Chapter 1. Bacteria: Pathogenicity Factors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gas Gangrene Infection of the Eyes and Orbits
Br J Ophthalmol: first published as 10.1136/bjo.69.2.143 on 1 February 1985. Downloaded from British Journal of Ophthalmology, 1985, 69, 143-148 Gas gangrene infection of the eyes and orbits GERARD W CROCK,' WILSON J HERIOT,' PATTABIRAMAN JANAKIRAMAN,' AND JOHN M WEINER2 From the 'Department of Ophthalmology, University ofMelbourne, and the2C H Greer Pathology Laboratory, the Royal Victorian Eye and Ear Hospital, East Melbourne, Australia SUMMARY The literature on Clostridium perfringens infections is reviewed up to 1983. An additional case is reported with bilateral clostridial infections of the eye and orbit. One eye followed the classical course of relentless panophthalmitis, amaurosis, and orbital cellulitis ending in enucleation. The second eye contained intracameral mud and gas bubbles that were removed by vitrectomy instrumentation. Subsequent removal of the toxic cataract resulted in a final aided visual acuity of 6/18, N8. This is the third report of a retained globe, and we believe the only known case where the patient was left with useful vision. Clostridium perfringens is a ubiquitous Gram- arms, chest, and abdomen. He was admitted to a positive bacillus found in soil and bowel flora. It is the general hospital, where he was examined under most common of four clostridia species identified in anaesthesia, and his injuries were attended to. copyright. cases of gas gangrene in man.' All species are obligate Ocular findings. The right cornea and anterior anaerobes and are usually saprophytic rather than chamber were intact. There was a scleral laceration pathogenic. Clostridium perfringens is a feared con- over the superonasal area of the pars plana with taminant of limb injuries and may result in death due vitreous prolapse. -
Structural and Functional Characterization of the Fimh Adhesin of Uropathogenic Escherichia Coli and Its Novel Applications
Open Access Journal of Bacteriology and Mycology Research Article Structural and Functional Characterization of the FimH Adhesin of Uropathogenic Escherichia coli and Its Novel Applications Neamati F1, Moniri R2*, Khorshidi A1 and Saffari M1 Abstract 1Department of Microbiology and Immunology, School Type 1 fimbriae are responsible for bacterial pathogenicity and biofilm of Medicine, Kashan University of Medical Sciences, production, which are important virulence factors in uropathogenic Escherichia Kashan, Iran coli strains. Many articles are published on FimH, but each examined a specific 2Department of Microbiology, Faculty of Medicine, aspect of this protein. The current review study aimed at focusing on structure Kashan University of Medical Sciences, Qutb Ravandi and conformational changes and describing efforts to use this protein in novel Boulevard, Kashan, Iran potential treatments for urinary tract infections, typing methods, and expression *Corresponding author: Moniri R, Department of systems. The current study was the first review that briefly and effectively Microbiology, Faculty of Medicine, Kashan University of examined issues related to FimH adhesin. Medical Sciences, Qutb Ravandi Boulevard, Kashan, Iran Keywords: Uropathogenic E. coli; FimH Adhesion; FimH Typing; Received: June 05, 2020; Accepted: July 03, 2020; Conformation Switch; FimH Antagonists Published: July 10, 2020 Abbreviations FimH proteins play important roles in UPEC pathogenicity and the formation of bacterial biofilms [7]. FimH binds to mannosylated UTIs: Urinary Tract Infections; UPEC: Uropathogenic E. uroplakin proteins in the bladder lumen and invades into the Coli; IBCs: Intracellular Bacterial Communities; QIR: Quiescent superficial umbrella cells [8]. After the invasion, UPEC is expelled out Intracellular Reservoir; LD: Mannose-Binding Lectin; PD: Fimbria- of the cell in a TLR4 dependent process, or escape into the cytoplasm Incorporating Pilin; MBP: Mannose-Binding Pocket; LIBS: Ligand- [9]. -
Role of NS1 Antibodies in the Pathogenesis of Acute Secondary Dengue Infection
ARTICLE DOI: 10.1038/s41467-018-07667-z OPEN Role of NS1 antibodies in the pathogenesis of acute secondary dengue infection Deshni Jayathilaka1, Laksiri Gomes1, Chandima Jeewandara1, Geethal.S.Bandara Jayarathna1, Dhanushka Herath1, Pathum Asela Perera1, Samitha Fernando1, Ananda Wijewickrama2, Clare S. Hardman3, Graham S. Ogg3 & Gathsaurie Neelika Malavige 1,3 The role of NS1-specific antibodies in the pathogenesis of dengue virus infection is poorly 1234567890():,; understood. Here we investigate the immunoglobulin responses of patients with dengue fever (DF) and dengue hemorrhagic fever (DHF) to NS1. Antibody responses to recombinant-NS1 are assessed in serum samples throughout illness of patients with acute secondary DENV1 and DENV2 infection by ELISA. NS1 antibody titres are significantly higher in patients with DHF compared to those with DF for both serotypes, during the critical phase of illness. Furthermore, during both acute secondary DENV1 and DENV2 infection, the antibody repertoire of DF and DHF patients is directed towards distinct regions of the NS1 protein. In addition, healthy individuals, with past non-severe dengue infection have a similar antibody repertoire as those with mild acute infection (DF). Therefore, antibodies that target specific NS1 epitopes could predict disease severity and be of potential benefit in aiding vaccine and treatment design. 1 Centre for Dengue Research, University of Sri Jayewardenepura, Nugegoda 10100, Sri Lanka. 2 National Institute of Infectious Diseases, Angoda 10250, Sri Lanka. 3 MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford NIHR Biomedical Research Centre, Oxford OX3 9DS, UK. These authors contributed equally: Deshni Jayathilaka, Laksiri Gomes. The authors jointly supervised this work: Graham S. -
Human Illness Caused by E. Coli O157:H7 from Food and Non-Food Sources
FRI BRIEFINGS Human Illness Caused by E. coli O157:H7 from Food and Non-food Sources M. Ellin Doyle1*, John Archer2, Charles W. Kaspar1, and Ronald Weiss1 1Food Research Institute, University of Wisconsin–Madison, Madison, WI 53706 2Wisconsin Division of Public Health, Bureau of Communicable Diseases and Preparedness, Communicable Disease Epidemiology Section, Madison, WI 53702 Contents Introduction ...................................................................................................................................2 Epidemiology of E. coli O157:H7..................................................................................................2 Outbreak Data ........................................................................................................................2 Reservoirs of E. coli O157:H7 ..............................................................................................3 Cattle—the primary reservoir ........................................................................................3 Other ruminants .............................................................................................................4 Other animals .................................................................................................................4 Transport Hosts......................................................................................................................4 Routes of Human Infection ....................................................................................................5 -
Characterization of the Interaction Between R. Conorii and Human
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 4-5-2018 Characterization of the Interaction Between R. Conorii and Human Host Vitronectin in Rickettsial Pathogenesis Abigail Inez Fish Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Bacteria Commons, Bacteriology Commons, Biology Commons, Immunology of Infectious Disease Commons, and the Pathogenic Microbiology Commons Recommended Citation Fish, Abigail Inez, "Characterization of the Interaction Between R. Conorii and Human Host Vitronectin in Rickettsial Pathogenesis" (2018). LSU Doctoral Dissertations. 4566. https://digitalcommons.lsu.edu/gradschool_dissertations/4566 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. CHARACTERIZATION OF THE INTERACTION BETWEEN R. CONORII AND HUMAN HOST VITRONECTIN IN RICKETTSIAL PATHOGENESIS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Interdepartmental Program in Biomedical and Veterinary Medical Sciences Through the Department of Pathobiological Sciences by Abigail Inez -
How Do Pathogenic Microorganisms Develop Cross-Kingdom Host Jumps? Peter Van Baarlen1, Alex Van Belkum2, Richard C
Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-kingdom host jumps? Peter van Baarlen1, Alex van Belkum2, Richard C. Summerbell3, Pedro W. Crous3 & Bart P.H.J. Thomma1 1Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands; 2Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands; and 3CBS Fungal Biodiversity Centre, Utrecht, The Netherlands Correspondence: Bart P.H.J. Thomma, Abstract Downloaded from https://academic.oup.com/femsre/article/31/3/239/2367343 by guest on 27 September 2021 Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, 6709 PD It is common knowledge that pathogenic viruses can change hosts, with avian Wageningen, The Netherlands. Tel.: 10031 influenza, the HIV, and the causal agent of variant Creutzfeldt–Jacob encephalitis 317 484536; fax: 10031 317 483412; as well-known examples. Less well known, however, is that host jumps also occur e-mail: [email protected] with more complex pathogenic microorganisms such as bacteria and fungi. In extreme cases, these host jumps even cross kingdom of life barriers. A number of Received 3 July 2006; revised 22 December requirements need to be met to enable a microorganism to cross such kingdom 2006; accepted 23 December 2006. barriers. Potential cross-kingdom pathogenic microorganisms must be able to First published online 26 February 2007. come into close and frequent contact with potential hosts, and must be able to overcome or evade host defences. Reproduction on, in, or near the new host will DOI:10.1111/j.1574-6976.2007.00065.x ensure the transmission or release of successful genotypes. -
Corneal Endotheliitis with Cytomegalovirus Infection of Persisted
Correspondence 1105 Sir, resulted in gradual decreases of KPs, but graft oedema Corneal endotheliitis with cytomegalovirus infection of persisted. Vision decreased to 20/2000. corneal stroma The patient underwent a second keratoplasty combined with cataract surgery in August 2007. Although involvement of cytomegalovirus (CMV) in The aqueous humour was tested for polymerase corneal endotheliitis was recently reported, the chain reaction to detect HSV, VZV, or CMV; a positive pathogenesis of this disease remains uncertain.1–8 Here, result being obtained only for CMV-DNA. Pathological we report a case of corneal endotheliitis with CMV examination demonstrated granular deposits in the infection in the corneal stroma. deep stroma, which was positive for CMV by immunohistochemistry (Figures 2a and b). The cells showed a typical ‘owl’s eye’ morphology (Figure 2c). Case We commenced systemic gancyclovir at 10 mg per day A 44-year-old man was referred for a gradual decrease in for 7 days, followed by topical 0.5% gancyclovir eye vision with a history of recurrent iritis with unknown drops six times a day. With the postoperative follow-up aetiology. The corrected visual acuity in his right eye was period of 20 months, the graft remained clear without 20/200. Slit lamp biomicroscopy revealed diffuse corneal KPs (Figure 1d). The patient has been treated with oedema with pigmented keratic precipitates (KPs) gancyclovir eye drops t.i.d. to date. His visual acuity without anterior chamber cellular reaction (Figure 1a). improved to 20/20, and endothelial density was The patient had undergone penetrating keratoplasty in 2300/mm2. Repeated PCR in aqueous humour for August 2006, and pathological examination showed non- CMV yielded a negative result in the 10th week. -
Diagnostic Code Descriptions (ICD9)
INFECTIONS AND PARASITIC DISEASES INTESTINAL AND INFECTIOUS DISEASES (001 – 009.3) 001 CHOLERA 001.0 DUE TO VIBRIO CHOLERAE 001.1 DUE TO VIBRIO CHOLERAE EL TOR 001.9 UNSPECIFIED 002 TYPHOID AND PARATYPHOID FEVERS 002.0 TYPHOID FEVER 002.1 PARATYPHOID FEVER 'A' 002.2 PARATYPHOID FEVER 'B' 002.3 PARATYPHOID FEVER 'C' 002.9 PARATYPHOID FEVER, UNSPECIFIED 003 OTHER SALMONELLA INFECTIONS 003.0 SALMONELLA GASTROENTERITIS 003.1 SALMONELLA SEPTICAEMIA 003.2 LOCALIZED SALMONELLA INFECTIONS 003.8 OTHER 003.9 UNSPECIFIED 004 SHIGELLOSIS 004.0 SHIGELLA DYSENTERIAE 004.1 SHIGELLA FLEXNERI 004.2 SHIGELLA BOYDII 004.3 SHIGELLA SONNEI 004.8 OTHER 004.9 UNSPECIFIED 005 OTHER FOOD POISONING (BACTERIAL) 005.0 STAPHYLOCOCCAL FOOD POISONING 005.1 BOTULISM 005.2 FOOD POISONING DUE TO CLOSTRIDIUM PERFRINGENS (CL.WELCHII) 005.3 FOOD POISONING DUE TO OTHER CLOSTRIDIA 005.4 FOOD POISONING DUE TO VIBRIO PARAHAEMOLYTICUS 005.8 OTHER BACTERIAL FOOD POISONING 005.9 FOOD POISONING, UNSPECIFIED 006 AMOEBIASIS 006.0 ACUTE AMOEBIC DYSENTERY WITHOUT MENTION OF ABSCESS 006.1 CHRONIC INTESTINAL AMOEBIASIS WITHOUT MENTION OF ABSCESS 006.2 AMOEBIC NONDYSENTERIC COLITIS 006.3 AMOEBIC LIVER ABSCESS 006.4 AMOEBIC LUNG ABSCESS 006.5 AMOEBIC BRAIN ABSCESS 006.6 AMOEBIC SKIN ULCERATION 006.8 AMOEBIC INFECTION OF OTHER SITES 006.9 AMOEBIASIS, UNSPECIFIED 007 OTHER PROTOZOAL INTESTINAL DISEASES 007.0 BALANTIDIASIS 007.1 GIARDIASIS 007.2 COCCIDIOSIS 007.3 INTESTINAL TRICHOMONIASIS 007.8 OTHER PROTOZOAL INTESTINAL DISEASES 007.9 UNSPECIFIED 008 INTESTINAL INFECTIONS DUE TO OTHER ORGANISMS -
“Candidatus Deianiraea Vastatrix” with the Ciliate Paramecium Suggests
bioRxiv preprint doi: https://doi.org/10.1101/479196; this version posted November 27, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The extracellular association of the bacterium “Candidatus Deianiraea vastatrix” with the ciliate Paramecium suggests an alternative scenario for the evolution of Rickettsiales 5 Castelli M.1, Sabaneyeva E.2, Lanzoni O.3, Lebedeva N.4, Floriano A.M.5, Gaiarsa S.5,6, Benken K.7, Modeo L. 3, Bandi C.1, Potekhin A.8, Sassera D.5*, Petroni G.3* 1. Centro Romeo ed Enrica Invernizzi Ricerca Pediatrica, Dipartimento di Bioscienze, Università 10 degli studi di Milano, Milan, Italy 2. Department of Cytology and Histology, Faculty of Biology, Saint Petersburg State University, Saint-Petersburg, Russia 3. Dipartimento di Biologia, Università di Pisa, Pisa, Italy 4 Centre of Core Facilities “Culture Collections of Microorganisms”, Saint Petersburg State 15 University, Saint Petersburg, Russia 5. Dipartimento di Biologia e Biotecnologie, Università degli studi di Pavia, Pavia, Italy 6. UOC Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy 7. Core Facility Center for Microscopy and Microanalysis, Saint Petersburg State University, Saint- Petersburg, Russia 20 8. Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint- Petersburg, Russia * Corresponding authors, contacts: [email protected] ; [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/479196; this version posted November 27, 2018. -
WO 2014/134709 Al 12 September 2014 (12.09.2014) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/134709 Al 12 September 2014 (12.09.2014) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/05 (2006.01) A61P 31/02 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/CA20 14/000 174 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 4 March 2014 (04.03.2014) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (30) Priority Data: ZW. 13/790,91 1 8 March 2013 (08.03.2013) US (84) Designated States (unless otherwise indicated, for every (71) Applicant: LABORATOIRE M2 [CA/CA]; 4005-A, rue kind of regional protection available): ARIPO (BW, GH, de la Garlock, Sherbrooke, Quebec J1L 1W9 (CA). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (72) Inventors: LEMIRE, Gaetan; 6505, rue de la fougere, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Sherbrooke, Quebec JIN 3W3 (CA). -
Interactions of Bacteriophages with Animal and Human Organisms—Safety Issues in the Light of Phage Therapy
International Journal of Molecular Sciences Review Interactions of Bacteriophages with Animal and Human Organisms—Safety Issues in the Light of Phage Therapy Magdalena Podlacha 1 , Łukasz Grabowski 2 , Katarzyna Kosznik-Kaw´snicka 2 , Karolina Zdrojewska 1 , Małgorzata Stasiłoj´c 1 , Grzegorz W˛egrzyn 1 and Alicja W˛egrzyn 2,* 1 Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; [email protected] (M.P.); [email protected] (K.Z.); [email protected] (M.S.); [email protected] (G.W.) 2 Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland; [email protected] (Ł.G.); [email protected] (K.K.-K.) * Correspondence: [email protected]; Tel.: +48-58-523-6024 Abstract: Bacteriophages are viruses infecting bacterial cells. Since there is a lack of specific receptors for bacteriophages on eukaryotic cells, these viruses were for a long time considered to be neutral to animals and humans. However, studies of recent years provided clear evidence that bacteriophages can interact with eukaryotic cells, significantly influencing the functions of tissues, organs, and systems of mammals, including humans. In this review article, we summarize and discuss recent discoveries in the field of interactions of phages with animal and human organisms. Possibilities of penetration of bacteriophages into eukaryotic cells, tissues, and organs are discussed, and evidence of the effects of phages on functions of the immune system, respiratory system, central nervous system, gastrointestinal system, urinary tract, and reproductive system are presented and discussed. -
HOW BLUE WATERS IS AIDING the FIGHT AGAINST SEPSIS Allocation: Illinois/520 Knh PI: Rafael C
BLUE WATERS ANNUAL REPORT 2019 GA HOW BLUE WATERS IS AIDING THE FIGHT AGAINST SEPSIS Allocation: Illinois/520 Knh PI: Rafael C. Bernardi1 TN 2 Collaborator: Hermann E. Gaub 1University of Illinois at Urbana–Champaign 2Ludwig–Maximilians–Universität BW EXECUTIVE SUMMARY to investigate with exquisite precision the mechanics of interac- Owing to their high occurrence in ever more common hos- tion between SdrG and Fgβ. SdrG is an SD-repeat protein G and pital-acquired infections, studying the mechanisms of infection is one of the adhesin proteins of Staphylococcus epidermidis. Fgβ by Staphylococcus epidermidis and Staphylococcus aureus is of is the human fibrinogen β and is a short peptide that is part of broad interest. These pathogens can frequently form biofilms on the human extracellular matrix. implants and medical devices and are commonly involved in sep- For SMD molecular dynamics simulations, the team uses Blue sis—the human body’s often deadly response to infections. Waters’ GPU nodes (XK) and the GPU-accelerated NAMD pack- Central to the formation of biofilms is very close interaction age. In a wide-sampling strategy, the team carried out hundreds between microbial surface proteins called adhesins and compo- of SMD runs for a total of over 50 microseconds of simulation. nents of the extracellular matrix of the host. The research team To characterize the coupling between the bacterial SdrG pro- uses Blue Waters to explore how the bond between staphylococ- tein and the Fgβ peptide, the team conducts SMD simulations cal adhesin and its human target can withstand forces that so far with constant velocity stretching at multiple pulling speeds.