<<

Systematics

Repository abbreviations are as follows: Institute of Geology Museum (IGM), Departmento de Paleontología, Instituto de Geología, Cuidad Universitaria, Delegacíon de Coyoacán, 04510, México, D. F.; Mount Holyoke College Collection (MHC), Department of Geology and Geography, Mount Holyoke College, South Hadley, , USA.

Systematic Paleontology

Zirabagtaria n. gen. Diagnosis: A small solzid kimberellomorph with an ‘oval’ body shape (sensu Schwabe 2010). The holotype is 11 mm long and 7 mm wide. The anterior 3.5 mm consists of a largely smooth head region. The thorax shows a faint, slightly curved axial lobe and is covered by numerous epidermal papillae or weakly-mineralized sclerites that are in many cases elongated in a direction perpendicular to the main body axis. The dorsal surface of the organism posterior of the head region bears what appears to be a scleritome consisting of tiny rectangular tubercles or weakly mineralized sclerites. The remainder of the body lacks a dorsal keel but has a very faint, slightly curved low-relief axial lobe and is covered by numerous dorsal epidermal papillae or weakly mineralized sclerites that are in many cases elongated in a direction perpen- dicular to the main body axis. The papillae resemble tiny rectangular tubercles. Many of the papillae show transverse elongation, and are organized in longitudinal columns, especially in the axial part of the organism. There are approximately ten longitudinal columns of mostly transversely-elongated papillae in the axial lobe region, and roughly 8–10 irregular columns on either side of the axial lobe in the ‘pleural’ fields. This gives a rough maximum of up to 30 longitudinal rows of scler- ites. The ‘glabella’ region is covered in tiny circular papillae.

© Springer International Publishing AG 2018 271 M.A.S. McMenamin, Deep Time Analysis, Springer Geology, https://doi.org/10.1007/978-3-319-74256-4 272 Systematics

Zirabagtaria ovata n. gen. n. sp. M. A. S. McMenamin Figures 3.26, 3.27, 3.46 and 3.47 Holotype: IGM 4995. Diagnosis. As for . Material: One specimen. Discussion: The dorsal surface of the organism posterior of the head region bears what appears to be a scleritome consisting of tiny rectangular tubercles or weakly mineralized sclerites. The array is somewhat similar to the tubercles described by Ivantsov (2007, his Pl. 2, Figs. 1–3) of Lossinia lissetskii, although unlike Lossinia, tubercles on the cephalic region of the solzid are sparse and the scleritome is mostly restricted to the post-cranial region. Zirabagtaria differs from by lack- ing a “scalloped margin to the dorsal covering” (Ivantsov 2017). The papillae/sclerites were preserved by a thin parting of clay that settled on the dorsal surface of the Zirabagtaria before it was buried in sand. The presumably aragonitic sclerites (if they were mineralized at all) were subsequently dissolved out and replaced by the same siliceous cement that lithified the sandstone. Interestingly, a lopsided cephalic region, reminiscent of and perhaps homolo- gous (McMenamin 2003) to the effaced cephalon of an agraulid trilobite (McMenamin 2004), is apparent on both Lossinia lissetskii Ivantsov (2007, his Pl. 2, Fig. 3) and Zirabagtaria ovata n. gen. n. sp. (Figs. 3.26 and 3.27). A similar mor- phology of lopsided cephalic area is seen in the nektaspid trilobite-like Keretsa brutoni Ivantsov 2017 from the Arkhangelsk region of the Winter Coast, White Sea, Zimnie Gory, Russia. The papillate scleritome of Zirabagtaria ovata n. gen. n. sp. shows clear evi- dence for strong influence by a morphogenetic field in accordance with the Second Law of Morphogenetic Evolution. This evidence is twofold. First, the individual papillae are in many cases elongated in a transverse direction, and thus appear to be following the latitudinal field lines of the toroidal metazoan morphogenetic field. Second, the sclerites themselves are largely organized into longitudinal columns, and thus track the longitudinal field lines. The papillae at the posterior tip of Zirabagtaria ovata n. gen. n. sp. are of approximately the same size as the rest of the sclerites that constitute the scleritome. This suggests that the Zirabagtaria anus is not directly at the posterior tip of the , otherwise the posteriormost sclerites would presumably diminish in size as the longitudinal field lines converge at the posterior pole of the torus. This is precisely the position of the cloaca in solenogas- tres, and quite possibly Zirabagtaria had a similar morphology. Locality: Field sample 6 of 3/16/95; GPS coordinates of site are N30°24.041′, W111°57.141′ (average of seven measurements), altitude 526 m (average of six measurements). The occurrence is approximately 5–10 m below the Clemente oolite, in unit 4 of the Clemente Formation. Palankiras n. gen. Diagnosis: A praecambridiid bilateralomorph (approximately 18 mm long and 11 mm wide) with a wide cephalic region, narrow body and ‘Y’ shaped posterior region. A prominent and well preserved anterior axial lobe (‘glabella’; Figs. 3.29 Systematics 273 and 3.30) occupies the anterior part of the cephalic region. A long genal spine arches downward almost to the transverse midline of the organism (Fig. 3.29). A linear depression at the proximal-posterior edge of the genal spine is interpreted here as a rudimentary facial suture. The posterior of the trunk of the creature is split into two slightly flared projections. Six faint tubercles occur along the midline of the trunk or thorax region; the anteriormost of these is largest. Palankiras palmeri n. gen. n. sp. M. A. S. McMenamin Figures 3.28, 3.29, 3.30 and 3.31 Holotype: IGM 4997. Diagnosis. As for genus. Material: One specimen. Discussion: The specimen is preserved as a convex epirelief. The incomplete nature of the fossil suggests the possibility that it represents a shed molt, which if so would make it the oldest known such structure in the fossil record. No appendages are preserved on the holotype. It is possible, however, that appendages did occur on either side of the narrow middle thoracic region of Palankiras palmeri n. gen. n. sp. An illustration of Praecambridium in Glaessner and Wade (1971, their Figure 1C) shows certain similarities to Palankiras as shown in Figs. 3.28, 3.29, 3.30 and 3.31, particularly as regards the first ‘metamere’ or isomere partition that in both Praecambridium sigillum and Palankiras palmeri n. gen. n. sp. is drawn out into an arching spine or spine-like structure. Several key features link Palankiras to both Praecambridium and trilobites. These are: presence of a genal spine, presence of a prominent axial lobe (glabella), and rudimentary facial sutures. The genal spine is clearly visible in Figs. 3.28 and 3.29. A linear depression at the proximal-posterior edge of the genal spine is inter- preted here as a rudimentary facial suture. This interpretation strongly supports the concept that Palankiras and were both ecdysozoans that were required to molt. The prominent ovoid-spherical anterior lobe in the new praecambridiid is very reminiscent of the anterior lobe in Praecambridium sigillum as reconstructed by Glaessner and Wade (1971, their Fig. 3). The overall body form of Palankiras palmeri n. gen. n. sp. (Fig. 3.31) is intrigu- ing. Several trilobite orders have produced strange looking forms with what has been called a ‘classic fish skeleton’ appearance: large spherical glabella (“eye of fish”), long curved genal spines (“ of fish”), separated pleural segments (“fish ribs”) and two prominent spines of the pygidium (“fish tail”). These trilobites include the cheirurid Deiphon forbesi (Fig. 3.32) and the giant lichid trilobite (>60 cm long) Terataspis grandis. Complete specimens of Terataspis grandis are unknown but the overall body shape of the trilobite may be accurately inferred from isolated pieces. The similar and odd body form of Deiphon and Terataspis, which by the way are not closely related trilobites, strongly suggests that their joint similarity to Palankiras palmeri n. gen. n. sp. is a result of an evolutionary atavism. Palankiras palmeri n. gen. n. sp. shares the entire “fish skeleton” outline, lacking only the ‘ribs’ (separated pleural segments). Curiously, this “fish skeleton” 274 Systematics trilobite form is currently unknown from strata. The evolutionarily-­ convergent atavisms thus appear to be post-Cambrian Explosion phenomena. Locality: Field sample 6 of 3/16/95; GPS coordinates of site are N30°24.041′, W111°57.141′ (average of seven measurements), altitude 526 m (average of six measurements). The fossil occurrence is approximately 5–10 m below the Clemente oolite, in unit 4 of the Clemente Formation. Vendamonia n. gen. Diagnosis: A praecambridiid bilateralomorph (23 mm wide and 21 mm long) with three pairs of parapodia-like structures, a small anterior lobe (‘glabella’), and very wide, straight posterior margin that does not taper to form a pygidium or other ‘tail’ structure. The organism consists of a bar-shaped structure (the parapodial compo- nent of the great cirri or cirri base; Meyer 1926), a domal anterior axial lobe (buccal cavity), and two metamers (neuropodial or parapodial pairs) posterior to the anterior axial lobe (Fig. 3.34) A bifurcate distal appendage extends from the left parapodium of the first postcephalic pair. Vendamonia truncata n. gen. n. sp. M. A. S. McMenamin Figures 3.33, 3.34, 3.35 and 3.36 Holotype: IGM 4996. Diagnosis. As for genus. Material: Two specimens. Discussion: The specimen is preserved as a convex epirelief. In addition to the holo- , a second specimen of Vendamonia truncata n. gen. n. sp., an apparent juvenile, was discovered in June 2017 (Figs. 3.35 and 3.36). This fossil is 4.3 mm in width and 5 mm in length. The original specimen creature was originally identified as the anterior portion of a Tomopteris-like worm, with the posterior of the animal excised to form a straight posterior margin. However, discovery of the second specimen indicates that the anvil-shaped body and flat posterior margin (bottom of the anvil) in fact represents the entire outline of the body of the creature. There could nevertheless still be a relationship between Vendamonia truncata n. gen. n. sp. and the bioluminescent polychaete worm Tomopteris helgolandicus. In living members of the Tomopteridae, the bioluminescence is associated with certain parapodial glands (Phillips Dales 1971), raising the intriguing possibility that if Vendamonia truncata n. gen. n. sp. is indeed a tomopteroid, it may provide evidence for Proterozoic animalian bioluminescence. Living tomopterids are nectonic marine predators. They are usually classified as a unique group of polychaete worms, characterized by an elongate, flattened meta- meric body, paddle-shaped parapodia, and long anterior cirri. Glaessner’s (1958) suggestion of a phylogenetic link between the Ediacaran bilateralomorph Spriggina and modern tomopterids was challenged by subsequent researchers (Briggs and Clarkson 1987). Vendamonia truncata n. gen. n. sp. is remarkable both for its great antiquity, its size, and for the support that it provides to Glaessner’s (1958, 1959) original suggestions concerning the link between Spriggina and tomopterids. Systematics 275

Shortly after I located Vendamonia truncata n. gen. n. sp. in the field, Dave Evans nicknamed it “the anvil” on account of its being shaped like an old fashioned iron anvil. Note the appearance of a very similar anvil pattern in the anterior portion of Praecambridium sigillum as shown in Glaessner and Wade (1971), their Figure 1C. The anteriormost first two “segments” in this image appear larger than the other isomers and separate from the posterior part of the fossil (Glaessner and Wade 1971); this part ends up looking like an anvil that has been so heavily ham- mered that its horns are bent. I propose that Vendamonia had a similar morphology, with a smaller and fragile posterior segment series that separated from the more robust first two in the Sonoran fossil. Locality: Field sample 4 of 3/16/95; GPS coordinates of site are N30°24.041′, W111°57.141′ (average of seven measurements), altitude 526 m (average of six measurements). The fossil occurrence is approximately 5–10 m below the Clemente oolite, in unit 4 of the Clemente Formation. Crown group Aculifera Discussion: Aculifera is now widely accepted as monophyletic (Sigwart 2017). Total group ?Polyplacophora Order unknown Family unknown Korifogrammia n. gen. Diagnosis: An aculiferan shaped like a swollen circular disc 9 mm long and 9 mm wide, with a lunate anterior or cephalic field and a dorsal midline keel divided into numerous valves. A dorsal medial keel consists of eight carinated trapezoidal valves (sensu Schwabe 2010). Paired lateral riblets are preserved on the right sides of the anteriormost two or three plates. Faint possible additional valves (bringing the total number to ten) may occur anterior and posterior to the eight more clearly preserved valves. The trapezoidal valves are beaked, and the anteriormost edge of each valve (top of the trapezoid) forms a broad ‘W’ shape. The posterior edge of each valve flares out laterally. Paired lateral riblets are preserved on the right sides of the ante- riormost three plates. A lunate field is present at the anterior end of the creature. The lunate anterior or cephalic field is covered in numerous stellate tubercles. Faint ‘seg- mental’ divisions are visible along the post-cephalic margin of the organism. Korifogrammia clementensis n. gen. n. sp. M. A. S. McMenamin Figures 3.22. 3.38, 3.39, 3.40, 3.41, 3.42 and 3.43 Holotype: IGM 4998. Diagnosis. As for genus. Material: Two specimens, one complete and one fragmentary, 5 mm apart on IGM 4998. Discussion: A fragmentary specimen 750 microns long and 600 microns wide, con- sisting of three trapezoidal valves (valves IV-VI), is preserved to the left of the holotype (at a distance of 4.5 mm). Valve morphology is more distinct on the frag- mentary specimen, and the ‘W’ shape anterior edge of the trapezoid is clearly visi- ble (Figs. 3.42 and 3.43). As for Clementechiton sonorensis, the other aculiferan 276 Systematics from the Clemente Formation, original valve composition in Korifogrammia clementensis n. gen. n. sp. was probably aragonitic (Lowenstam 1967). Close inspection of the dorsal median keel shows that it is divided into eight small carinated mucro-anterior plates with beaked anterior margins (Figs. 3.38 and 3.39). These form a series of eight keeled impressions that constitute the dorsal medial ridge or crest. On the holotype, a slightly curved sagittal groove divides each plate roughly in half. Paired lateral riblets are preserved on the right sides of the anteriormost two or three plates. The lunate head region is covered with numerous stellate tubercles. These are best preserved on the left side of the specimen, but apparently covered the entire cephalic region (Fig. 3.39). The edge of the abdomen is marked by faint curving partitions that, adjacent to the edge, appear to break up into fine marginal spines. This apparent segmentation may have a relationship to the “metameric pattern” inferred for Kimberella by Fedonkin et al. (2007). Very faint triangular impressions, probably tubercles, are seen in the pleural field between the valves and the curved sculpturing at the margin. The stellate tubercles of the head region of Korifogrammia clementensis n. gen. n. sp. are reminiscent of similar structures seen in Onega and Lossinia from the White Sea Vendian biota (Ivantsov 2007; Ivantsov and Leonov 2008). The spacing and arrangement of the stellate tubercles in Korifogrammia clementensis n. gen. n. sp. is similar to that of a “retracted” specimen of Kimberella quadrata from the White Sea biota (Ivantsov 2009). However, the tubercles in the Russian specimen cover the body of the animal and are not merely restricted to the head region. Thus Korifogrammia clementensis n. gen. n. sp., as it bears eight aculiferan (chiton) plates, appears to represent an intermediate form between mollusc-like Ediacarans such as Kimberella and the more - or -like “” forms, and thus shows an intriguing mosaic of aculiferan and proarticulate features. Korifogrammia clementensis n. gen. n. sp. may potentially represent a stem form to both mollusks and . Locality: Field sample 7 of 3/16/95; GPS coordinates of site are N30°24.041′, W111°57.141′ (average of seven measurements), altitude 526 m (average of six measurements). The fossil occurrence is approximately 5–10 m below the Clemente oolite, in unit 4 of the Clemente Formation. References 277

References

Briggs DEG, Clarkson ENK (1987) The first tomopterid, a polychaete from the of Scotland. Lethaia 20(3):257–262 Fedonkin MA, Simonetta A, Ivantsov AY (2007) New data on Kimberella, the Vendian mollusc- like organism (White Sea region, Russia): palaeoecological and evolutionary implications. Geol Soc Lond Spec Publ 286(1):157–179 Glaessner MF (1958) New from the base of the Cambrian in South . Trans R Soc S Aust 81:185–188 Glaessner MF (1959) The oldest fossil faunas in South Australia. Geol Rundsch 47(2):522–531 Glaessner MF, Wade M (1971) Praecambridium-a primitive arthropod. Lethaia 4:71–77 Ivantsov AY (2007) Small Vendian transversely articulate fossils. Paleontol J 41(2):113–122 Ivantsov AY (2009) A new reconstruction of Kimberella, a problematic Vendian metazoan. Paleontol J 43(6):601–611 Ivantsov AY, Leonov MV (2008) Otpechatki vendskix zhivotnykh-unikal’nye paleontologicheskie ob’eky Archangel’skoi oblasti. Arkhangel’sk, Russia Ivantsov AY (2017) The most probable among late macrofossils. Invertebr Zool 14(2):127–133 Lowenstam HA (1967) Lepidocrocite, an apatite mineral, and magnetite in teeth of chitons (Polyplacophora). Science 156(3780):1373–1375 McMenamin MAS (2003) Spriggina is a trilobitoid ecdysozoan. Geol Soc Am Abstr Programs 35(6):105 McMenamin MAS (2004) The ptychoparioid trilobite Skehanos gen. nov. from the Middle Cambrian of Avalonian Massachusetts and the Carolina Slate Belt, USA. Northeast Geol Environ Sci 24(4):276–281 Meyer A (1926) Die Segmentalorgane von Tomopteris catharina (Gosse) nebst Bemerkungenueber das Nervensystem, die rosetten-formigen Organe und die Colombewimperung. Zeitschrift fur Wissenchaftliche Zoologie 127:297–402 Phillips Dales R (1971) Bioluminescence in Pelagic Polychaetes. J Fish Res Board Can 28(10):1487–1489 Schwabe E (2010) Illustrated summary of chiton terminology (Mollusca, Polyplacophora). Spixiana 33(2):171–194 Sigwart JD (2017) Zoology: molluscs all beneath the sun, one shell, two shells, more or none. Curr Biol 27:R702–R719 Index

A B Abiotic geochemical model, 40 Baicalia, 41 Accessory minerals, 51 Bannockburn Formation, 234 Acerosodontosaurus, 178, 179, 195 besairiei, 163, 165 A. piveteaui, 176 aquatic (lacustrine) environment, 195 Achannaras Slate Quarry, 136 aquatic lifestyle, 195 Achristatherium yanensis, 226 aquatic ventral scaled surface, Acicular crystals, 108, 110–113 reconstruction of, 174 Sonoran crystals, 115 astragalocalcaneum, 192 tourmaline crystals, 114, 116, 121, ballast gravel, 187 122, 268 belly scale preservation, ventral Agassiz, Louis, 32 counterslab, 172 Alligator mississippiensis, 184 cancellous/trabecular bone (spongy bone), Alphadon eatoni, 222 SEM of, 170, 171, 180 Alpine Fault, 233, 234 dorsal impression slab, 166 Amphiglossus exhaustion, 185 A. astrolabi, 184 fossilization, 171 A. reticulatus, 184 gastralia, 179 Anabaria juvensis, 39 hemal arches, 191 Anzik-1, 241, 242 incipient pachyostosis, 179 Apteryx australis, 228 left humerus Aquamarine Fukushima, 146 dorsal side, impression of, 168 Arce-Meza site, 248 ventral view, 169 Archaeopteryx, 207–209 left manus, ventral slab, 168 Arctodictis sinclairi, 224 left pubis, ventral view, 190 Aspidella, 62 metacarpal symmetry, 177 Atherstonia sp., 163, 175 penultimate phalanx, 177 A. colcanapi, 165 presacral vertebrae, 180 A. madagascariensis, 165 , 192 Australian estuarine crocodile Ranohira site, 167 (Crocodylus porosus), 184 reptilian cycloid scales, 181 Authentic Cambrian radulae, 106 ribs, gastralia and vertebral column Avalonian , 61 section, 169

© Springer International Publishing AG 2018 279 M.A.S. McMenamin, Deep Time Analysis, Springer Geology, https://doi.org/10.1007/978-3-319-74256-4 280 Index

Barasaurus besairiei (cont.) vertebrate paleontological evidence, 164 right hind limb zeugopod, 199, 200 dorsal view, 188, 190 Barbclabornia lendarensis, 154 ventral view, 189 Basaltic igneous rocks, 22 right pubis, ventral view, 190 Bavlinella faveolata, 46 sacral ribs, 193 Bear Gulch coelacanths, 149 scale patch (S5), 191, 194 Beishanichthys, 146 scale preservation in, 194 Belly scale preservation, 172 scale strip (S4), 191 Beothukis cf. B. mistakensis, 77–82 scarring, 178 Beringia (Bering Strait), 240 SEM ventral scales Berthelinia, 2 crenulated edges, 173 Beuthin, Jack, 35 patch S3, 173 Bifaces shoulder girdle region, ventral view, Anzik-1, 242 170, 179 bifacial artifact, 247 single ventral scale, 174 careless dating technique, 243 soft tissue preservation, 184 cartifacts, 244, 245 tail preservation, 175 chipped stone crescent, 245 thoracic vertebrae, 180 Clovis artifacts, 241 trabeculae meshwork (=lamellae), 171 endemic vertebrate , extermination triceps longus medialis, 185 of, 241 ventral impression slab, 167 enigmatic oval microfossil, SEM ventral scale preservation, patch S3, photomicrograph of, 255 172, 182 etched/ravined surfaces, 254 vertebral column and shoulder girdle, exceptional preservation, 240 dorsal impression of, 170 Federal law, 249 Barasaurus squamation geofacts, 243, 245 aquatic skink, 184 heterodox claims, 244 coelacanths, 165 Homo sapiens, 239, 240, 256 , 164 Hudson River Valley flint, 249 entombment, 164 knapping method, 246 exceptional preservation, 164 light soil, patch of, 255 forelimb morphology, 177 loess, 254 fossiliferous concretion, 166 Miles Point biface, 254 fossil palaeoniscoid fish, 175 ‘Naia’ skeleton, 242 , 164, 165 overkill hypothesis, 242 ichthyosaurs, 161 Paleoindians, 241, 242 Madagascan reptile fossils, 164 Pleistocene megafauna, 241 Malagasy concretions, 178 polycrystalline quartz bifacial lanceolate marine , 160 projectile point, 249, 250, 252 , 163, 164 ‘pre-Clovis’ points, 256 Mesozoic aquatic reptiles, 159 pseudoscience, 242 Paleozoic aquatic reptiles, 163 putative artifacts, 243 Permo- aquatic/semiaquatic quartz debitage, 249 , 178 radiocarbon dating, 243 procolophonoid parareptile, 160 resharpening and reuse, 256 soft tissue preservation, 186 resharpening facet, 254 stigmata foramen, 176 residential landscaping project, 251 stylopod, 199, 200 Squibnocket Triangle, 251 Superorder , 160 state law, 249 taphonomic bias, 162 subtypes (see Vandenberg Contracting swim tracks, 162 Stem types 1-5 (VCS 1-5)) unbioturbated substrates, 162 woolly mammoths, 243 unidentified fossil seed, 187 Biopoesis, 267 Index 281

Biospheric control model, 50–51 definition, 21 Boiruna , 183 Ediacarans of, 70–75 Bone morphogenetic protein-2 (BMP-2), 222 tourmaline crystals (see Tourmaline crystals) Borealopelta markmitchelli, 7 Clemente oolite Bourbonnella jocelynae, 154 aligned ooids on, 20 Branching burrows, 125 bedrock exposure of, 16, 18 Brasier, Martin D., 97 bladed cement characteristic, 16, 19, 20 Burgess, Izzy, 51 hardground development within, 16–17, 20 Burns, Stephen J., 27 and Johnnie oolite, 21–22 northwestern Sonora, México, 16–18 partial silicification of ooids, 16, 19 C photomicrograph, 16 Caddisfly larvae, 105 Cloudina, 66 CAI values, see Chemical index of alteration Clovis culture, 242 (CAI) values Clovis-type lithic technology, 248 Cambrian Explosion, 267 Cochlichnus anguineus, 125 Cambrian Microdictyon species, 157 Coelacanth fish, 141 Cambrian Shiyantou Formation, 125 Coelacanth vestiges Campitius titanius, 104, 105, 268 baüplan, 146 Cap carbonates, 39–41 bichirs, 145, 146 Cap dolostones, 47–48 cf. Rhabdoderma sp (see Rhabdoderma sp.) C. aguti, 217 common sunfish/pumpkinseed C. magnus, 217 morphology, 148 Cardiosuctor populosum, 148 Devonian fish Psarolepis, 149 Carter, George, 244, 245 Foreyia’s bizarre morphology, 154 Caulerpa, 2 Guiyu-Psarolepis cluster, 155 Cephalophytarion grande, 49 heterocercal to homocercal tails, 149 largemouth bass morphology, 148 Campitius titanius, 104 nested pseudoecdysis, 156 Ellisell yochelsoni, 104–105 osteichthyan medial spine, 149 fossil radulae, 104 Pax 1/9 genes, 154 , 104 phalanx homologues, 157 shell, 105 polypterids, 146 Cerutti Mastodon site, 245 rainbow trout morphology, 148 Cestum veneris, 136 reconstruction of, 148 Charniodiscus concentricus, 97 sclerite ecdysis, 157 Chemical index of alteration (CAI) values, 35 supplementary caudal fin lobe, 147 Chemosymbiosis, 62 vestigial coelacanth dorsal medial Chenmengella, 66 fin spine, 149 Chlamydomonas nivalis, 43–44 Colcanap, J., 163 Chrysomallon spp., 2, 218 Conceptual model, 62 , 195, 196 Condorlepis groeberi, 141 Clelia snake, 183 Congo cichlids, 149 Clemente biota, 31 Connecticut Valley, 248, 250, 254 preceding Avalon assemblage, 94 Conophyton, 41 White Sea assemblage, 94 (see also Corsetti, Frank, 26 Ediacaran) Corucia zebrata, 184 Clementechiton marsupials, 227 C. sonorensis, 106, 119, 120 Cretaceous strata, 161, 162 morphology of, 10, 12 Crocodylus porosus, 184, 185 occurrence, 12 Crossopholis magnicaudatus, 141, 142 Ediacaran chiton, 2 Crowell, John, 38 Clemente Formation, 268 Crown marsupials, 227 282 Index

Cryoconite E dark-colored material, 44 Early Cambrian detrital, 44 , 104, 105, 122 and hyperscums, 50 cephalopods (see Cephalopods) inferred growth of, 46 Halkieria evangelista, 104 microbial mats, 44–45 Early Devonian Kinsman granodiorite, 262 Crystal creature Eclectic Hypothesis, 38 acicular crystal, 108, 110–113 Ectenosaurus clidastoides, 183 Clementechiton sonorensis, 106 Ediacaran biota Kappa value (K) calculation, 117–121 Aspidella sp., 73, 75 Onuphionella, 122, 123 Avalonian biota, 61 tourmaline crystals (see Tourmaline Beothukis cf. B. mistakensis, 77–82 crystals) bilateralomorphs, 94–96 Zirabagtaria ovata n. gen. n. sp., 104, Charniodiscus concentricus, 97 106, 108 Clementechiton sonorensis, 94 Culicoides, 128 Clemente Formation, 70–75, 123 Culicomorphan fly, 128 conceptual model, 62 Cumberland-Barnes projectile point, 256, 257 contentious glide symmetry of, 97 Cuthill, Hoyal, 62 , 63–64 Cuvier, Georges, 6 erniettomorphs I and II, 73, 75–76, 96–97 Cyclostome fish, 141 fronds and trilobitomorphs, 65 hypothesis of chemosymbiosis, 62 Kimberella cf. K. quadrata, 78, 80–83 D Korifogrammia clementensis n. gen. n. sp., Deadham Granite, 51 79, 91–93 Deinonychus, 211 La Ciénega Formation, 66–69 Dermatobia hominis, 205–206 Palaeophycus tubularis, 77–78 Dickinsonia, 63 Palankiras palmeri n. gen. n. sp., 78, 83–88 Didelphis paleontology, 61 D. marsupialis, 218 Parvancorina, 65–66 D. virginiana, 223, 224 photosymbiosis, 62 Didelphodon Pteridinium cf. P. simplex, 74, 76–80, D. coyi, 216–219, 222 94–96 D. padanicus, 216 Rangea schneiderhoehni, 96 D. vorax, 216 Sekwia sp., 73, 75 bite force, 223 simplification of, 99 coronoid process, 220 Spriggina, 65, 95 entire skull, reconstruction of, 221 systematic placement, 63 labial side, jaw fragment, 219 tripartite division, 66 lingual side, jaw fragment, 219 Vendamonia truncata n. gen. n. sp., 78–79, occlusal view, jaw fragment, 220 88–91 symphysis, 221 vendobiont/vendozoan, 96 underside of jaw fragment, 220 Vermiforma, 73, 77 Park Formation, 219 , 63, 64 Diprotodon, 224 Zirabagtaria ovata n. gen. n. sp., 78, Dipterus valenciennesi, 137 82–86, 98–99 Dobson, Peter, 32 Ediacaran fossils in Sonora, 22 Doliodus, 149, 154, 199 Edmontonian Horeshoe Canyon Formation, 219 Dropstone, granitoid Egernia depressa, 182 discovery, 33–34 Eighth Law of Morphogenetic Evolution, glacial influence, 34, 35 197, 199 isolated rip up clasts, 34–35 Ellisell yochelsoni, 105 rock (laminite) of Cambridge Argillite, 33, 34 Enigmatic Middle Devonian fossil, Duprat, Hubert, 105 see Palaeospondylus gunni Index 283

Enoplochiton niger, 2 Gertie the Dinosaur (1914), 209 Eoasianites, 104 Glaciation Eocene Green River Formation, 132, 141, 142 accumulation of carbonate, Eocene platypus fossils, 230 41–42 Eodelphis, 223 Beck Spring Dolomite, 41, 42 E. browni, 223 cap carbonates, 39–41 E. cutleri, 223 carbon dioxide to phytoplankton, 42 Eokinorhynchus rarus, 206 causes of, 38–39 Eophyton toolmarks, 69 Cenozoic, 46 Error-correcting code procedure, 3, 4 cryoconite (see Cryoconite) Eusaurosphargis dalsassoi, 177 Gaskiers, 31–32, 35, 51, 52 Eutherians, 226 late Proterozoic, 38, 39, 43, 49 Exploding lake syndrome, 185 Pleistocene, 43 snowball earth, 43–46, 51–52 Sturtian, 41 F Glaessner, Martin, 64 Feldspar projectile point Globally synchronized calcite agglutinated scleritome, 268 mineralization, 62 biopoesis, 267 Global warming, 52 blade edges, 265 Globidens cleavage, 262, 265 G. alabamaensis, 217 Crystal Gap, 269 G. phosphaticus, 216 crystal utilization phases, 270 Glyptodon, 213 (Cambrian), 267 Goethe’s Law of Compensation, 213 gastroliths, 268 Grand Conglomérat, 50, 51 knapped rocks, 266 Granitoid dropstone left side, oblique view of, discovery, 33–34 264, 265 glacial influence, 34, 35 Mesozoic Sugarloaf Arkose, 261 isolated rip up clasts, 34–35 mineral evolution, 269, 270 rock (laminite) of Cambridge Argillite, mystery clast, 261 33, 34 orthoclase clast, 262 Grapestones, 16 pinacoid crystal form of, 264 Graphoglyptid burrow morphology, 127 potassium feldspar (orthoclase), 261 Green alga, 2 quartz crystals/clay crystals, 267 Guiyu oneiros, 152, 154 right side, 266 Guiyu-Psarolepis cluster, 149 South Hadley, typometric comparison, 266 sunstones, 269 top surface, 263, 264 H underside surface, 263, 265 Hadimopanella apicata, 105 vibrating quartz, 267 Hadronector donbairdi, 148, 149 Folsom biface assemblages, 241 Haeckel’s Biogenic Law, 209 Foreyia maxkuhni, 154 Haliotis asinina, 2 ‘Freeze-fry’ scenario, 51–52 Halkieria evangelista, 104 Hamming Code, 2 Haramiyidians, 231 G Hell Creek Formation, 221 Garstang-Berrill-Romer (GBR) hypothesis, 135 Helminthopsis, 125, 126 Gaskiers event, 53 Helveticosaurus zollingeri, 176 Gaskiers glaciation, 31–32, 35, 51, 52 Hemiergis Gaucher’s scheme, 50 H. perioni, 200 GBR hypothesis, see Garstang-Berrill-Romer H. quadrilineata, 200 (GBR) hypothesis Heteropolacopros coprolite, 161 Geoffroy Saint-Hilaire, Etienne, 6–7 Heteropolacopros ichnosp., 160, 161 284 Index

Hoffman, Paul F., 48 La Meseta Formation, 230 Holyoke strata, 128 Laramie formation, 216 Holyoke Treptichnus, 127 Late Cretaceous Hell Creek Homo sapiens, 50 Formation, 219 Hovasaurus, 164, 165, 176, 178–180, 183, Late Cretaceous polypterid Bawitius, 146 185, 195, 198, 199, 228 Late - H. boulei, 176, 177, 192 tangasaurids, 163 HoxD genes, 199 Late Woodland Phase feldspar crystal Hox genes, 154 projectile point, 266 Hoyo Negro, 242 Latimeria, 147, 149 Hupehsuchus, 197 L. chalumnae, 146 Huxley, T.H., 2 Laugia prolata, 147 , 160 Law of Compensation, 7 of correlation, 7 I of form, 6–7 Ice diatoms, 43 of homology, 7 Ichnotaxon Helminthopsis, 125 of morphogenetic evolution, 8 Ichthyopterygia, 196 of nature, 7, 8 Ilmenite, 104 Lehner mammoth kill site, 243 Isotopic curve, 23, 26, 27, 43 Lepidoteuthis grimaldii, 2 Lepisosteus, 139 Lepomis gibbosus, 148 J Leptoconops, 128 Jacutophyton stromatolites, 35, 36, 50 Limbaugh, Rush, 7–8 Jamua crystals, 115 Limnic eruption hypothesis, 186 Johnnie oolite Linton coals, 155 exposure of, 17, 19 Lochman, Christina, 105 offshore direction for, 17 Lotah’s Wheel site, 245 red-colored cap-rock of dolomitic composition, 19 Newark Supergroup, 128 M Jurassic sedimentary rocks, 127 Madagascan Permian tetrapods, 163 Maiopatagium furculiferum, 231 Maloof, Adam C., 48 K Manning Canyon Shale Formation, 154 Kappa value (K) calculations, 117–121 Marshall, Charles, 8 , 163 Martin’s hypothesis, 241 Kenyasaurus, 179 Matter, Albert, 27 Khatyspyt Aspidellas, 62 McCary Blade Point, 252, 253 Kimberella, 106 Megalibgwilia, 229 Kimberella cf. K. quadrata, 78, 80–83 Meniscoëssus conquistus, 216 Kimberichnus teruzzii, 106 Mesosaurus, 163, 164, 180 Kirschvink, Joseph, 46 Mesozoic Sugarloaf Arkose, 261 kiwi (Apteryx australis), 228 Metatherians, 226 Knightia eocaena, 142 Mexican , 125 Kollikodon ritchiei, 229 Meyerasaurus, 198 Korifogrammia clementensis n. gen. n. sp., 79, Microbes, cryoconite, 44–45 91–93, 119–121, 194, 195 Microdictyon M. chinense, 10 M. cuneum, 9, 10 L mineralized remnant cuticle, 10, 11 La Ciénega Formation, 66–69 M. jinshaense, 10 Lake Nyos, 185 M. montezumaensis, 9 Index 285

morphogenetic field control by, 9 polytomy, 136 morphology of, 10 cartilaginous rays, 141 M. rhomboidale, 9, 10 cephalochordates, 141 M. sinicum, 9 chondrocranium, 139 sclerites, 10 coalified cartilagenous tissues, 137 SEM photomicrograph, 10, 11 ctenophores/comb jellies, 135 Micropterus salmoides, 148 cyclostome affinity for, 141 Microraptor, 210–213 embranchment theory, 136 M. zhaoianus, 211, 226 evolutionary linkages, 136 Monomorphichnus multilineatus, fossil fish, 137 68, 73 fossilized “cartilage”, 142 Monotrematum sudamerianum, 229 GBR hypothesis, 135 Morphogenetic evolution, laws of, 8 hagfish, 141 Morris, Simon Conway, 62 head/cranial region, 138 Morse’s Law of Digital Reduction, 213 larval lungfish hypothesis, 137 Multina isp. left gammation, SEM image of, 140 best-preserved Nevadan specimen, 130 Mount Holyoke specimen, ichnofossil geometry, 130 137, 138 idealized geometry of, 130, 131 paedomorphosis, 135 non-graphoglyptid ichnofossil, 129 reconstruction of, 140 Mystacina tuberculata, 229 sclerotome, 142 Mystery clast, 261 squamation in, 137, 139 tunicates, 136 vertebral region, 139 N vertebrate-plus-tunicate , 136 Nacimiento Formation, 227 Palankiras palmeri n. gen. n. sp., 78, 83–88 Nautiloid, 104 Paleodictyon, 129 Nile cichlids, 149 Paleoindian projectile points, 248, 249, Ninth Law of Morphogenetic Evolution, 200 251, 252 Palorchestes, 224 Panderichthyes, 199 O Parvancorina, 65–66 Odurodon, 229 Pax genes, 154 Omphalosaurus, 217 Pectinaria, 105 Oncorhynchus mykiss, 148 Pedopenna, 210 Onuphionella, 122, 123, 268 Peradectes minor, 227 Order Dinornithiformes, 228 Permo-Triassic mass , Ornithorhynchidae, 230 164, 165 Orovenator mayorum, 164 Petit Conglomérat, 50, 51 Orthoclase clast, 262 Phareodus encaustus, 132 Osmotrophy, 62 Photosymbiosis, 62 Phyletic transformation, 7–8 O. kitchingorum, 174 Physical science models, 47 O. rubidgei, 174 Pinctada maxima, 2 O. saurodektes, 174 Piveteauia madagascariensis, 165 , 174 Placodes, 6 Platella, 37 Platypterygius sp., 161, 162 P Plesiosauroid Elasmosaurus, 198 Page-Ladson site, 243 Plestiodon, 183 Palaeophycus tubularis, 77–78 , 228 Palaeospondylus gunni Podolimirus, 64 acipenseriform fishes, 141 Polycotylid Dolichorhynchops, 198 Aculifera clade, 136 Polyosteorhynchus simplex, 148 286 Index

Polypterus, 181 Roxbury Formation, 32, 33 P. bichir, 146 Rubisco enzyme, 62 P. senegalus, 146, 149 Rusophycus multilineatus, 67, 68 Praecambridium sigillum, 64 Procolophonia, 192 trigoniceps, 193 S Proterozoic Saint Bathans mammal, see Zealanditherians ice ages, 41 Sakamena Group, 164, 166, 173, 175, 181, Johnnie oolite 186, 187 exposure of, 17, 19 Salterella, 104, 105, 268 offshore direction for, 17 San Juan Basin, 227 red-colored cap-rock of dolomitic Sarcophilus harrisi, 218 composition, 19 Sauropterygia, 196 late, 20, 26–28, 35, 38, 49 Scaleless (sc/sc) recessive mutation, 6 marine waters, 29 Scincomorpha group, 184 microbes, 44 Scleritome, 1, 103, 213 Sonoran stratigraphic section, 21, 22 Sclerosaurus armatus, 181, 182, 193 strata, 21 Scomber scombrus, 147 stromatolite Anabaria juvensis, 39 Second Law of Morphogenetic Evolution, 218 sub-ice biota, 44, 48 SEM-EDS analysis Psarolepis, 149 of crystal IGM 4995[2], 109, 112 Psittacosaurus, 215 “spear-head” shape crystal IGM 7461[1], 113 Pteridinium cf. P. simplex, 74, 76–80, Serikornis sungei, 211–213 94–96 Seventh law, morphogenetic evolution Puerto Rico, 123 4-bit word compartments, 3–4 Purgatorius, 227 Hamming’s error-correcting code procedure, 2–4 importance of, 9 Q morphogenetic field control Qinella, 66–67 of animal body, 8–9 Quadratapora zhenbaensis, 10 of Microdictyon, 9–10 (see also Microdictyon) morphogenetic field surface, 6 R in cross section, 4–5 Radulae to grow scleritome, 4–5 Authentic Cambrian, 106 scaleless (sc/sc) recessive cephalopods, 104 mutation, 6 Radulichnus, 106 tooth elements recognition, 6 “Random” dot pattern test, 118 torologous relationships, 6 Rebelletrix divaricerca, 147 Shonisaurus, 196, 197 Recapitulation theory, 209 S. popularis, 161 Repenomamus robustus, 215 Shuram excursion Rhabdoderma sp., 147, 149–151 causes, 27–28 dorsal fin medial spine, 151 Clemente-Johnnie oolite excursions, 27 Guiyu oneiros, 152 definition, 26 lepidotrichia/fin rays, 153 environmental change, 28 R. elegans, 147, 155 gigantic shift in global geochemistry, 28 rhabdodermatid-type scale, 152 negative carbon isotopic excursion, 52 second dorsal fin medial spine, 153 oxygen increase hypothesis, 28 SEM of spine, 151 Siltstone, 32, 70, 72 RLCDs (repetitive low complexity domains), 2 Sinodelphys szalayi, 226 Rowland, Stephen M., 23 Sinotubulites, 66 Roxbury Conglomerate, 32, 52 Sinusoidal burrows, 125 Index 287

Skull Tindir microbiota, 49 of diapsids, 9 Tiny crystals, 106–111 of Gorilla gorilla gorilla, 12 Tomopteris helgolandicus, 90 in Homo sapiens, 12 Tourmaline crystals Smilodon californicus, 222 arrangement of, 123 Snowball earth glaciation, Clementechiton sonorensis (IGM 7461), 44, 51–52 106, 107 “The Snowmastodon Project”, 240 composition of, 109 Sokolov, B.S., 64 crystal (IGM 7461[2]), 113, 114 Somatic Biogenic Law, 156 detrital, 120 Sonoran Ediacaran fossil, 106 hornfels, 116 Sonoran trace fossil, 125 host acicular, 115–116 “Spear-head” shape crystal IGM IGM 7461[3], 114, 115 7461[1], 113 Korifogrammia clementensis n. gen. n. sp. Spiral burrows, 125 (IGM 4998), 106, 109, 110 Spiral-sinusoidal trace, 126 Na-rich, 111 Spriggina, 65 solar radiation absorbtion, 123 Stagodontidae, 216 striated jet black schorl crystal, 116 Stenopterygius quadricissus, 197 three pairs of, 121 Stereosternum tumidum, 180 tiny crystals, 117, 119, 120 Steropodon galmani, 229 trigonal prisms, 109 Stewart, John H. ‘Jack’, 21 velvet, 116–117 Stromatolites, 35–36, 50 Zirabagtaria ovata n. gen. n. sp. Stylopod, 199, 200 (IGM 4995), 106, 108 Sugarloaf site, 249 Trace fossil geometry Sulfate, 29, 62 agrichnial, 127 Surficial morphogenetic field, 1 aquatic larval burrows, 128 Swaindelphys, 227 behavioral complexity, 125 biting midges, 128 blood-feeding hypothesis, 128 T Cambrian explosion, 126 Tamanovalva limax, 2 freshwater osteoglossid fish, 132 Tangasauridae, 164 graphoglyptid trace fossils, 127 Tangasaurus, 179 ichnofossil types, 125 Tasmanian devil (Sarcophilus harrisi), 218 Paleodictyon graphoglyptid trace Tasmanian tiger, 222 fossil, 132 Tetrapteryx Proterozoic trace fossil, 127 Archaeopteryx, 207–209 reprocessing sediment, 131 avian dentition, loss of, 213 Thalassinoides, 128 Deinonychus, 211 treptichnid ichnofossils, 126 Dermatobia hominis, 205–206 Treptichnus bifurcus, 127 hind limbs, 213 Trichophycus pedum, 127 hypothesis, 210 Trachylepis ivensi, 184 Microraptor, 210 Trailing edge of the toroidal ring Pedopenna, 210 pattern, 213 Serikornis sungei, 211 Treptichnid trace fossils, 126 torologous convergent evolution, 213 Treptichnus bifurcus, 127, 128, 131 Thalattoarchon saurophagis, 161 Triassic scanilepiform fishes, 146 Thermal shock hypothesis, 186 Trichophycus pedum/Treptichnus Thylacinus cynocephalus, 222 pedum, 127 Thylacoleo carnifex, 218, 224 Trimerorhachis, 182 Thylacosmilus atrox, 224–226 Tschermak, Gustav, 111 Tindir Mass Extinction, 49 ‘Tuqan’ Monterey chert, 245 288 Index

U Yorgia, 63, 64 United States Geological Survey Professional , 179 Paper 1309, 21 Yucatán cave, 242 Upper Cretaceous (Campanian-Maastrichtian) fossil assemblage, 216 Urey reaction, 40, 41 Z UV-B radiation, 123 Zaglossus hacketti, 229 Zealandia, 233, 234 Zealanditherians V coronoid process, 217, 218, 222 Vandenberg Contracting Stem types 1-5 Didelphodon, 216 (VCS 1-5), 245–248 egg-laying monotremes, 229 Vaqueroichnus stewarti, 127 evolutionary diversification, 232 VCS 1-5, see Vandenberg Contracting Stem extinction of, 232, 234 types 1-5 (VCS 1-5) flightless forms, 228 Vendamonia truncata n. gen. n. sp., 78–79, 88–91 fossil monotremes, 229 sokolovi, 64 haramiyidians, 231 Vernadsky’s “pressure of life”, 46–47, 49–50 mammaliaforms, 231 Vernadsky, Vladimir, 41 mandibular canal crest, 222 Vilevolodon diplomylos, 231 marsupials, 216, 226 Volborthella, 104 mechanical stress-induced Volcanigenic carbon dioxide, 41 atavism, 223 von Middendorf, Alexander, 104 Mesozoic mammal species, 216 molar zahnreihe, 218 paleobiogeographic oddities, 228 W placental mammals, 226 Wade, Mary, 64 plate tectonics revolution, 228 Wakaleo alcootaensis, 230 post-canine teeth, 218 Wantzosaurus elongatus, 164 Repenomamus, 215 Williams Fork Formation, 216 scaly- gastropod, 218 Williams, Jessica, 33, 35, 51 sedimentary rocks, 234 Williston’s Law, 104 thylacine, 222 Wirenia argentea, 104 zahnreihen, 216 Zeugopod, 199, 200 Ziegler Reservoir fossil site, 240 Y Zirabagtaria ovata n. gen. n. sp., 78, 82–86, Yixian Formation, 215, 226 98–99, 104, 106, 108, 119 Yochelson, Ellis, 104 Zoophycus, 132