' seminar-for at By r/Je,,.bara moon but in wartime one takes shortcuts and lliroshima and Nagasaki 8ul'\'i\'ors had believes them justified. not u.nderstood what I)('oph~ around REPUBLISHED BY SPECIAL PERMISSION OF At the time of his death, of course, them were dying nf and opside's wel'(~ MACLEAN'S MAGAZINE the wal' was over. The core he was too busy tn analy7,c the proc<'ss, 01' be testing was part uf a one-sided arms able precisely to recall it later. • In Muscow Nikita Khrushchov threatens that race, and was destined for Bikini Atoll.
    [Show full text]
  • Vol. 6 No. 14 ... Enrico Fermi, Distinguished Physicist, Whose Name Will Head Illinois Research Laboratory ••• ... H. Ande
    Vol. 6 No. 14 April11, 1974 The National Accelerator Laboratory will become the Fermi National Accelerator Laboratory at a dedication cere­ mony to be held at the Laboratory on Saturday, May 11, 1974. The plan to change the name of the Laboratory was announced on April 29, 1969 by Glenn T. Seaborg, then chair­ man of the U. S. Atomic Energy Commission. It was understood then that the dedication and the changing of the name would take place when construction was complete. May of 1974 will find the Laboratory close to completion and running strongly in all areas. In announcing the AEC's plans, Seaborg said in 1969: ... Enrico Fermi, distinguished "It is particularly fitting that we honor Dr. Fermi in this physicist, whose name will head manner, for in so doing we further acknowledge his many con­ Illinois research laboratory ••• tributions to the progress of nuclear science, particularly his work on nuclear processes. Enrico Fermi was a physicist of great renown who contributed in a most significant way to the defense and welfare of his adopted land and to the enhancement of its intellectual well-being. His greatest achievement, the first sustained nuclear chain reaction, took place in a small laboratory in Chicago. It seems sin­ gularly appropriate, therefore, that the Federal Government recognize the memory of a man who was at the forefront of science in his day by naming in his honor a laboratory near Chicago -- a laboratory which will have a major internationa: impact on our understanding of the basic structure of matter." ... H. Anderson, student and long-time Enrico Fermi was born in Rome, Italy, on September 29, colleague of Fermi, on visit to NAL 1901.
    [Show full text]
  • The Dupont Company the Forgotten Producers of Plutonium
    The DuPont Company The Forgotten Producers of Plutonium Assembled by the “DuPont Story” Committee of the B Reactor Museum Association Ben Johnson, Richard Romanelli, Bert Pierard 2015 Revision 3 – March 2017 FOREWORD Like the world’s tidal waters, the study of our national story sometimes leads us into historical eddies, rich in human interest content, that have been bypassed by the waves of words of the larger accounting of events. Such is the case of the historical accounts of the Manhattan Project which tend to emphasize the triumphs of physicists, while engineering accomplishments, which were particularly important at the Hanford Site, have been brushed over and receive less recognition. The scientific possibility of devising a weapon based on using the energy within the nucleus of the atom was known by physicists in both the United States and Germany before World War II began. After the start of hostilities, these physicists were directed by their respective governments to begin development of atomic bombs. The success of the American program, compared with the German program, was due largely to the extensive involvement in the U.S. Manhattan Project of large and experienced engineering firms whose staff worked with the physicists. The result was the successful production of weapons materials, in an amazingly short time considering the complexity of the program, which helped end World War II. One view which effectively explains these two markedly different historical assessments of accomplishments, at least for Hanford, is noted in the literature with this quote. - "To my way of thinking it was one of the greatest interdisciplinary efforts ever mounted.
    [Show full text]