A Glimpse Into the World of Human Viruses

Total Page:16

File Type:pdf, Size:1020Kb

A Glimpse Into the World of Human Viruses A glimpse into the world of human viruses by Hildegard Uecker and Barbora Trubenová January 25, 2019 It is a matter of opinion, or of definition, host cell. Finally, viruses need to spread from whether viruses are considered living cell to cell within an organism and from one organisms or peculiar chemical substances. organism to another, i.e. from the cells of one Theodosius Dobzhansky organism to the cells of another organism (see iruses are tiny biological agents that the box on viral transmission below). possess a genome but cannot repli- We are all infected by viruses. However, V cate on their own. In order to repli- luckily, many of them do not cause symptoms cate, they need to infect host cells and hi- and remain unnoticed. They may have neg- jack the host’s machinery. Therefore, one ative long-term effects, be entirely harmless, can argue that they are not really living or even provide benefits — it’s often hard to organisms. Alive or not, viruses are very know. We only notice viruses when they cause successful at tricking and hijacking cells. diseases. There are an estimated 1031 viruses on this planet, which infect all forms of life. They play an important role in many ecosys- tems and shape life on earth. In this issue, we will have a look at viruses that infect Fig. 1: Colorized transmission electron mi- humans. But don’t forget—no form of life croscopic images of the virions of measles, in- is safe. fluenza, and HIV (from left to right).a Viruses are classified as “DNA viruses” and “RNA viruses” depending on how their genetic aImages: (1) CDC/Cynthia S. Goldsmith; William material is stored (either as DNA or as RNA, Bellini, Ph.D. (2) National Institute of Allergy and In- respectively). About 70% of all viruses are fectious Diseases (3) CDC/A. Harrison; Dr. P. Feorino. RNA viruses. As you already know, RNA is less stable than DNA and RNA replication is more prone to errors. Thus, RNA viruses have Viral diseases a higher mutation rate than DNA viruses. Viruses are responsible for many human dis- Outside of host cells, the genetic material eases, including the common cold, influenza, of a virus is packed within the capsid, a shell measles, chickenpox, rubella, hepatitis, AIDS, of proteins. The entire unit (genetic material Ebola, Zika, and others. Some viruses can and capsid) is called a virion. When a virus even cause cancer (Peyton Rous was awarded infects a host cell, the viral DNA or RNA is the 1966 Nobel prize in Medicine for this dis- released from the capsid into the cell, where covery). it is replicated by the molecular tools of the A glimpse into the world of human viruses Page 2 Viral transmission: How do viruses spread? Viruses can pass to new cells in two ways, this strategy are called retroviruses. Upon either horizontally or vertically. infection of a cell, they reverse-transcribe Horizontal transmission denotes the their RNA into DNA. This is very unusual— spread of the virus from an infected to as you learned in a previous issue, the an uninfected cell of the same generation. process normally goes in the other direc- tion. The viral DNA is then integrated somewhere in the genome of the host cell. You will learn more about an important retrovirus—the HIV virus—below. Transmission between individuals can In order for horizontal transmission to take occur either horizontally or vertically. Hor- place, new virions must be produced. To izontal transmission between different indi- do this, the virus makes use of the molec- viduals can, for example, happen through ular machinery of the host cell to build free virions in saliva droplets. Other a capsid and assemble the virion. Then, viruses use vectors—some outside agent— to reach uninfected cells, the new virions to spread from one individual to another. are usually released into the liquid sur- For instance, most plant viruses use insects rounding the cell. This release can hap- to get from one plant to another. Vertical pen all at once, in a process that kills the transmission is, for instance, possible from host cell, or more gradually, in a way that the mother to the fetus. This happens with leaves the host cell intact. Free virions can- the rubella virus, the cause of German not move by themselves. Rather, they rely measles. Normally, German measles is not on luck—on random encounters with new a serious disease. However, if a pregnant host cells. Virions can also reach uninfected woman passes the virus to her child, this cells through cell-to-cell spread—in this pro- can cause serious harm to the child’s health. cess, virions pass directly from an infected Furthermore, viruses can be passed on to to an uninfected adjacent cell without pass- the next generation by infecting cells of the ing through any liquid. This direct trans- germ line (egg/sperm). Viruses that are mission is conducive to viral spread within transmitted via the germline are usually an organism, because it is fast and helps not very harmful to their host—otherwise, the virus escape the individual’s immune they would compromise their own survival. system. We will talk more about such transmission With vertical transmission, the virus and its consequences later. is passed on from the mother cells to the daughter cells during cell division. Some viruses in- corporate their genetic material into the host genome, so it gets replicated to- gether with the host DNA. RNA viruses that use A glimpse into the world of human viruses Page 3 Most (if not all) human viruses derive from infection occurs—respond and produce new animal viruses. For example, the measles tools tailored to fighting the specific virus that virus most likely evolved from (an ancestor is attacking (however, some viruses manage of) rinderpest, a virus that infects cattle. Nor- to hide from our immune system). mally, viruses that are well-adapted to an an- One of these tools is antibodies. The pro- imal host are not well-adapted to humans. duction of antibodies is triggered by surface This happens because viruses need to inter- proteins of the virion (proteins belonging act with many of their host’s proteins to com- to the capsid or to an envelope that covers plete their life cycle. These proteins are not al- the capsid). Substances that trigger an im- ways identical in animals and humans, which mune response are called antigens (antigen means the viral tools cannot be used on the hu- = antibody generator). The antibodies pro- man version of a protein. However, if the virus duced by the immune cells inactivate the virus is not entirely unfit in the new environment by binding to these antigens. Antibodies are of the human body and also has some chance antigen-specific, i.e. they can only bind to the to spread from human to human, it might antigens they are designed for (see extra-box accumulate adaptive mutations and evolve at the end of the article). Another tool to fight into a well-adapted human pathogen. This viruses are killer T-cells that circulate through transition is facilitated through close contact the body to find and kill infected cells. Killer between animals and humans (providing the T-cells recognise infected cells from the viral virus with many chances to infect humans) antigens present on their surfaces. However, and large, dense communities (allowing the just like antibodies, killer T-cells are antigen- virus to spread between humans more eas- specific, and infection by a particular virus ily). The emergence of new human viruses triggers the production of specialised killer from animal viruses is hence often associated T-cells that can act against it. Following an with changes in human lifestyle. For example, infection, we keep producing the specific an- the evolution of the measles virus is hypothe- tibodies and killer T-cells for decades.1 sised to have occurred 3000-2500 BC, when If a virus gains mutations that alter its anti- humans in the Middle East started to keep gens, the old antibodies and killer T-cells will livestock and to live in large communities. not work anymore, and our immune system (However, other researchers think measles must produce new, suitable ones to fight the originated much later, in the 11th or 12th evolved virus. There is great variation in the century.) patterns of antigenic evolution across viruses. Even after the successful transition from Some viruses evolve antigenic changes very an animal to a human pathogen, viruses con- slowly. Once we have manufactured the an- tinue to be challenged by the human immune tibodies (and other tools) to fight them, we system. On one hand, the genes coding for the are immune for the rest of our lives, since the components of our immune system can evolve virus does not change a lot over the course through mutation and recombination, bring- of decades—for some, we do not observe any ing about variants that are better at fighting antigenic evolution at all. An example is the common pathogens. This is a process hap- measles virus. Other viruses change more pening across human generations. On the quickly. While they might not escape the im- other hand, the immune system of a single mune system during the course of infection, a person itself is adaptive and can—once an slightly changed variant might come back one 1Our immune system has many further components. In particular, it also has non-adaptive parts that act rapidly and are not specific to a given pathogen. E.g. we also have natural killer cells that are not antigen-specific and constantly “patrol” in our body to kill infected cells as a quick first response to invading pathogens.
Recommended publications
  • Human Illness Caused by E. Coli O157:H7 from Food and Non-Food Sources
    FRI BRIEFINGS Human Illness Caused by E. coli O157:H7 from Food and Non-food Sources M. Ellin Doyle1*, John Archer2, Charles W. Kaspar1, and Ronald Weiss1 1Food Research Institute, University of Wisconsin–Madison, Madison, WI 53706 2Wisconsin Division of Public Health, Bureau of Communicable Diseases and Preparedness, Communicable Disease Epidemiology Section, Madison, WI 53702 Contents Introduction ...................................................................................................................................2 Epidemiology of E. coli O157:H7..................................................................................................2 Outbreak Data ........................................................................................................................2 Reservoirs of E. coli O157:H7 ..............................................................................................3 Cattle—the primary reservoir ........................................................................................3 Other ruminants .............................................................................................................4 Other animals .................................................................................................................4 Transport Hosts......................................................................................................................4 Routes of Human Infection ....................................................................................................5
    [Show full text]
  • How Do Pathogenic Microorganisms Develop Cross-Kingdom Host Jumps? Peter Van Baarlen1, Alex Van Belkum2, Richard C
    Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-kingdom host jumps? Peter van Baarlen1, Alex van Belkum2, Richard C. Summerbell3, Pedro W. Crous3 & Bart P.H.J. Thomma1 1Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands; 2Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands; and 3CBS Fungal Biodiversity Centre, Utrecht, The Netherlands Correspondence: Bart P.H.J. Thomma, Abstract Downloaded from https://academic.oup.com/femsre/article/31/3/239/2367343 by guest on 27 September 2021 Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, 6709 PD It is common knowledge that pathogenic viruses can change hosts, with avian Wageningen, The Netherlands. Tel.: 10031 influenza, the HIV, and the causal agent of variant Creutzfeldt–Jacob encephalitis 317 484536; fax: 10031 317 483412; as well-known examples. Less well known, however, is that host jumps also occur e-mail: [email protected] with more complex pathogenic microorganisms such as bacteria and fungi. In extreme cases, these host jumps even cross kingdom of life barriers. A number of Received 3 July 2006; revised 22 December requirements need to be met to enable a microorganism to cross such kingdom 2006; accepted 23 December 2006. barriers. Potential cross-kingdom pathogenic microorganisms must be able to First published online 26 February 2007. come into close and frequent contact with potential hosts, and must be able to overcome or evade host defences. Reproduction on, in, or near the new host will DOI:10.1111/j.1574-6976.2007.00065.x ensure the transmission or release of successful genotypes.
    [Show full text]
  • Differences in Innate Immune Response Between Man and Mouse
    Institute of Medical Physics and Biophysics Medical Department, Leipzig University Author Manuscript © 2014. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Published in final edited form as: Critical Reviews™ in Immunology, 2014; 34:433-54. Available at: http://dx.doi.org/ 10.1615/CritRevImmunol.2014011600. DIFFERENCES IN INNATE IMMUNE RESPONSE BETWEEN MAN AND MOUSE Josefin Zschaler 1,2,*, Denise Schlorke 1,2,* & Juergen Arnhold 1,2 1 Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Leipzig, Germany 2 Translational Centre for Regenerative Medicine (TRM), Leipzig University, Leipzig, Germany * Both authors contributed equally to this work. Abstract Mouse strains are frequently used to model human disease states, to test the efficiency of drugs and therapeutic principles. However, the direct translation of murine experimental data to human pathological events often fails due to sufficient differences in the organization of the immune system of both species. Here we give a short overview of the principle differences between mice and humans in defense strategies against pathogens and mechanisms involved in response to pathogenic microorganisms and other activators of the immune system. While in human blood mechanisms of immune resistance are highly prevailed, tolerance mechanisms dominate for the defense against pathogenic microorganisms in mouse blood. Further on, species-related differences of immune cells mainly involved in innate immune response as well as differences to maintain oxidative homeostasis are also considered. A number of disease scenarios in mice are critically reflected for their suitability to serve as a model for human pathologies.
    [Show full text]
  • The Public Health Impact of Prion Diseases1
    10 Feb 2005 13:10 AR AR238-PU26-08.tex AR238-PU26-08.sgm LaTeX2e(2002/01/18) P1: IBD 10.1146/annurev.publhealth.26.021304.144536 Annu. Rev. Public Health 2005. 26:191–212 doi: 10.1146/annurev.publhealth.26.021304.144536 Copyright ©c 2005 by Annual Reviews. All rights reserved First published online as a Review in Advance on December 8, 2004 THE PUBLIC HEALTH IMPACT OF PRION DISEASES1 Ermias D. Belay and Lawrence B. Schonberger Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333; email: [email protected] KeyWords transmissible spongiform encephalopathy, Creutzfeldt-Jakob disease, variant Creutzfeldt-Jakob disease, bovine spongiform encephalopathy, chronic wasting disease ■ Abstract Several prion disease–related human health risks from an exogenous source can be identified in the United States, including the iatrogenic transmission of Creutzfeldt-Jakob disease (CJD), the possible occurrence of variant CJD (vCJD), and potential zoonotic transmission of chronic wasting disease (CWD). Although cross- species transmission of prion diseases seems to be limited by an apparent “species barrier,” the occurrence of bovine spongiform encephalopathy (BSE) and its transmis- sion to humans indicate that animal prion diseases can pose a significant public health risk. Recent reports of secondary person-to-person spread of vCJD via blood products and detection of vCJD transmission in a patient heterozygous at codon 129 further illustrate the potential public health impacts of BSE. INTRODUCTION by IRMO/Information Center on 03/14/05. For personal use only. Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group of animal and human brain diseases that are uniformly fatal and often characterized by a long incubation period and a multifocal neuropathologic picture of neuronal loss, spongiform changes, and astrogliosis (3).
    [Show full text]
  • Innate Immunity Part I: the Immediate Response Deborah A
    Innate Immunity Part I: The Immediate Response Deborah A. Lebman, Ph.D. OBJECTIVES 1. Describe three mechanisms present at epithelial surfaces that protect the host from pathogens. 2. List 3 functions of complement proteins in innate immunity 3. Know the primary functions of macrophages and neutrophils 4. List the receptors on macrophages involved in recognition of pathogens 5. List the key toxic products of phagocytes READING • Parham, The Immune System, pg 227-238. TERMS • Defensin: antibacterial peptide produced by the host at epithelial surfaces • Complement: ubiquitously present proteins synthesized primarily in the liver that mediate a variety of responses to pathogens • Opsonin (opsonization): alteration of cell surface that facilitates phagocytosis • Phagocytosis: internalization of particulate matter by cells • CD14: LPS receptor • TLR-4: toll like receptor 4 I. Introduction A. The first response to pathogens occurs immediately B. The early response employs both mechanical and cell mediated mechanisms C. There is no cellular expansion, but there is cell recruitment D. A wide array of soluble mediators with both positive and negative effects, i.e. remove the pathogen but hurt the host, is released II. Overview of Pathogens A. There are four types of pathogen: bacteria, virus, fungus, parasite B. Table I: Examples of the Four Types of Common Human Pathogen Table 1: Examples of the Four Types of Common Human Pathogen Table 1 (Continued): Examples of the Four Types of Common Human Pathogen C. Pathogens can be intracellular or extracellular Table 2: Examples of intracellular and extracellular pathogens. Notice that both innate and adaptive mechanisms are involved in the response to both types of pathogen.
    [Show full text]
  • Supporting Information
    Supporting Information Rosenberg et al. 10.1073/pnas.1307243110 SI Results and Discussion domestic ungulates (horses, cows, sheep, goats, camels, and pigs) Of the 83 arboviruses, nonhuman vertebrate hosts have been and rodents in both groups might be a consequence of spatial identified for 70 (84%); the remaining 13 are presumed to be proximity to humans. Sentinel monkeys were often used in pro- zoonoses because there is no indication they can be transmitted cedures to isolate arboviruses, which might account for their directly between humans by vectors (Table S1). Animal hosts have higher representation among arboviruses. In contrast, there are been identified for at least 57 (44%) of the 130 nonarboviruses; an few published records of bats being routinely sampled during additional 5 (8%) are presumed on epidemiological evidence to arbovirus studies, and only two arboviruses (3%) have been iso- have nonhuman reservoirs (Table S1). A number of viruses infect lated from bats. The reason a much larger number of arbovirus more than one nonhuman vertebrate host species and it is likely species (n = 16) have been isolated from birds than have that the variety of hosts is wider than has been recorded. The nonarbovirus species (n = 1) might, however, be characteristic of predominant host groups for arboviruses (n = 70) are nonhuman the pathogenicity of the togaviruses and flaviviruses, which are primates (31%), rodents (29%), ungulates (26%), and birds (23%); much more common among the arboviruses. The most prominent for the nonarboviruses (n = 57), they are rodents (30%), ungu- vectors of arboviruses were mosquitoes (67%), ticks (19%), and lates (26%), bats (23%), and primates (16%).
    [Show full text]
  • Spillback in the Anthropocene: the Risk of Human-To-Wildlife Pathogen Transmission for Conservation and Public Health
    Spillback in the Anthropocene: the risk of human-to-wildlife pathogen transmission for conservation and public health Anna C. Fagre*1, Lily E. Cohen2, Evan A. Eskew3, Max Farrell4, Emma Glennon5, Maxwell B. Joseph6, Hannah K. Frank7, Sadie Ryan8, 9,10, Colin J Carlson11,12, Gregory F Albery*13 *Corresponding authors: [email protected]; [email protected] 1: Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 2: Icahn School of Medicine at Mount Sinai, New York, NY 10029 3: Department of Biology, Pacific Lutheran University, Tacoma, WA, 98447 USA 4: Department of Ecology & Evolutionary Biology, University of Toronto 5: Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK 6: Earth Lab, University of Colorado Boulder, Boulder, CO 80309 7: Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, 70118 USA 8: Quantitative Disease Ecology and Conservation (QDEC) Lab Group, Department of Geography, University of Florida, Gainesville, FL, 32610 USA 9: Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32610 USA 10: School of Life Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa 11: Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, 20057 USA 12: Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, 20057 USA 13: Department of Biology, Georgetown University, Washington, DC, 20057 USA 1 Abstract The SARS-CoV-2 pandemic has led to increased concern over transmission of pathogens from humans to animals (“spillback”) and its potential to threaten conservation and public health.
    [Show full text]
  • Risk of Human Pathogen Internalization in Leafy Vegetables During Lab-Scale Hydroponic Cultivation
    horticulturae Review Risk of Human Pathogen Internalization in Leafy Vegetables During Lab-Scale Hydroponic Cultivation Gina M. Riggio 1, Sarah L. Jones 2 and Kristen E. Gibson 2,* 1 Cellular and Molecular Biology Program, Department of Food Science, University of Arkansas, Fayetteville, AR 72701, USA; [email protected] 2 Department of Food Science, University of Arkansas, Fayetteville, AR 72704, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-479-575-6844 Received: 13 February 2019; Accepted: 7 March 2019; Published: 15 March 2019 Abstract: Controlled environment agriculture (CEA) is a growing industry for the production of leafy vegetables and fresh produce in general. Moreover, CEA is a potentially desirable alternative production system, as well as a risk management solution for the food safety challenges within the fresh produce industry. Here, we will focus on hydroponic leafy vegetable production (including lettuce, spinach, microgreens, and herbs), which can be categorized into six types: (1) nutrient film technique (NFT), (2) deep water raft culture (DWC), (3) flood and drain, (4) continuous drip systems, (5) the wick method, and (6) aeroponics. The first five are the most commonly used in the production of leafy vegetables. Each of these systems may confer different risks and advantages in the production of leafy vegetables. This review aims to (i) address the differences in current hydroponic system designs with respect to human pathogen internalization risk, and (ii) identify the preventive control points for reducing risks related to pathogen contamination in leafy greens and related fresh produce products. Keywords: hydroponic; leafy greens; internalization; pathogens; norovirus; Escherichia coli; Salmonella; Listeria spp.; preventive controls 1.
    [Show full text]
  • Genomics-Based Re-Examination of the Taxonomy and Phylogeny Of
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Food and Drug Administration Papers U.S. Department of Health and Human Services 2020 Genomics-based re-examination of the taxonomy and phylogeny of human and simian Mastadenoviruses: an evolving whole genomes approach, revealing putative zoonosis, anthroponosis, and amphizoonosis June Kang George Mason University Ashrafali Mohamed Ismail Harvard Medical School Shoaleh Dehghan George Mason University Jaya Rajaiya Harvard Medical School FMarollowc W this. Allar andd additional works at: https://digitalcommons.unl.edu/usfda US Food & Drug Administration Part of the Dietetics and Clinical Nutrition Commons, Health and Medical Administration Commons, Health Services Administration Commons, Pharmaceutical Preparations Commons, and the Pharmacy AdministrSee next pageation, for Policy additional and Regulation authors Commons Kang, June; Ismail, Ashrafali Mohamed; Dehghan, Shoaleh; Rajaiya, Jaya; Allard, Marc W.; Lim, Haw Chuan; Dyer, David W.; Chodosh, James; and Seto, Donald, "Genomics-based re-examination of the taxonomy and phylogeny of human and simian Mastadenoviruses: an evolving whole genomes approach, revealing putative zoonosis, anthroponosis, and amphizoonosis" (2020). Food and Drug Administration Papers. 47. https://digitalcommons.unl.edu/usfda/47 This Article is brought to you for free and open access by the U.S. Department of Health and Human Services at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Food and
    [Show full text]
  • Laboratory Activities to Enhance the Study of Whole Blood Components and Their Role in the Immune Response
    Laboratory Activities to Enhance the Study of Whole Blood Components and their Role in the Immune Response Thomas E. Schmit John H. Wallace Teacher Fellow Hamilton High School 327 Fairgrounds Road Hamilton, MT 59840 [email protected] Table Of Contents Teacher Guide Overview...................................................................................................................1 Science Background..................................................................................................1 Student Outcomes......................................................................................................4 Learning Objectives....................................................................................................4 Time Requirements.....................................................................................................4 Advance Preparation...................................................................................................4 Materials and Equipment............................................................................................4 Student Prior Knowledge............................................................................................6 What Is Expected From the Students..........................................................................7 Anticipated Results.....................................................................................................7 Classroom Discussion.................................................................................................8
    [Show full text]
  • Ecology of Pathogenic E.Coli - Stefano Morabito
    MEDICAL SCIENCES - Ecology Of Pathogenic E.Coli - Stefano Morabito ECOLOGY OF PATHOGENIC E. coli Stefano Morabito European Reference Laboratory for Escherichia coli including VTEC. Foodborne zoonoses Unit; Department of Veterinary Public Health and Food Safety Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome. Italy. Keywords: Escherichia coli, pathogenicity, genomic plasticity, survival, environment, colonization, animal reservoirs, zoonosis. Contents 1. Introduction 2. Pathogenic E. coli types 3. Ecology of Pathogenic E. coli Circulating in Humans 4. The Zoonotic Connection 5. Ecology of Zoonotic E. coli 6. Pathogenic Escherichia coli Producing Biofilm 7. Signaling In the Gastro-Intestinal Tract and Pathogenesis 8. E. coli Pathotypes with Atypical Combination of Virulence Factors 9. Acknowledgments Glossary Bibliography Biographical Sketch Summary Escherichia coli is a ubiquitous bacterial species. It is part of the intestinal microflora of humans and warm-blooded animals and, at the same time, is among the most diffuse bacterial species in the environment. The pivotal aspect of this success is represented by an exceptional genomic plasticity. As a matter of fact, E. coli is capable to exchange genetic material with other bacteria, often belonging to different species, through horizontal gene transfer, a process involving the action of mobile genetic elements, such as bacteriophages, transposons, pathogenicity islands and plasmids. The relationships between E. coli and the human host are generally based on commensalism and yet this species exerts a beneficial effect in the gut, however, some strains evolved the capability to harm and cause disease either involving the gastro- intestinal tract or in other organism‘s districts. Most of the pathogenic E.
    [Show full text]
  • Genomic Characterization of Human Adenovirus Type 4 Strains Isolated
    Virology 538 (2019) 11–23 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/virology Genomic characterization of human adenovirus type 4 strains isolated T worldwide since 1953 identifies two separable phylogroups evolving at different rates from their most recent common ancestor ∗ Gabriel Gonzaleza, ,1, Camden R. Bairb,1, Daryl M. Lamsonc, Hidemi Watanabed, Laura Pantod, ∗∗ Michael J. Carre,f, Adriana E. Kajonb, a Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan b Infectious Disease Program, Lovelace Respiratory Research Institute, New Mexico, USA c Wadsworth Center, New York State Department of Health, New York, USA d Graduate School of Information Science and Technology, Hokkaido University, Japan e Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Japan f National Virus Reference Laboratory, School of Medicine, University College Dublin, Ireland ARTICLE INFO ABSTRACT Keywords: Species Human mastadenovirus E (HAdV-E) comprises several simian types and a single human type: HAdV-E4, a Adenovirus type 4 respiratory and ocular pathogen. RFLP analysis for the characterization of intratypic genetic variability has Human mastadenovirus E previously distinguished two HAdV-E4 clusters: prototype (p)-like and a-like. Our analysis of whole genome Genetic diversity sequences confirmed two distinct lineages, which we refer to as phylogroups (PGs). PGs I and II comprisethep- Evolution and a-like genomes, respectively, and differ significantly in their G + C content (57.7% ±0.013vs 56.3% ± 0.015). Sequence differences distinguishing the two clades map to several regions of the genome including E3 and ITR. Bayesian analyses showed that the two phylogroups diverged approximately 602 years before the present.
    [Show full text]