The Imperial System

Total Page:16

File Type:pdf, Size:1020Kb

The Imperial System The Imperial System The Imperial System is mainly used in the United States. Canada uses the metric system and the imperial system. The imperial system is used in some occupations, such as building construction. Many products are labelled with both metric and imperial units. The chart illustrates some basic imperial units and measuring tools. Measurement Units Abbreviations Linear inch in. or " foot ft. or ' yard yd. or yds. mile mi. Mass ounces oz. pounds lb. or lbs. ton T Capacity pint pt. quart qt. gallon gal. Volume cubic inch in.3 cubic yard yd.3 Temperature degree Fahrenheit °F Time seconds s minutes m Common Imperial Conversions Linear Measurement 12 inches = 1 foot 3 feet = 1 yard 1760 yards = 1 mile Mass 16 ounces = 1 pound 2000 pounds = 1 ton Capacity 2 cups = 1 pint 2 pints = 1 quart 4 quarts = 1 gallon Knowledge and Employability Studio Shape and Space: Measurement: Mathematics Metric and Imperial Units: ©Alberta Education, Alberta, Canada (www.LearnAlberta.ca) The Imperial System 1/2 Practice: Converting Imperial Units 1. An outdoor education instructor bought 9 feet of rope to teach her students how to tie different knots. If there are eight students in her class, how many inches of rope does each child receive? HINT: 12 inches = 1 foot 2. Nancy is making potato salad for her family picnic. The recipe calls for three pounds of potatoes. The scale in the grocery store only measures weight in ounces. How many ounces of potatoes does she need for her recipe? HINT: 16 ounces = 1 pound 3. During a soccer tournament the concession expects to sell 100 cups of orange drink. How many quarts of orange drink should be prepared? HINT: 1 quart = 4 cups Think About … When might people have to convert from one unit to another in the workplace? At home? If you didn’t have an accurate measuring tool like a ruler, how would you estimate 3 feet? 8 ounces? 10 pounds? 1 cup? Knowledge and Employability Studio Shape and Space: Measurement: Mathematics Metric and Imperial Units: ©Alberta Education, Alberta, Canada (www.LearnAlberta.ca) The Imperial System 2/2 .
Recommended publications
  • Rules Relative to the Circle
    RULES RELATIVE TO THE CIRCLE TO FIND DIAMETER I Multiply circumference by 0.3183. I Or divide circumference by 3.1416. TO FIND CIRCUMFERENCE I Multiply diameter by 3.1416. I Or divide diameter by 0.3183. TO FIND RADIUS I Multiply circumference by 0.15915. I Or divide circumference by 6.28318. TO FIND SIDE OF AN I Multiply diameter by 0.7071. INSCRIBED SQUARE I Or multiply circumference by 0.2251. I Or divide circumference by 4.4428. TO FIND SIDE OF AN I Multiply diameter by 0.8862. EQUAL SQUARE I Or divide diameter by 1.1284. I Or multiply circumference by 0.2821. I Or divide circumference by 3.545. SQUARE I A side multiplied by 1.1442 equals diameter of its circumscribing circle. I A side multiplied by 4.443 equals circumference of its circumscribing circle. I A side multiplied by 1.128 equals diameter of an equal circle. I Square inches multiplied by 1.273 equals circle inches of an equal circle. TO FIND THE AREA OF I Multiply circumference by 1/4 of the diameter. A CIRCLE I Or multiply the square of diameter by 0.7854. I Or multiply the square of circumference by 0.07958. I Or multiply the square of 1/2 diameter by 3.1416. TO FIND THE SURFACE I Multiply the diameter by the circumference. OF A SPHERE OR GLOBE I Or multiply the square of diameter by 3.1416. I Or multiply four times the square of radius by 3.1416. I To find cubic inches in a globe multiply cube of diameter by 0.5236.
    [Show full text]
  • The Portuguese Expeditionary Corps in World War I: from Inception To
    THE PORTUGUESE EXPEDITIONARY CORPS IN WORLD WAR I: FROM INCEPTION TO COMBAT DESTRUCTION, 1914-1918 Jesse Pyles, B.A. Thesis Prepared for the Degree of MASTER OF ARTS UNIVERSITY OF NORTH TEXAS May 2012 APPROVED: Geoffrey Wawro, Major Professor Robert Citino, Committee Member Walter Roberts, Committee Member Richard McCaslin, Chair of the Department of History James D. Meernik, Acting Dean of the Toulouse Graduate School Pyles, Jesse, The Portuguese Expeditionary Corps in World War I: From Inception to Destruction, 1914-1918. Master of Arts (History), May 2012, 130 pp., references, 86. The Portuguese Expeditionary Force fought in the trenches of northern France from April 1917 to April 1918. On 9 April 1918 the sledgehammer blow of Operation Georgette fell upon the exhausted Portuguese troops. British accounts of the Portuguese Corps’ participation in combat on the Western Front are terse. Many are dismissive. In fact, Portuguese units experienced heavy combat and successfully held their ground against all attacks. Regarding Georgette, the standard British narrative holds that most of the Portuguese soldiers threw their weapons aside and ran. The account is incontrovertibly false. Most of the Portuguese combat troops held their ground against the German assault. This thesis details the history of the Portuguese Expeditionary Force. Copyright 2012 by Jesse Pyles ii ACKNOWLEDGEMENTS The love of my life, my wife Izabella, encouraged me to pursue graduate education in history. This thesis would not have been possible without her support. Professor Geoffrey Wawro directed my thesis. He provided helpful feedback regarding content and structure. Professor Robert Citino offered equal measures of instruction and encouragement.
    [Show full text]
  • Lesson 1: Length English Vs
    Lesson 1: Length English vs. Metric Units Which is longer? A. 1 mile or 1 kilometer B. 1 yard or 1 meter C. 1 inch or 1 centimeter English vs. Metric Units Which is longer? A. 1 mile or 1 kilometer 1 mile B. 1 yard or 1 meter C. 1 inch or 1 centimeter 1.6 kilometers English vs. Metric Units Which is longer? A. 1 mile or 1 kilometer 1 mile B. 1 yard or 1 meter C. 1 inch or 1 centimeter 1.6 kilometers 1 yard = 0.9444 meters English vs. Metric Units Which is longer? A. 1 mile or 1 kilometer 1 mile B. 1 yard or 1 meter C. 1 inch or 1 centimeter 1.6 kilometers 1 inch = 2.54 centimeters 1 yard = 0.9444 meters Metric Units The basic unit of length in the metric system in the meter and is represented by a lowercase m. Standard: The distance traveled by light in absolute vacuum in 1∕299,792,458 of a second. Metric Units 1 Kilometer (km) = 1000 meters 1 Meter = 100 Centimeters (cm) 1 Meter = 1000 Millimeters (mm) Which is larger? A. 1 meter or 105 centimeters C. 12 centimeters or 102 millimeters B. 4 kilometers or 4400 meters D. 1200 millimeters or 1 meter Measuring Length How many millimeters are in 1 centimeter? 1 centimeter = 10 millimeters What is the length of the line in centimeters? _______cm What is the length of the line in millimeters? _______mm What is the length of the line to the nearest centimeter? ________cm HINT: Round to the nearest centimeter – no decimals.
    [Show full text]
  • Hp Calculators
    hp calculators HP 9s Solving Problems Involving Unit Conversions Metric Units and Imperial Units Unit Conversions on the HP 9s Practice Working Problems Involving Conversions hp calculators HP 9s Solving Problems Involving Unit Conversions Metric units and Imperial units In the Longman Mathematics Handbook (York Press, 1990) the unit is defined as a conventional quantity that is used as a basis for mensuration, which is the study of giving numbers to quantities, that is to say, the act of measuring. There are two major system of units, namely the SI system (Système International d’Unités) and Imperial units. The latter are based on the pound and the yard, and, despite being replaced by the SI system, are still used in Britain and in the USA (with some differences). On the other hand, the SI system is a system based on these seven basic units: kilograms, meters, seconds, amperes, kelvins, moles and candelas. It is often referred to as the metric system, even though the SI system replaced this former system based on the meter and the gram. Metric units are therefore those based on the meter or belonging to a system of units that is based on the meter. Unit conversion is the change between two measurements of the same quantity in different units, and this task plays a lead role in science and engineering. Unit conversions on the HP 9s The HP 9s provides six functions for converting to and from metric units, namely in↔cm (~Ì), gal↔l (~Í), ºF↔ºC (~É), lb↔kg (~Ê), mmHg↔kpa (~Ë) and oz↔g (~Ý).
    [Show full text]
  • Weights and Measures Standards of the United States: a Brief History
    1 .0 11 8 1.25 1.4 I 6_ DOCUMENT RESUME ED 142 418 SE 022 719 AUTHOE Judson, Lewis V. TITLE Weights and Measures Standards of the United States: A Brief History. Updated Edition. INSTITUTION National Bureau of Standards (DOC) ,Washington, D.C. REPORT NO NBS-SP-447 PUB DATE Mar 76 NOTE 42p.; Contains occasional small print; Photographs may not reproduce well AVAILABLE FROM Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (Stock Number 003-0O3-01654-3, $1.00) EDRS PRICE MF-$0.83 HC-$2.06 Plus Postage. DESCRIPTORS Government Publications; History; *Mathematics Education; *Measurement; *Metric System; *Science History; *Standards ABSTRACT This document was published by the National Bureau of Standards to meet the current demand for information on the history of weights and measures in the United States. It includes an illustrated discussion of this history through 1962 followed by an addendum covering the period 1963-1975. Appendices provide a bibliography and photographic copies of eight documents important to the development of official standards of measurement. (SD) *********************************************************************** Documents acquired by ERIC include many informal unpublished * materials not available from other sources. ERIC makes every effort * * -to obtain the best copy available. Nevertheless, items of marginal * * reproducibility are often encountered and this affects the quality * * of the microfiche and hardcopy reproductions ERIC makes available * via the ERIC Document Reproduction Service (EDRS). EDRS is not * responsible for the quality of the original document. Reproductions * * supplied by EDRS are the best that can be made from the original. *********************************************************************** U.S. DEPARTMENT OF HEALTH.
    [Show full text]
  • Water Heater Formulas and Terminology
    More resources http://waterheatertimer.org/9-ways-to-save-with-water-heater.html http://waterheatertimer.org/Figure-Volts-Amps-Watts-for-water-heater.html http://waterheatertimer.org/pdf/Fundamentals-of-water-heating.pdf FORMULAS & FACTS BTU (British Thermal Unit) is the heat required to raise 1 pound of water 1°F 1 BTU = 252 cal = 0.252 kcal 1 cal = 4.187 Joules BTU X 1.055 = Kilo Joules BTU divided by 3,413 = Kilowatt (1 KW) FAHRENHEIT CENTIGRADE 32 0 41 5 To convert from Fahrenheit to Celsius: 60.8 16 (°F – 32) x 5/9 or .556 = °C. 120.2 49 140 60 180 82 212 100 One gallon of 120°F (49°C) water BTU output (Electric) = weighs approximately 8.25 pounds. BTU Input (Not exactly true due Pounds x .45359 = Kilogram to minimal flange heat loss.) Gallons x 3.7854 = Liters Capacity of a % of hot water = cylindrical tank (Mixed Water Temp. – Cold Water – 1⁄ 2 diameter (in inches) Temp.) divided by (Hot Water Temp. x 3.146 x length. (in inches) – Cold Water Temp.) Divide by 231 for gallons. % thermal efficiency = Doubling the diameter (GPH recovery X 8.25 X temp. rise X of a pipe will increase its flow 1.0) divided by BTU/H Input capacity (approximately) 5.3 times. BTU output (Gas) = GPH recovery x 8.25 x temp. rise x 1.0 FORMULAS & FACTS TEMP °F RISE STEEL COPPER Linear expansion of pipe 50° 0.38˝ 0.57˝ – in inches per 100 Ft. 100° .076˝ 1.14˝ 125° .092˝ 1.40˝ 150° 1.15˝ 1.75˝ Grain – 1 grain per gallon = 17.1 Parts Per million (measurement of water hardness) TC-092 FORMULAS & FACTS GPH (Gas) = One gallon of Propane gas contains (BTU/H Input X % Eff.) divided by about 91,250 BTU of heat.
    [Show full text]
  • How Does the Thermometer Work?
    How Does the Thermometer Work? How Does the Thermometer Work? A thermometer is a device that measures the temperature of things. The name is made up of two smaller words: "Thermo" means heat and "meter" means to measure. You can use a thermometer to tell the temperature outside or inside your house, inside your oven, even the temperature of your body if you're sick. One of the earliest inventors of a thermometer was probably Galileo. We know him more for his studies about the solar system and his "revolutionary" theory (back then) that the earth and planets rotated around the sun. Galileo is said to have used a device called a "thermoscope" around 1600 - that's 400 years ago!! The thermometers we use today are different than the ones Galileo may have used. There is usually a bulb at the base of the thermometer with a long glass tube stretching out the top. Early thermometers used water, but because water freezes there was no way to measure temperatures less than the freezing point of water. So, alcohol, which freezes at temperature below the point where water freezes, was used. The red colored or silver line in the middle of the thermometer moves up and down depending on the temperature. The thermometer measures temperatures in Fahrenheit, Celsius and another scale called Kelvin. Fahrenheit is used mostly in the United States, and most of the rest of the world uses Celsius. Kelvin is used by scientists. Fahrenheit is named after the German physicist Gabriel D. Fahrenheit who developed his scale in 1724.
    [Show full text]
  • Guide for the Use of the International System of Units (SI)
    Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Yd.) 36 Inches = 1 Yard (Yd.) 5,280 Feet = 1 Mile (Mi.) 1,760 Yards = 1 Mile (Mi.)
    Units of length 12 inches (in.) = 1 foot (ft.) 3 feet = 1 yard (yd.) 36 inches = 1 yard (yd.) 5,280 feet = 1 mile (mi.) 1,760 yards = 1 mile (mi.) ©www.thecurriculumcorner.com Units of length 12 inches (in.) = 1 foot (ft.) 3 feet = 1 yard (yd.) 36 inches = 1 yard (yd.) 5,280 feet = 1 mile (mi.) 1,760 yards = 1 mile (mi.) ©www.thecurriculumcorner.com Units of length 12 inches (in.) = 1 foot (ft.) 3 feet = 1 yard (yd.) 36 inches = 1 yard (yd.) 5,280 feet = 1 mile (mi.) 1,760 yards = 1 mile (mi.) ©www.thecurriculumcorner.com 1. Find the greatest length. 2. Find the greatest length. 9 in. or 1 ft. 3 ft. or 39 in. ©www.thecurriculumcorner.com ©www.thecurriculumcorner.com 3. Find the greatest length. 4. Find the greatest length. 1 ft. 7 in. or 18 in. 4 ft. 4 in. or 55 in. ©www.thecurriculumcorner.com ©www.thecurriculumcorner.com 5. Find the greatest length. 6. Find the greatest length. 1 ft. 9 in. or 2 ft. 7 ft. or 2 yd. ©www.thecurriculumcorner.com ©www.thecurriculumcorner.com 7. Find the greatest length. 8. Find the greatest length. 26 in. or 2 ft. 6 yd. or 17 ft. ©www.thecurriculumcorner.com ©www.thecurriculumcorner.com 9. Find the greatest length. 10. Find the greatest length. 5 ft. or 1 ½ yd. 112 in. or 3 yd. ©www.thecurriculumcorner.com ©www.thecurriculumcorner.com 11. Find the greatest length. 12. Find the greatest length. 99 in. or 3 yd. 11,000 ft. or 2 mi. ©www.thecurriculumcorner.com ©www.thecurriculumcorner.com 13.
    [Show full text]
  • Snow Science Fact Sheet
    BASIC FORMULAS 1. Typical Material Cost Breakdown of a Snowmaking System 2. Snowmaking Technology Energy Use Comparison 3. Typical Air Compressor Discharge Temperature 4. Calculating Friction Loss of Water in Pipe-lines 5. Calculating Air Pressure Loss Due to Friction 6. Calculating Horsepower For Water Pump 7. Calculating Operating Cost 8. Water Snow Relationships 3.2 Gallons = 1 FT³ of Snow 1 Gallon = 8.342 lbs 1 FT³ Water = 7.48 Gallons 1 Acre = 43,560 FT² 1 Acre Foot of Snow = 180,000 Gallons of Water 9. English to Metric Conversion Factors English Units Multiply By Metric Units Gallons (GAL.) 3.785 Litres (L) Gallons Per Minute (GPM) 3.785 Litres Per Minute (LPM) Gallons Per Minute (GPM) 0.0631 Litres Per Second (LPS) Acres 0.40469 Hectares Acres 4046.9 Meters² Feet 0.3048 Meters Cubic Feet (FT³) 0.0283 Cubic Meters (M 3) Horsepower (HP) 0.7457 Kilowatts Pounds Per Square Inch (PSI) 6.895 Kilopascals (KPA) Gal/Min 0.2271 M³/HR Hectare-M 10,000 M³ 10. How to Determine Snow Quality One could collect fresh snow samples and determine weight per Cubic Foot or Cubic Meter and state the quality in density like pounds per Cubic Foot or density per Cubic Meter. A far simpler and practical method is to test the snow on the ground in the production plume while snow guns are operating by doing a Snow Ball Test. The quality can be determined on a scale from 1 to 6 according to the table below: The Snowball Test Snow Quality Description 1 Snow cannot be packed, powder 2 Snow can only be packed into a loose ball that falls apart 3 Snow can be packed into a ball that can be broken apart 4 Snow can be packed into a dense ball that does not change color when squeezed 5 Snow can be packed into a dense ball that changes to a darker color when squeezed but little or no water comes out 6 Snow can be packed into a dense ball that discharges water when squeezed .
    [Show full text]
  • Water System Operator's Guide
    MATH REVIEW For a rectangular tank: Most math problems a water treatment plant To find the capacity of a rectangular or square operator solves requires plugging numbers into tank: formulas and calculating the answer. When working with formulas, here are some simple Multiply length (L) by width (W) to get area (A). rules to follow. • Work from left to right. Multiply area by height (H) to get volume (V). • Do anything in parenthesis first. Multiply volume by 7.48 gallons per cubic foot to get capacity (C). • Do multiplication and division in the numerator (above the line) and in the A = L x W denominator (below the line), then do V = A x H addition and subtraction in the numerator C = V x 7.48 and denominator. • Divide the numerator by the denominator Find the capacity of a rectangular tank 15 feet (ft) last. long, 12 ft wide, and 10 ft high: Volume A = 15 ft x 12 ft = 180 square feet (ft2) The volume of a tank in cubic feet is equal to V = 180 ft2 x 10 ft = 1,800 cubic feet (ft3) the tank area multiplied by the tank height. The C = 1,800 ft3 x 7.48 gal/ft3 =13,464 gal capacity in gallons is equal to the volume in cubic feet multiplied by 7.48 gallons per cubic foot. For a circular tank: Area (A) = (3.14) x diameter squared (D2) / divided by 4 Volume (V) = A x H Capacity (C) = V x 7.48 gal/ft3 A = [ x (D2)/4] V = A x H C = V x 7.48 49 Find the capacity of a circular tank with a For an oval tank: diameter of 15 ft and a height of 12 ft: To find the gallons in an oval tank: A = [3.14 x (15 ft2)/4] = 177 ft2 Multiply the height by width by (3.14) divided by 4 to get the area of the oval.
    [Show full text]