Allerød/Younger Dryas Boundary
Total Page:16
File Type:pdf, Size:1020Kb
Durham E-Theses Investigating the origin of a Greenland ice core geochemical anomaly near the Bølling-Allerød/Younger Dryas boundary GREEN, CHARLOTTE,EMILY How to cite: GREEN, CHARLOTTE,EMILY (2019) Investigating the origin of a Greenland ice core geochemical anomaly near the Bølling-Allerød/Younger Dryas boundary, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/13490/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 Investigating the origin of a Greenland ice core geochemical anomaly near the Bølling- Allerød/Younger Dryas boundary By Charlotte Emily Green Thesis For the degree of: Master of Science by Research Department of Earth Sciences Durham University 2019 Investigating the origin of a Greenland ice core geochemical anomaly near the Bølling-Allerød/Younger Dryas boundary Charlotte E. Green The source of a platinum peak identified in the Greenland Ice Sheet Project 2 (GISP2) ice core that occurs almost synchronously with Younger Dryas (YD) cooling is poorly understood. The GISP2 Pt spike is associated with high platinum/iridium (Pt/Ir) and platinum/aluminium (Pt/Al) ratios, and previous research attributed the anomaly to an unusual iron-rich Ir-poor meteorite impact. The Pt spike timing is also broadly contemporaneous with the Laacher See eruption (LSE), Germany, suggesting a possible source. However, this link is understudied because of perceived chronological mismatches (reconciled recently), and the lack of Pt and Ir data from the Laacher See tephra (LST). To explore this link further, proximal tephra deposits from the LSE were sampled at localities around the volcano and the relevant geochemistry analysed. This report presents evidence that the LSE is not the Pt spike source because: i) the LST has low Pt concentrations, ii) the LST’s geochemical ratios are dissimilar to the GISP2 Pt spike and iii) conversion of the Pt spike timing to the newest ice core age-depth model shows a chronological offset of ~60 years between the two events. Further comparison of the Pt spike’s geochemical ratios against magmas and meteorites, YD Boundary sediments and others suggests that the Pt spike geochemistry is incomparable to any known source. Therefore, the Pt spike origin is interpreted as either: i) a noncataclysmic impact of an undiscovered iron meteorite or ii) an unidentified Pt-rich volcanic eruption contemporaneous with the anomaly, whose aerosol fractionated in the atmosphere or ice. This report supports the LSE as the simplest explanation for the YD trigger, because the LSE was synchronous with Greenland Stadial-1 (GS-1) and contained enough sulfur to cause substantial cooling. The event resulting in the Pt spike occurred ~60 years after GS-1 cooling, and was therefore not the primary trigger. The Pt spike may however represent a subsequent radiative cooling event that prolonged the YD. 2 Table of Contents 1. Introduction ....................................................................................................... 7 2. Background .................................................................................................... 10 2.1. The Last Deglaciation and the Younger Dryas ........................................ 10 2.1.1. Younger Dryas Climate in the Northern Hemisphere ........................ 10 2.1.2. Younger Dryas Climate in the Southern Hemisphere and Tropical Regions .......................................................................................................... 11 2.2. Causes and Mechanisms of the Younger Dryas ...................................... 12 2.2.1. The Meltwater Pulse Hypothesis ....................................................... 12 2.2.1.1. Climate Effects of a Meltwater Pulse .......................................... 14 2.2.2. The Younger Dryas Impact Hypothesis ............................................. 15 2.2.2.1. Climate Effects of a Meteorite Impact ......................................... 17 2.2.3. The Laacher See Hypothesis ............................................................ 19 2.2.3.1. The Laacher See Eruption .......................................................... 19 2.2.3.2. A Review of the Laacher See Hypothesis ................................... 22 2.2.3.3. Climate Impact of the LSE .......................................................... 24 2.2.4. Summary ........................................................................................... 27 2.2.5. Project Aims ...................................................................................... 28 3. Site Setting ..................................................................................................... 30 3.1. LST1 ........................................................................................................ 30 3.2. LST2 ........................................................................................................ 32 3.3. LST3 ........................................................................................................ 34 4. Methodology ................................................................................................... 36 4.1. Sample Collection .................................................................................... 36 4.2. Sample Preparation ................................................................................. 36 4.3. Sample Analysis ...................................................................................... 37 4.3.1. Fire Assay ICP-MS ............................................................................ 37 4.3.2. Nickel Sulfide Fire Assay INAA ......................................................... 37 4.3.3. Lithium Metaborate/Tetraborate Fusion ICP and ICP-MS ................. 38 4.3.3.1. Lithium Metaborate/Tetraborate Fusion ICP ............................... 38 4.3.3.2. Lithium Metaborate/Tetraborate ICP-MS .................................... 38 4.4. Timing of the Pt Spike .............................................................................. 39 4.5. Limitations ................................................................................................ 39 5. Results ........................................................................................................... 40 5.1. Timing of the GISP2 Pt Spike .................................................................. 40 3 5.2. Comparison with Other Records .............................................................. 40 5.3. Geochemistry of the Laacher See Tephra ............................................... 42 5.3.1. Absolute Abundances ....................................................................... 42 5.3.1.1. Major Elements ........................................................................... 42 5.3.1.2. Trace Elements ........................................................................... 46 5.3.2. Geochemical Ratios .......................................................................... 56 5.3.2.1. Laacher See Tephra ................................................................... 57 5.3.3. Comparison to Literature Values ....................................................... 58 5.3.3.1. Laacher See Tephra ................................................................... 58 5.3.3.2. GISP2 Spike ............................................................................... 58 6. Discussion ...................................................................................................... 63 6.1. Timing of the Pt Spike and the LSE ......................................................... 63 6.1.1. Atmospheric Dynamics ...................................................................... 63 6.1.2. Post-depositional Processes ............................................................. 65 6.1.3. Alternative Explanations .................................................................... 67 6.2. Geochemistry ........................................................................................... 68 6.2.1. A Volcanic Source: Platinum-rich Volcanism ..................................... 70 6.2.1.1. PGE Enrichment in the Melt........................................................ 70 6.2.1.2. PGE Enrichment in the Volcanic Aerosol .................................... 71 6.2.1.3. Chemical and Atmospheric Processing in the Volcanic Cloud .... 75 6.2.1.4. Other Volcanic Eruptions ............................................................ 76 6.2.2. An Extraterrestrial Source: Platinum-rich Meteorites ......................... 77 6.2.2.1. Primary Fractionation Processes in Meteorites ........................... 77 6.2.3. Other Fractionation Processes .......................................................... 78 6.2.3.1. Alteration or Mobilisation in Snow or Ice ..................................... 79 6.3. Alternative Sources of Platinum ..............................................................