Towards a Dendrochronologically Refined Date of the Laacher See
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Potential European Bison (Bison Bonasus) Habitat in Germany
PROJECT REPORT Potential European bison (Bison bonasus) habitat in Germany Tobias Kuemmerle Humboldt-University Berlin Benjamin Bleyhl Humboldt-University Berlin Wanda Olech University of Warsaw & European Bison Friends Society Kajetan Perzanowski Carpathian Wildlife Research Station MIZ, PAS & European Bison Friends Society 1 PROJECT REPORT CONTENTS CONTENTS ...............................................................................................................................................................2 INTRODUCTION .......................................................................................................................................................3 HISTORIC DISTRIBUTION OF EUROPEAN BISON IN EUROPE .....................................................................................4 EUROPEAN BISON HABITAT PREFERENCES ..............................................................................................................6 HABITAT USE OF CONTEMPORARY EUROPEAN BISON POPULATIONS .......................................................................................... 6 PALEO-ECOLOGICAL DATA ON EUROPEAN BISON HABITAT USE ............................................................................................... 10 MAPPING EUROPEAN BISON HABITAT IN GERMANY ............................................................................................ 10 APPROACH ................................................................................................................................................................. -
Biodiversity of the Hercynian Mountains of Central Europe
Pirineos, 151-152: 83 a 99, JACA; 1998 BIODIVERSITY OF THE HERCYNIAN MOUNTAINS OF CENTRAL EUROPE JAN JENÍK Faculty of Science, Charles University, Benátská 2, CZ-12801 Praha 2, Czech Republic SUMMARY.- The vegetation of temperate Central Europe north of the Alps is mainly of low diversity broadleaf and conifer forest. The occurrence of three azonal habitat types: mires with their numerous microhabitats, the georelief of the karst and its deeply-cut river valleys, and ecological islands with a distinct vegetation near the treeline of the middle-mountains causes local areas of high diversity. These high species diversity spots are the result of an interplay between physical, biotic and historical factors. A model of an anemo-orographic system with its underlying factors is described to explain the high plant and animal diversity in the corries (glacial cirques) of the Hercynian mountains. RÉSUMÉ.-La végétation de l'Europe Centrale tempérée au nord des Alpes nous montre surtout des forêts à de feuillues et de connifères à faible diversité. Cependant, la présence de trois types d'habitats azonaux peut produire une haute diversité au niveau local: zones humides avec leur nombreux microhabitats, reliefs karstiques et leur profonds défilés fluviaux, et enfin des îles écologiques avec une végétation par ticulière situées près de la limite supérieure des arbres (treeline). Ces secteurs riches en espèces peuvent s'expliquer par l'interaction des facteurs physiques, biotiques et historiques. Dans ce domaine nous proposons un système anémo-orographique avec ses facteurs inféodés qui pourrait expliquer la haute diversité animale et végétale dans les cirques glaciaires des montagnes hercyniennes. -
Proxy Environmental Record from the Bohemian Forest, Czech Republic
bs_bs_banner The Lateglacial and Holocene in Central Europe: a multi-proxy environmental record from the Bohemian Forest, Czech Republic KLARA VOCADLOV A, LIBOR PETR, PAVLA ZA CKOV A, MAREK KRIZEK, LENKA KRIZOV A, SIMON M. HUTCHINSON AND MIROSLAV SOBR Vocadlova, K., Petr, L., Zackova, P., Krızek, M., Krızova, L., Hutchinson, S. M. & Sobr M.: The Lateglacial and Holocene in Central Europe: a multi-proxy environmental record from the Bohemian Forest, Czech Republic. Boreas. 10.1111/bor.12126. ISSN 0300-9483. The Hercynian mountain ranges were islands of mountain glaciation and alpine tundra in a Central European ice-free corridor during the Late Pleistocene. Today they are notable areas of glacial landforms, alpine-forest free areas, peatlands and woodlands. However, our knowledge of the Lateglacial and early Holocene environmental changes in this region is limited. We present a new multi-proxy reconstruction of a mid-altitude environment in the Bohemian Forest spanning this period. A core (5.2 m length) in the Cern e Lake cirque (1028 m a.s.l.) was sub- jected to lithological, geochemical, pollen and macrofossil analysis supplemented by two optically stimulated luminescence (OSL) and 10 AMS radiocarbon dates. We determined the impact of regional and supraregional cli- mate changes on the environment. The two most significant changes in sedimentation during the Lateglacial (17.6 and 15.8–15.5 cal. ka BP) were synchronous with regional glacial chronostratigraphy. Unlike Central European mountain ranges, in the Bohemian Forest the Younger Dryas was not coincident with glacier re-advance, but was a dry, cold episode with low lake levels, which prevailed until the early Preboreal. -
Sulphate Sorption Characteristics of the Bohemian Forest Soils
Silva Gabreta vol. 11 (1) p. 3–12 Vimperk, 2005 Sulphate sorption characteristics of the Bohemian Forest soils Jiří Kaňa* & Jiří Kopáček Faculty of Biological Sciences, University of South Bohemia, and Hydrobiological Institute, AS CR, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic *[email protected] Abstract Sulphate (SO4-S) sorption characteristics were determined in soils from catchments of three acidified mountain lakes, Plešné (PL), Čertovo (CT), and Černé (CN), situated in the Bohemian Forest. The SO4-S desorption ranged between 0.07–0.73, 0.21–0.68, and 0.39–0.82 mmol.kg–1 in the PL, CT, and CN catchments, respectively. SO4-S desorption was observed to be higher in horizon A than in mineral horizons below. The SO4-S represented only 3.4% of total S pool in the catchments and did not explain a relatively high rate of terrestrial leaching of sulphate over last 10 years. This disproportion suggests that the soil SO4-S pool is being replenished from internal soil processes from the pool of total S. Sulphate sorption maxima in soils in the catchments of the Bohemian Forest lakes varied between 1.5–11.7 mmol.kg–1, being highest in A-horizon and lowest in E-horizon. Key words: acidification, recovery, soil chemistry INTRODUCTION The chemistry (and, consequently, biology) of mountain lakes is determined by amount of precipitation and their composition, bedrock (PSENNER & CATALAN 1994), catchment soils and vegetation (e.g. BARON et al. 1994), and hydrology (WETZEL 2002). Soil sorption charac- teristics may significantly affect water composition, e.g. -
Life in the Poisonous Breath of Sleeping Volcanos 1 April 2015
Life in the poisonous breath of sleeping volcanos 1 April 2015 eastern shore of the lake in large quantities, which could, over time accumulate in the building," as Prof. Dr. Kirsten Küsel of the Friedrich-Schiller Universiy Jena, explains the mysterious series of deaths. The lake is the crater of a volcano which last erupted about 12,000 years ago, reports the chair of Aquatic Geomicrobiology, "and up to now there are traces of volcanicity, which we regularly analyze on a yearly basis in an outdoor seminar in the degree course Biogeosciences." Hints of volcanism are given by so-called mofettes. These are small openings in the ground, leaking carbon dioxide, which originates in the magma chambers of the earth's mantel or the earth's crust. PhD student and first author of the study Felix Beulig Small wonder then, that mofettes were places that analyzes soil samples in an anaerobic chamber. Credit: are supposed to be very hostile to life. However, as Anne Günther/FSU the team of researchers around Prof. Küsel was able to demonstrate in a new study: there is life even there, although hidden underground. In a mofette close to the Czech river Plesná in north- Researchers of the University Jena analyze the western Bohemia the researchers followed the path microbial community in volcanically active soils. In of the carbon dioxide along its last few meters a mofette close to the Czech river Plesná in north- through the ground up to the surface and found western Bohemia, the team around Prof. Dr. numerous organisms that were thriving in this Kirsten Küsel found numerous organisms that were environment which seems to be so hostile to life. -
Radiocarbon Age of the Laacher See Tephra: 11,230 +/- 40 BP
Radiocarbon Age of the Laacher See Tephra: 11,230 +/- 40 BP Item Type Article; text Authors Hajdas, Irena; Ivy-Ochs, S. D.; Bonani, Georges; Lotter, André F.; Zolitschka, Bernd; Schlüchter, Christian Citation Hajdas, I., Ivy-Ochs, S. D., Bonani, G., Lotter, A. F., Zolitschka, B., & Schlüchter, C. (1995). Radiocarbon age of the Laacher See tephra: 11,230 +/- 40 BP. Radiocarbon, 37(2), 149-154. DOI 10.1017/S0033822200030587 Publisher Department of Geosciences, The University of Arizona Journal Radiocarbon Rights Copyright © by the Arizona Board of Regents on behalf of the University of Arizona. All rights reserved. Download date 27/09/2021 00:24:15 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/653373 RADIOCARBON AGE OF THE LAACHER SEE TEPHRA: 11,230:t 40 BP IRENA HAJDAS,1'2 SUSAN D. IVY-OCHS,1,3 GEORGES BONANI,1 ANDRE F. LOITER, 2 BERND ZOLITSCHK44 and CHRISTIAN SCHL UCHTER5 ABSTRACT. The Laacher See Tephra (LST) layer provides a unique and invaluable time marker in European sediments with increasing importance because it occurs just before the onset of the Younger Dryas (YD) cold event. As the YD begins ca. 200 calendar years after the LST was deposited, accurate determination of the radiocarbon age of this ash layer will lead to a more accurate age assignment for the beginning of the YD. On the basis of 12 terrestrial plant macrofossil 14C ages derived from sediments from Soppensee, Holzmaar and Schlakenmehrener Maar, we found an age of at least 11,230 ± 40 BP for the LST event. -
WAS THERE a METEORITE IMPACT OR VOLCANIC ERUPTION at the ONSET of the YOUNGER DRYAS? J.-H. Seo1, C. Han2,3, S. Bharadwaj1, G. Wörner4, A
52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 2680.pdf WAS THERE A METEORITE IMPACT OR VOLCANIC ERUPTION AT THE ONSET OF THE YOUNGER DRYAS? J.-H. Seo1, C. Han2,3, S. Bharadwaj1, G. Wörner4, A. Svensson5, E. Osterberg1, J.P. Steffensen5, S. Hong2, and M. Sharma1, 1Department of Earth Sciences, Dartmouth College, Hanover, NH 03755, 2Department of Ocean Sciences, Inha University, Incheon, South Korea, 3Korea Polar Research Institute, Incheon, South Korea, 4Georg-August-Universität Göttingen, GZG, Geochemisches Institut, Goldschmidtstr.1, Göttingen D- 37077, Germany. 5Niels Bohr Institute, Centre for Ice and Climate, University of Copenhagen, Tagensvej 16 DK- 2200, Copenhagen Denmark. Introduction: The Younger Dryas (YD; 12,900 – fingerprints of the peak sample should be consistent 11,700 yr) was an abrupt cooling period following the with those of the Laacher See tephra. termination of a warm period, Allerød. It is recorded in Measurements: We examined the GRIP (drilled at Greenland ice cores as Greenland Stadial-1 (GS-1) Summit, Greenland; 72o 34' N, 37o 38' W) ice core from [1,2]. The YD cooling event is thought to have resulted a depth of 1659.35 m to 1664.30 m (12,939 yr to 12,810 from freshwater flooding of the northeast Atlantic yr based on the Greenland Ice Core Chronology 2005 and/or the Arctic Oceans that prevented deep water (GICC05) time scale [1,2]). Each ice core sample had a formation [3,4]. The proposed cooling triggers include time resolution of ~2 years. Prior to analyses, the ice 1) catastrophic freshwater drainage of proglacial Lake core segments were decontaminated [16,17] in a cold Agassiz [5], 2) meteorite-induced destabilization and/or laboratory (-17 oC) at the Korea Polar Research Institute melting of the Laurentide Ice Sheet [6], and 3) large (KOPRI). -
Climatic Response to High-Latitude Volcanic Eruptions
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110, D13103, doi:10.1029/2004JD005487, 2005 Climatic response to high-latitude volcanic eruptions Luke Oman, Alan Robock, and Georgiy Stenchikov Department of Environmental Sciences, Rutgers–State University of New Jersey, New Brunswick, New Jersey, USA Gavin A. Schmidt1 and Reto Ruedy2 NASA Goddard Institute for Space Studies, New York, New York, USA Received 4 October 2004; revised 16 February 2005; accepted 21 March 2005; published 1 July 2005. [1] Strong volcanic eruptions can inject large amounts of SO2 into the lower stratosphere, which over time, are converted into sulfate aerosols and have the potential to impact climate. Aerosols from tropical volcanic eruptions like the 1991 Mount Pinatubo eruption spread over the entire globe, whereas high-latitude eruptions typically have aerosols which remain in the hemisphere in which they where injected. This causes their largest radiative forcing to be extratropical, and the climate response should be different from that of tropical eruptions. We conducted a 20-member ensemble simulation of the climate response to the Katmai eruption (58°N) of 6 June 1912 using the NASA Goddard Institute for Space Studies ModelE climate model. We also produced an additional 20-member ensemble for a 3 times Katmai (3x Katmai) eruption to see the impact the strength of the eruption has on the radiative as well as the dynamical responses. The results of these simulations do not show a positive Arctic Oscillation response like past simulations of tropical volcanic eruptions, but we did find significant cooling over southern Asia during the boreal winter. The first winter following Katmai and the second winter following 3x Katmai showed strong similarities in lower stratospheric geopotential height anomalies and sea level pressure anomalies, which occurred when the two cases had similar optical depth perturbations. -
Vulkanismus Und Archäologie Des Eiszeitalters Am Mittelrhein
Baales2_01(Text)_D 20.11.2003 11:42 Uhr Seite 43 MICHAEL BAALES* VULKANISMUS UND ARCHÄOLOGIE DES EISZEITALTERS AM MITTELRHEIN DIE FORSCHUNGSERGEBNISSE DER LETZTEN DREISSIG JAHRE Kaum eine Region in Deutschland bzw. Mitteleuropa ist so reich an Aufschlüssen mit unterschiedlich al- ten Ablagerungen des Eiszeitalters (Pleistozän) wie das Mittelrheingebiet um Koblenz - Neuwied - An- dernach - Mayen (Abb. 1). Verdankt wird dies u.a. dem Vulkanismus der Osteifel, dessen wichtigste Hin- terlassenschaften – zahlreiche Schlackenkegel und mächtige Bimsdecken – seit vielen Jahrzehnten intensiv abgebaut werden. Vor allem diese industrielle Steingewinnung legte immer wieder Hinterlassenschaften des eiszeitlichen Menschen und seiner Umwelt frei, die besonders seit den 1960er Jahren untersucht wur- den. Die Eiszeitarchäologie im Mittelrheingebiet begann jedoch schon 80 Jahre früher, als Constantin Koe- nen am 10.2.1883 auf dem Martinsberg bei Andernach im Lehm unter dem späteiszeitlichen Bims des Laacher See-Vulkans Tierknochen und Steingeräte bemerkte. Er benachrichtige Hermann Schaaffhausen aus Bonn, der sogleich mit der Ausgrabung einer späteiszeitlichen Siedlungsstelle begann (H. Schaaff- hausen 1888). Die Grabungsgeschichte war damit für Andernach noch nicht beendet, folgten doch zwei weitere Ausgrabungsperioden in den späten 1970er/frühen 1980er Jahren (S. Veil 1982a; 1982b; 1984; G. Bosinski 1996; H. Floss u. T. Terberger 2002) sowie zwischen 1994 und 1996 (S. Bergmann u. J. Holz- kämper 2002; J. Kegler 2002). Nach den Pioniertaten H. Schaaffhausens dauerte es aber bis zur Mitte des 20. Jahrhunderts, bis ein wei- terer (spät)eiszeitlicher Fundplatz entdeckt und auch untersucht wurde. Dieser lag in Urbar bei Koblenz und wurde 1966 erstmals in Ausschnitten freigelegt; die kleinräumigen Geländearbeiten zogen sich bis 1981 hin (M. -
Vegetation of the Czech Republic: Diversity, Ecology, History and Dynamics
Preslia 84: 427–504, 2012 427 Vegetation of the Czech Republic: diversity, ecology, history and dynamics Vegetace České republiky: diverzita, ekologie, historie a dynamika Dedicated to the centenary of the Czech Botanical Society (1912–2012) Milan C h y t r ý Department of Botany and Zoology, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic, e-mail: [email protected] Chytrý M. (2012): Vegetation of the Czech Republic: diversity, ecology, history and dynamics. – Preslia 84: 427–504. This review summarizes basic information on the diversity of vegetation in the Czech Republic. It describes basic environmenal factors affecting vegetation, vegetation history since the last glacial, biomes occurring in the Czech Republic (zonal biomes of broad-leaved deciduous forest and forest- steppe, and azonal biomes of taiga and tundra), altitudinal zonation of vegetation and landscapes with an exceptionally high diversity of vegetation types (deep river valleys in the Bohemian Massif, karst areas, sandstone pseudokarst areas, solitary volcanic hills, glacial cirques, lowland riverine landscapes and serpentine areas). Vegetation types, delimited according to the monograph Vegeta- tion of the Czech Republic, are described with emphasis on their diversity, ecology, history and dynamics. K e y w o r d s: alpine, aquatic, central Europe, forest, grassland, phytosociology, plant communi- ties, ruderal, vegetation change, vegetation classification, vegetation history, weed, wetland Introduction The Czech Republic is a land-locked country in central Europe occupying an area of 78,867 km2. It is situated in the zone of temperate broad-leaved deciduous forest, which in the south-east borders on the forest-steppe zone. -
Composition of Tephra of the Goldberg Volcano (West Eifel, Germany) and Search for Its Dispersion
Quaternaire, 22, (1), 2011, p. 47-60 COMPOSITION OF TEPHRA OF THE GOLDBERG volcano (WEST EIFEL, GERMANY) AND SEARCH FOR ITS DISPERSION n Sébastien COOLS 1, Étienne JUVIGNÉ 1 & André POUCLET 2 Abstract Because of intensive exploitation of the Goldberg volcano (West Eifel Volcanic Field, Germany), in the past three decades, additional information has been obtained on its volcanological history and its products. Two important explosive events are recorded in the stratigraphic pile. An attempt is made to trace tephra of the volcano, by sampling soils in plateau position all around the volcano. However, the sampled sites also contained minerals from the Laacher See tephra that blanketed the area as demonstrated by the occurrence of a layer in the nearby Bragphenn peat bog. We performed electronic microprobe analyses, to discriminate between the pyroxenes from Goldberg and those from the Laacher See. Since the quantities of minerals drop rapidly away from the volcano, the Goldberg tephra cannot be traced beyond some 6 km. Nevertheless the dispersion is more important in westwards so that further discovery of the tephra can be expected especially in Upper Belgium. Our results allow us to shift the minimal age of the eruption from 11.6 ka BP to 25 ka BP. Keywords: Germany, Eifel, volcano, Goldberg, Laacher See, tephra, geomorphology, Upper- and Middle Pleistocene. RÉSUMÉ COMPOSITION DU TÉPHRA DU volcan GOLDBERG (EIFEL occidental, Allemagne) ET RECHERCHE DE SA DISPERSION En profitant de l’exploitation intensive du volcan Goldberg (Eifel occidental, Allemagne) au cours des trois dernières décennies, des informations nouvelles sont apportées concernant l’histoire volcanique de l’appareil et de ses produits. -
2000 Jahre Bergbau Im Vulkanpark Osteifel 41
ISBN 978-3-86944-165-8 2016 . Heft 257 2016 . Heft 257 EExkursionsführerDGG und Veröffentlichungen der Deutschen Gesellschaft für Geowissenschaften Erfahrung zählt Die neue DEA – seit 1899 Als deutsches Unternehmen mit Sitz in Hamburg setzen wir auf langjährige Erfahrung, geologische Expertise, Schiefergewinnung zur heutigen bis Tuffsteinbruch römischen Vom innovatives Ingenieurswissen und Hightech. Umweltschutz und Sicherheit haben bei der Förderung von Öl und Gas im In- und Ausland höchste Priorität. Und auch der transparente und offene Dialog ist uns wichtig. Vom römischen Tuffsteinbruch bis zur heutigen Schiefer gewinnung – Noch Fragen? www.dea-group.com 2000 Jahre Bergbau im Vulkanpark Osteifel 41. Treffen des Arbeitskreises Bergbaufolgen der Deutschen Geologischen DEA Deutsche Erdoel AG Überseering 40, 22297 Hamburg Gesellschaft – Geologische Vereinigung DEA_DT_210x297_Erdoel_Erdgas_Kohle.indd 1 24.06.15 09:23 160803-EDGG-257.indd 1 05.08.2016 14:48:39 Uhr anger_dgg_A4_anschnitt 22.04.2013 10:54 Uhr Seite 1 Innova Rig Hakenlast 4100 KN H. Anger's Söhne Bohrungen bis 6000 m Bohr- und Brunnenbau- gesellschaft mbH Gutenbergstraße 33 37235 Hessisch Lichtenau Tel. (0 56 02) 93 30-0 Fax (0 56 02) 93 30-70 [email protected] www.angers-soehne.com Geothermiebohrung Blick auf die Arbeitsbühne in urbaner Umgebung Anger’s Leistungsspektrum: • Erdwärme- u. Geothermiebohrungen • Brunnenbohrungen und -anlagen • Brunnenregenerierungen und -sanierungen, Pumpenservice • Lagerstättenbohrungen für den Bergbau und die Öl- u. Gasindustrie • Baugrund- und Altlastenaufschluß • Kavernen- u. Schachtsicherungsarbeiten Exkursionsführer und Veröffentlichungen der Deutschen Gesellschaft für Geowissenschaften Heft 257 Katrin Kleeberg (Hrsg.): Vom römischen Tuffsteinbruch bis zur heutigen Schiefergewinnung – 2000 Jahre Bergbau im Vulkanpark Osteifel Tagungspublikation zum 41. Treffen des Arbeitskreises Bergbaufolgen der Deutschen Gesellschaft für Geowissenschaften – Geologische Vereinigung 29.