Supplemental Material 1

Total Page:16

File Type:pdf, Size:1020Kb

Supplemental Material 1 Cdk20 Csrp2bp Bub1 Tmed3 1700012B15Rik Uck1 Atad2 Pbk Rfc4 Ucp3 Mtmr7 Bid Rad9 Hadh Zc3h12a Bcl2l11 1700052K11Rik Cd83 Ncaph Cdca7l Ezh2 Kif23 Rel Cdh13 Nr4a1 Pola1 Phf19 Vldlr Snx7 Fam96a Ripk2 Ccne2 Ncapd2 Pqlc3 A130009I22Rik Niacr1 Peli1 Cenpn Ralgds Dbf4 Trpc6 Gadd45b Dyrk2 Il1b Prim1 Pcna Dnmt1 Ttc30a1 Cflar Fas Tro Tank Rapgef2 Icosl 9930012K11Rik Cd28 Ccdc86 Ube2f Klhl6 Commd8 Ccrl2 D4Wsu53e Tnfaip8l2 Ehd1 Kdm2b Uhrf1 Trim37 Tecrl AI467606 Ilf2 Cobra1 Aurkb Cdc42ep2 Nfkbil2 Appbp2 Nfkbiz Zfp85-rs1 Nlrp3 Zmym5 Il6 Foxo3 Sept3 Ets2 Serpinb2 Smc3 Msh6 Itga5 Gpsm3 Slbp Dennd4c Rffl Trappc1 Mrpl34 Socs3 Ocel1 Tnfaip3 Swap70 1110003O08Rik Junb Pmm1 Cxcl10 Brca1 Acpl2 Coq10b Marcksl1 Map3k10 Braf Tnf Icam1 Pold3 AI462493 Nfkbia Dnmbp Dnajc9 Tnip1 Chfr Trim13 Slc35c2 Rb1 C78513 Limk1 C1qa Fen1 BC088983 Tsc22d3 Tnfsf9 Mapk3 E2f1 Zc3h12c Casp4 Ttf2 Maff Gmnn Zfp715 Mdm2 Mcm7 Irf1 Parp1 Ftsj2 Myo10 Irak2 Mid1ip1 Apeh Rad51c Map3k4 Tk1 E2f7 Tiparp Ptgs2 Spata13 Hmga2-ps1 Wdhd1 Clspn Ubac1 Erp29 Thap4 Dna2 Prkag2 Il1a Rfwd3 Gbp3 Cdca5 3110043O21Rik Clec4e Cxcl11 Speg Tarbp2 Cdk2 Zufsp Cdca2 E2f2 1700054N08Rik Tnfsf10 5730499H23Rik Inf2 C1qb Anapc5 Sco1 Bst2 2010107G23Rik Cnpy4 D10Wsu102e Brip1 H2-D1 Gpd1l Suv420h2 4930579G24Rik Cdc6 Cntnap2 Cyp2b10 Plod2 Irf7 C2 Lsm3 9330175E14Rik Aak1 Ick Rassf7 Cd22 Cd72 Tap1 Tcn2 Malt1 Uba7 Atp1a2 Ar Tap2 Cd86 Herc5 Heca Atp2a2 Ttc28 Dhrs3 Stat1 Ccdc22 Abca5 Nhlrc2 Ddx58 Gpx1 Dgkd Fbxl7 Lap3 Lama4 Neil1 Enpp4 Tpst1 Cybb Ccne1 Sec24d Fcgr4 Hk3 Rasgrp2 Dcun1d2 Vegfa Ecsit Ddx60 Eif2ak2 Cyp2r1 Gimap4 Fip1l1 Adar Lcp2 Mcm4 1110012J17Rik Sav1 Lrrc20 Sgk2 Nfkb2 BB236558 Nrp2 Birc2 4930558J22Rik Skp2 5830437K03Rik Kif22 Nfkb1 Slc2a6 Traf2 Ccl3 Tbc1d9 Dlx3 4833427F10Rik Lat2 Klrg1 Ddi2 Abtb2 Relb Ptprj Msc 1700049G17Rik Mcm5 Txnrd3 Cd40 D15Ertd55e Jarid2 Jak2 Depdc7 Cxcl5 Epor Foxred2 Stat4 Cebpa Krtap10-4 Ncapg 2210021J22Rik Ch25h Cdt1 Racgap1 Acadm Rnf187 Ftsjd2 Twist2 Mcm3 B3gnt8 Psrc1 Lss Tmem33 Btg2 Gkap1 Mki67 Ralgapa1 Hspa8 Atp8b4 Gm5817 Plk1 Asz1 Rnf157 Tpd52l2 Sc4mol Hiat1 Hccs Ldlr Stat3 Foxo1 Foxm1 Prepl Herpud2 BC030867 Yy1 Hmgcs1 Mapk1 Timm8b Prkci Idi1 Ermp1 Aga Ado Smad4 Aurka Cyp51 Cdc34 Rnf19b Tprgl Sgol1 Rabep1 Hmgcr Golph3l Nedd8 Hras1 Pold1 Uspl1 Chi3l3 Plin2 Wnt7a Tnfrsf1a P4ha1 Mrp63 Adm Tipin Hmox1 Stat6 Pparg Msx1 Ifnar2 Hif1a Dbp Inppl1 Eepd1 Nxph3 Acvr1b Slc2a1 Btbd6 Mcm2 Mafg Nup107 Kti12 Stk10 Haus8 Zim3 Hs6st1 Fbxw4 Xpa Nup43 Slc48a1 Impact Mapkapk2 Apc Dusp1 Set F3 Kdm6b Nhp2l1 Mars Hdac4 Pdgfb Cyfip2 Hmgb1 Bcr Itga2b Cd14 Cc2d1a Gca Bcl6 Bcl3 Atf2 Zfp36 Taf9 Stat5a Sox2 Ruvbl1 Pdlim4 Ncor1 Myc Max Hmgn2 Hdac5 Gata1 Etv6 Deaf1 Cic Trub2 Nnmt Phip D13Ertd787e Cct2 9130004C02Rik Trim3 Pdcd6 Sil1 Kdm5b Rasgef1b Mier3 Nap1l1 Itpkb Ambn Pvrl3 Chst14 Gcn1l1 Supplemental Fig. 1. Regulatory network prediction for macrophage transcriptional activation. Predicted regulatory interactions are shown as dashed lines between transcription factors (red ovals) and other genes (blue rectangles), and known interactions are depicted as solid lines. The RIKEN transcription factor database contains a number of genes that are likely or known to play only indirect roles in transcriptional regulation (e.g., modifiers of transcription such as ubiquitin ligases and kinases); these are denoted as grey ovals. Supplementary Table 1. Microarray datasets included in the present study. Database ID Pubmed ID First Author Publication Year Host Tissue Treatment GSE4712 16846716 Comer 2006 Ascites Compound GSE21117 16926395 He 2006 Ascites Bacteria GSE6785 16926388 Reece 2006 Alveolus Helminth GSE7348 17538624 Foster 2007 Bone marrow Compound GSE6376 17312158 Goodridge 2007 Bone marrow Compound GSE8621 18086374 Mages 2007 Bone marrow Compound GSE31378 17890046 Cheung 2008 Bone marrow Compound GSE4288 18230670 Kitamura 2008 Ascites Compound GSE12518 19211757 Bok 2009 Ascites Virus GSE15610 19863805 Carlson 2009 Bone marrow Compound GSE11497 19302708 Fortea 2009 Bone marrow Protozoa GSE14769 19270711 Litvak 2009 Bone marrow Compound GSE18500 20421474 Dietrich 2010 Bone marrow Bacteria E-MEXP-2554 20624948 Nguyen Hoang 2010 Ascites Protozoa GSE22935 20716764 Qualls 2010 Bone marrow Bacteria GSE19374 20123961 Rayamajh 2010 Bone marrow Bacteria GSE23306 20729857 Satoh 2010 Bone marrow Compound GSE20087 20361029 Zhang 2010 Peritoneum Compound .
Recommended publications
  • Transcriptomic Analysis of Native Versus Cultured Human and Mouse Dorsal Root Ganglia Focused on Pharmacological Targets Short
    bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Transcriptomic analysis of native versus cultured human and mouse dorsal root ganglia focused on pharmacological targets Short title: Comparative transcriptomics of acutely dissected versus cultured DRGs Andi Wangzhou1, Lisa A. McIlvried2, Candler Paige1, Paulino Barragan-Iglesias1, Carolyn A. Guzman1, Gregory Dussor1, Pradipta R. Ray1,#, Robert W. Gereau IV2, # and Theodore J. Price1, # 1The University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson, TX, 75080, USA 2Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine # corresponding authors [email protected], [email protected] and [email protected] Funding: NIH grants T32DA007261 (LM); NS065926 and NS102161 (TJP); NS106953 and NS042595 (RWG). The authors declare no conflicts of interest Author Contributions Conceived of the Project: PRR, RWG IV and TJP Performed Experiments: AW, LAM, CP, PB-I Supervised Experiments: GD, RWG IV, TJP Analyzed Data: AW, LAM, CP, CAG, PRR Supervised Bioinformatics Analysis: PRR Drew Figures: AW, PRR Wrote and Edited Manuscript: AW, LAM, CP, GD, PRR, RWG IV, TJP All authors approved the final version of the manuscript. 1 bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Advancing a Clinically Relevant Perspective of the Clonal Nature of Cancer
    Advancing a clinically relevant perspective of the clonal nature of cancer Christian Ruiza,b, Elizabeth Lenkiewicza, Lisa Eversa, Tara Holleya, Alex Robesona, Jeffrey Kieferc, Michael J. Demeurea,d, Michael A. Hollingsworthe, Michael Shenf, Donna Prunkardf, Peter S. Rabinovitchf, Tobias Zellwegerg, Spyro Moussesc, Jeffrey M. Trenta,h, John D. Carpteni, Lukas Bubendorfb, Daniel Von Hoffa,d, and Michael T. Barretta,1 aClinical Translational Research Division, Translational Genomics Research Institute, Scottsdale, AZ 85259; bInstitute for Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; cGenetic Basis of Human Disease, Translational Genomics Research Institute, Phoenix, AZ 85004; dVirginia G. Piper Cancer Center, Scottsdale Healthcare, Scottsdale, AZ 85258; eEppley Institute for Research in Cancer and Allied Diseases, Nebraska Medical Center, Omaha, NE 68198; fDepartment of Pathology, University of Washington, Seattle, WA 98105; gDivision of Urology, St. Claraspital and University of Basel, 4058 Basel, Switzerland; hVan Andel Research Institute, Grand Rapids, MI 49503; and iIntegrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004 Edited* by George F. Vande Woude, Van Andel Research Institute, Grand Rapids, MI, and approved June 10, 2011 (received for review March 11, 2011) Cancers frequently arise as a result of an acquired genomic insta- on the basis of morphology alone (8). Thus, the application of bility and the subsequent clonal evolution of neoplastic cells with purification methods such as laser capture microdissection does variable patterns of genetic aberrations. Thus, the presence and not resolve the complexities of many samples. A second approach behaviors of distinct clonal populations in each patient’s tumor is to passage tumor biopsies in tissue culture or in xenografts (4, 9– may underlie multiple clinical phenotypes in cancers.
    [Show full text]
  • Prox1regulates the Subtype-Specific Development of Caudal Ganglionic
    The Journal of Neuroscience, September 16, 2015 • 35(37):12869–12889 • 12869 Development/Plasticity/Repair Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons X Goichi Miyoshi,1 Allison Young,1 Timothy Petros,1 Theofanis Karayannis,1 Melissa McKenzie Chang,1 Alfonso Lavado,2 Tomohiko Iwano,3 Miho Nakajima,4 Hiroki Taniguchi,5 Z. Josh Huang,5 XNathaniel Heintz,4 Guillermo Oliver,2 Fumio Matsuzaki,3 Robert P. Machold,1 and Gord Fishell1 1Department of Neuroscience and Physiology, NYU Neuroscience Institute, Smilow Research Center, New York University School of Medicine, New York, New York 10016, 2Department of Genetics & Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, 3Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan, 4Laboratory of Molecular Biology, Howard Hughes Medical Institute, GENSAT Project, The Rockefeller University, New York, New York 10065, and 5Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 Neurogliaform (RELNϩ) and bipolar (VIPϩ) GABAergic interneurons of the mammalian cerebral cortex provide critical inhibition locally within the superficial layers. While these subtypes are known to originate from the embryonic caudal ganglionic eminence (CGE), the specific genetic programs that direct their positioning, maturation, and integration into the cortical network have not been eluci- dated. Here, we report that in mice expression of the transcription factor Prox1 is selectively maintained in postmitotic CGE-derived cortical interneuron precursors and that loss of Prox1 impairs the integration of these cells into superficial layers. Moreover, Prox1 differentially regulates the postnatal maturation of each specific subtype originating from the CGE (RELN, Calb2/VIP, and VIP).
    [Show full text]
  • HCC and Cancer Mutated Genes Summarized in the Literature Gene Symbol Gene Name References*
    HCC and cancer mutated genes summarized in the literature Gene symbol Gene name References* A2M Alpha-2-macroglobulin (4) ABL1 c-abl oncogene 1, receptor tyrosine kinase (4,5,22) ACBD7 Acyl-Coenzyme A binding domain containing 7 (23) ACTL6A Actin-like 6A (4,5) ACTL6B Actin-like 6B (4) ACVR1B Activin A receptor, type IB (21,22) ACVR2A Activin A receptor, type IIA (4,21) ADAM10 ADAM metallopeptidase domain 10 (5) ADAMTS9 ADAM metallopeptidase with thrombospondin type 1 motif, 9 (4) ADCY2 Adenylate cyclase 2 (brain) (26) AJUBA Ajuba LIM protein (21) AKAP9 A kinase (PRKA) anchor protein (yotiao) 9 (4) Akt AKT serine/threonine kinase (28) AKT1 v-akt murine thymoma viral oncogene homolog 1 (5,21,22) AKT2 v-akt murine thymoma viral oncogene homolog 2 (4) ALB Albumin (4) ALK Anaplastic lymphoma receptor tyrosine kinase (22) AMPH Amphiphysin (24) ANK3 Ankyrin 3, node of Ranvier (ankyrin G) (4) ANKRD12 Ankyrin repeat domain 12 (4) ANO1 Anoctamin 1, calcium activated chloride channel (4) APC Adenomatous polyposis coli (4,5,21,22,25,28) APOB Apolipoprotein B [including Ag(x) antigen] (4) AR Androgen receptor (5,21-23) ARAP1 ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 1 (4) ARHGAP35 Rho GTPase activating protein 35 (21) ARID1A AT rich interactive domain 1A (SWI-like) (4,5,21,22,24,25,27,28) ARID1B AT rich interactive domain 1B (SWI1-like) (4,5,22) ARID2 AT rich interactive domain 2 (ARID, RFX-like) (4,5,22,24,25,27,28) ARID4A AT rich interactive domain 4A (RBP1-like) (28) ARID5B AT rich interactive domain 5B (MRF1-like) (21) ASPM Asp (abnormal
    [Show full text]
  • PRODUCT SPECIFICATION Anti-MAP3K10 Product Datasheet
    Anti-MAP3K10 Product Datasheet Polyclonal Antibody PRODUCT SPECIFICATION Product Name Anti-MAP3K10 Product Number HPA007039 Gene Description mitogen-activated protein kinase kinase kinase 10 Clonality Polyclonal Isotype IgG Host Rabbit Antigen Sequence Recombinant Protein Epitope Signature Tag (PrEST) antigen sequence: LPSGFEHKITVQASPTLDKRKGSDGASPPASPSIIPRLRAIRLTPVDCGG SSSGSSSGGSGTWSRGGPPKKEELVGGKKKGRTWGPSSTLQKERVGGEER LKGLGEGSKQWSSS Purification Method Affinity purified using the PrEST antigen as affinity ligand Verified Species Human Reactivity Recommended IHC (Immunohistochemistry) Applications - Antibody dilution: 1:200 - 1:500 - Retrieval method: HIER pH6 ICC-IF (Immunofluorescence) - Fixation/Permeabilization: PFA/Triton X-100 - Working concentration: 0.25-2 µg/ml Characterization Data Available at atlasantibodies.com/products/HPA007039 Buffer 40% glycerol and PBS (pH 7.2). 0.02% sodium azide is added as preservative. Concentration Lot dependent Storage Store at +4°C for short term storage. Long time storage is recommended at -20°C. Notes Gently mix before use. Optimal concentrations and conditions for each application should be determined by the user. For protocols, additional product information, such as images and references, see atlasantibodies.com. Product of Sweden. For research use only. Not intended for pharmaceutical development, diagnostic, therapeutic or any in vivo use. No products from Atlas Antibodies may be resold, modified for resale or used to manufacture commercial products without prior written approval from Atlas Antibodies AB. Warranty: The products supplied by Atlas Antibodies are warranted to meet stated product specifications and to conform to label descriptions when used and stored properly. Unless otherwise stated, this warranty is limited to one year from date of sales for products used, handled and stored according to Atlas Antibodies AB's instructions. Atlas Antibodies AB's sole liability is limited to replacement of the product or refund of the purchase price.
    [Show full text]
  • A Novel JAK1 Mutant Breast Implant-Associated Anaplastic Large Cell Lymphoma Patient-Derived Xenograft Fostering Pre- Clinical Discoveries
    Cancers 2019 S1 of S18 Supplementary Materials: A Novel JAK1 Mutant Breast Implant-Associated Anaplastic Large Cell Lymphoma Patient-Derived Xenograft Fostering Pre- Clinical Discoveries Danilo Fiore, Luca Vincenzo Cappelli, Paul Zumbo, Jude M. Phillip, Zhaoqi Liu, Shuhua Cheng, Liron Yoffe, Paola Ghione, Federica Di Maggio, Ahmet Dogan, Inna Khodos, Elisa de Stanchina, Joseph Casano, Clarisse Kayembe, Wayne Tam, Doron Betel, Robin Foa’, Leandro Cerchietti, Raul Rabadan, Steven Horwitz, David M. Weinstock and Giorgio Inghirami A B C Figure S1. (A) Histology micrografts on IL89 PDTX show overall similarity between T1 T3 and T7 passages (upper panels). Immunohistochemical stains with the indicated antibodies (anti-CD3, anti- CD25 and anti-CD8 [x20]) (lower panels). (B) Flow cytometry panel comprehensive of the most represented surface T-cell lymphoma markers, including: CD2, CD3, CD4, CD5, CD8, CD16, CD25, CD30, CD56, TCRab, TCRgd. IL89 PDTX passage T3 is here depicted for illustration purposes. (C) Analysis of the TCR gamma specific rearrangement clonality in IL89 diagnostic sample and correspondent PDTX after 1 and 5 passages (T1 and T5). A WT Primary p.G1097D IL89 T1 p.G1097D IL89 T5 p.G1097D IL89 cell line B Figure S2. (A) Sanger sequencing confirms the presence of the JAK1 p.G1097D mutation in IL89 PDTX samples and in the cell line, but the mutation is undetectable in the primary due to the low sensitivity of the technique. (B) Manual backtracking of mutations in the primary tumor using deep sequencing data allowed for the identification of several hits at a very low VAF compared to the PDTX-T5. A B IL89 CTRL 30 CTRL Ruxoli?nib S 20 M Ruxoli?nib A R G 10 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 1 1 1 1 1 WEEKS AFTER ENGRAFTMENT Figure S3.
    [Show full text]
  • 1 Supplemental Informations Microarray Method Total RNA Was
    Supplemental Informations Microarray method Total RNA was purified using nucleospin RNA L columns (Macherey Nagel, Hoerdt, France) according to the manufacturer’s recommendations. cDNA synthesis and biotin labelling of cRNA were performed using 5 µg total RNA and according to One-Cycle Target Labelling protocol (Affymetrix, Santa Clara, CA). cRNA were hybridized to 12 Mouse Genome 430A GeneChips (1 mouse per chip) and analyzed using a GeneChip 3000 7G scanner and the GeneChip Operative Software v1.1.1 (Affymetrix) at the Gene Expression core facility of the Institute for Biotherapy (Montpellier, France). CEL files were processed using the ChipInspector software (Genomatix, Munich, Germany). ChipInspector uses single probe expression levels as input and map to transcripts probes that uniquely display significant changes. The methods circumvent false negative resulting from low signal probes, annotation errors and errors due to the existence of alternative transcripts. Differentially expressed genes between the AL and MT groups at both time points were identified using a SAM (Significance analysis of Microarrays) one class comparison with the following settings: false discovery rate of 0.5%; minimal probe coverage: 3; minimal fold change threshold of 1.5. Down and up-regulated genes from both datasets (CT4 and CT16) were mapped to the Gene Ontology (GO) biological process terms and calculated as over- represented (z-score) relative to the expected number of regulated genes in each GO category. Cluster 3.0 and Treeview were used to construct the heatmap of the subset of genes regulated in a time dependent manner in the tumor of mice with restricted access to food.
    [Show full text]
  • Overview Gene List Target Scan Vs DIANA Group a Group B Group A
    Overview Gene list Target scan vs DIANA Group A Group B Group A hsa-miR-181a hsa-miR-323 hsa-miR-326 Target scan Diana microT Overlap Target scan Diana microT Overlap Target scan SEPT3 SEPT3 SEPT3 SEPT7 ADARB1 HPCAL4 ABHD2 ABL2 ABHD13 ACVR2A ADCYAP1R1 AKAP13 PDPK1 ACRBP ACAN ABI1 ADAMTS1 ALAD APOBR ACVRL1 ACCN2 ABLIM1 ADAMTSL1 ANKRD52 ATXN1 ADAM19 ACER3 ACSL1 AKAP7 ARID2 C18orf23,RNF165 ADAM33 ACVR2A ACTN2 ANKRD43 ARL3 C20orf29 ADAMTS2 ADAMTS1 ACVR2A AP1S3 ARRB1 CACNG4 AHCYL2 ADAMTS18 ACVR2B ARID2 BBC3 CCNJL ALOX15B ADAMTS5 ADAM11 ATP11A BTG1 CYP2E1 ANK1 ADAMTSL1 ADAM22 ATXN1 C18orf62 GNB1L ANKS6 ADARB1 ADAMTS1 B4GALT1 C1orf21 GPR61 APBA1 AFAP1 ADAMTS6 BAG4 CADM4 GTSE1 ARCN1 AFTPH ADAMTSL1 BAI3 CALML4 HPCAL4 ARHGEF37 AK3 ADCY9 BNC2 CAPN6 KIAA0152 ARID3B AKAP7 ADRBK1 BRD1 CBFA2T2 KIF1A ARL8A ANAPC16 AFF2 BRWD1 CEBPA MACF1 ATP2B2 ANK1 AHCTF1,AHCTF1PBTBD3 CHD1 MYO1D ATP6V1G2 ANKRD12 AKAP2,PALM2 C13orf23 CIT PCNT AUP1 ANKRD33B AKAP6 C14orf43 CLASP2 PDPK1 BCL2L2 ANKRD43 AKAP7 CAPRIN1 CLCN5 PLEKHG4B BHLHE40 ANKRD44 AKAP9 CARM1 CLIP3 PPARA BTBD3 ANKRD52 AKT3 CBX4 COL5A2 PRB1,PRB2,PRB4 BTRC AP1S3 ALG9 CCDC117 CTNS PTPRT C10orf26 APBA1 ANKRD13C CCNJ DCTN4 PYCR1 C14orf1 APLP2 ANKRD20B CDH13 DCUN1D4 RAPGEF1 C16orf45 APOO ANKRD43 CDON DDB1 SRCAP C16orf54 ARID2 ANKRD50 CDYL DDX39B TMEM63C C1orf106 ARL3 AP1G1 CEP350 DIP2C C1orf27 ARRDC3 AP1S3 CHD7 DNAJB3 C22orf29 ATF7 API5 CHIC1 EEPD1 C9orf3 ATG2B ARFGEF2 CLIP1 EIF2C1 CACNA1E ATG7 ARHGAP12 CNOT6L ELFN2 CAPN12 ATP11A ARHGAP26 CNR1 ELK1 CASKIN1 ATP2B3 ARHGAP29 CNTN4 FAM172A CBFA2T3 ATP8B2 ARHGEF3 CNTNAP2
    [Show full text]
  • Murine Obscurin and Obsl1 Have Functionally Redundant Roles in Sarcolemmal Integrity, Sarcoplasmic Reticulum Organization, and Muscle Metabolism
    UC San Diego UC San Diego Previously Published Works Title Murine obscurin and Obsl1 have functionally redundant roles in sarcolemmal integrity, sarcoplasmic reticulum organization, and muscle metabolism. Permalink https://escholarship.org/uc/item/46t7g5hw Journal Communications biology, 2(1) ISSN 2399-3642 Authors Blondelle, Jordan Marrocco, Valeria Clark, Madison et al. Publication Date 2019 DOI 10.1038/s42003-019-0405-7 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ARTICLE https://doi.org/10.1038/s42003-019-0405-7 OPEN Murine obscurin and Obsl1 have functionally redundant roles in sarcolemmal integrity, sarcoplasmic reticulum organization, and muscle metabolism 1234567890():,; Jordan Blondelle1,7, Valeria Marrocco1,7, Madison Clark1, Patrick Desmond1, Stephanie Myers1, Jim Nguyen1, Matthew Wright1, Shannon Bremner2, Enrico Pierantozzi3, Samuel Ward2, Eric Estève1,4, Vincenzo Sorrentino 3, Majid Ghassemian5 & Stephan Lange 1,6 Biological roles of obscurin and its close homolog Obsl1 (obscurin-like 1) have been enig- matic. While obscurin is highly expressed in striated muscles, Obsl1 is found ubiquitously. Accordingly, obscurin mutations have been linked to myopathies, whereas mutations in Obsl1 result in 3M-growth syndrome. To further study unique and redundant functions of these closely related proteins, we generated and characterized Obsl1 knockouts. Global Obsl1 knockouts are embryonically lethal. In contrast, skeletal muscle-specific Obsl1 knockouts show a benign phenotype similar to obscurin knockouts. Only deletion of both proteins and removal of their functional redundancy revealed their roles for sarcolemmal stability and sarcoplasmic reticulum organization. To gain unbiased insights into changes to the muscle proteome, we analyzed tibialis anterior and soleus muscles by mass spectrometry, unco- vering additional changes to the muscle metabolism.
    [Show full text]
  • PRODUCTS and SERVICES Target List
    PRODUCTS AND SERVICES Target list Kinase Products P.1-11 Kinase Products Biochemical Assays P.12 "QuickScout Screening Assist™ Kits" Kinase Protein Assay Kits P.13 "QuickScout Custom Profiling & Panel Profiling Series" Targets P.14 "QuickScout Custom Profiling Series" Preincubation Targets Cell-Based Assays P.15 NanoBRET™ TE Intracellular Kinase Cell-Based Assay Service Targets P.16 Tyrosine Kinase Ba/F3 Cell-Based Assay Service Targets P.17 Kinase HEK293 Cell-Based Assay Service ~ClariCELL™ ~ Targets P.18 Detection of Protein-Protein Interactions ~ProbeX™~ Stable Cell Lines Crystallization Services P.19 FastLane™ Structures ~Premium~ P.20-21 FastLane™ Structures ~Standard~ Kinase Products For details of products, please see "PRODUCTS AND SERVICES" on page 1~3. Tyrosine Kinases Note: Please contact us for availability or further information. Information may be changed without notice. Expression Protein Kinase Tag Carna Product Name Catalog No. Construct Sequence Accession Number Tag Location System HIS ABL(ABL1) 08-001 Full-length 2-1130 NP_005148.2 N-terminal His Insect (sf21) ABL(ABL1) BTN BTN-ABL(ABL1) 08-401-20N Full-length 2-1130 NP_005148.2 N-terminal DYKDDDDK Insect (sf21) ABL(ABL1) [E255K] HIS ABL(ABL1)[E255K] 08-094 Full-length 2-1130 NP_005148.2 N-terminal His Insect (sf21) HIS ABL(ABL1)[T315I] 08-093 Full-length 2-1130 NP_005148.2 N-terminal His Insect (sf21) ABL(ABL1) [T315I] BTN BTN-ABL(ABL1)[T315I] 08-493-20N Full-length 2-1130 NP_005148.2 N-terminal DYKDDDDK Insect (sf21) ACK(TNK2) GST ACK(TNK2) 08-196 Catalytic domain
    [Show full text]
  • Supplementary Table 5.List of the 220 Most Frequently Amplified Genes In
    Supplementary Table 5. List of the 220 most frequently amplified genes in this study. The table includes their chromosomal location, the amplification frequency in ER-positive female breast cancer with associated p-value for difference in proportions, the preference for surrogate intrinsic molecular subtype, and associations with clinical, pathological and genetic characteristics. Potentially druggable gene categories, clinical actionability and known drug interactions are indicated per gene. Gene Full name chr location % amp in FFPE % amps in FF total % amp % amp ER+ FBC* p-value MBC vs ER+ FBC** % in lumA-like % in lumB-like p-value BRCA2 germline Age Hist type ER status PR status HER2 status Grade MAI Size LN SNV load PIK3CA mut KM (OS)*** KM (5Y OS)*** druggable gene category# clinically actionable?## known drug interactions?### THBS1 thrombospondin 1 15q14 37% 9% 30% 0.1% <0.0001 23% 35% 0.128 ns ns ns ns ns ns ns ns ns ns ns ns 0.642 p=0.832 cell surface, tumor suppressor, drug resistance, external side of plasma membrane no none PRKDC protein kinase, DNA-activated, catalytic polypeptide 8q11.21 35% 7% 27% 10.9% <0.0001 26% 30% 0.595 ns ns ns ns ns ns ns ns ns ns ns ns 0.838 p=0.903 (serine threonine) kinase, druggable genome, PI3 kinase, tumor suppressor, TF complex, TF binding, DNA repair yes DNA-PK INHIBITOR V (DNA-PK inhibitor); WORTMANNIN (PI3K inhibitor); SF1126 (PI3 kinase/mTOR inhibitor) TBX3 T-box 3 12q24.21 34% 7% 27% 0.1% <0.0001 20% 35% 0.053 ns ns ns ns ns ns ns ns ns ns ns ns 0.439 p=0.264 tumor suppressor, TF binding
    [Show full text]
  • Elucidating the Unknown Role of Cyclin Dependent Kinase 5 in Cardiac Pathophysiological
    Elucidating the Unknown Role of Cyclin Dependent Kinase 5 in Cardiac Pathophysiological Conditions Danielle Aina-Badejo Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2021 © 2021 Danielle Aina-Badejo All Rights Reserved Abstract Elucidating the Unknown Role of Cyclin Dependent Kinase 5 in Cardiac Pathophysiological Conditions Danielle Aina-Badejo Until now, the role of cyclin dependent kinase 5 (CDK5) in cardiac pathophysiology has not been explored. While CDK5 has been well studied in the neuroscience/Alzheimer’s field as a cyclin-independent kinase, there is currently no investigation into the cardiac-specific role of CDK5. Recently, it was established that inhibition of CDK5 in stem cell derived cardiomyocytes from individuals with Timothy Syndrome (TS) rescued the delayed inactivation phenotype; TS is a fatal genetic long QT syndrome (LQTS) caused by delayed inactivation of the L-type voltage 2+ gated Ca channel Ca V1.2. While it is evident that CDK5 plays an important role in regulating Ca V1.2 function, its role in cardiac tissue remains to be elucidated. To determine whether CDK5 is essential for cardiac function, two separate mouse models were established—a cardiac-deficient Cdk5 mouse model ( Cdk5 flox x αMHC-MerCreMer +) and a Cdk5 activation mouse model via overexpression of Cdk5’s known activator, p35 (Cdk5r1/ p35 OE x αMHC-MerCreMer +). Immediately after spatiotemporal induction of deficiency/activation of Cdk5 in adult mice, echocardiography, histology and proteomic analysis were performed to examine effects on cardiac structure and function.
    [Show full text]