Conservation Science Western Australia

Total Page:16

File Type:pdf, Size:1020Kb

Conservation Science Western Australia Volume Six Number Two Conservation Science November 2007 Western Australia The translation of Diels 1906 Plant Life in Western Australia – editor’s note NEIL GIBSON1,2 1) Science Division, Department of Environment and Conservation, PO Box 51 Wanneroo WA 6065 2) School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009 After some 100 years it has now been possible to publish for the first time a complete translation of Diel’s seminal work on Western Australian biogeography (Diels 1906). The production of this translation has stretched over many decades and involved a number of people who recognized the need to provide an accessible version of the first major work on the ecology, vegetation and biogeography of Western Australian plants to an Australian audience. Soon after his appointment as Head of the Department of Botany, University of Western Australia (now the School of Plant Biology within the Facility of Natural and Agricultural Sciences) in 1947, Dr B.J. Grieve located a partially completed draft translation of Diels’ work which had been commenced by Professor and Mrs W. Dakin after their arrival in the Biology Department of the University in 1914. Unfortunately, after they returned to England in 1920, the work largely lapsed. Some minor additions appears to have been undertaken on this manuscript by Dr D. Herbert and C.A. Gardner with copies dated 1927 lodged in library of the Western Australian Herbarium (Diels et al. 1927). Appreciating the value of Diels’ work for teaching and research purposes, Grieve completed a definitive translation which included updated taxonomy and ecological data. The typed manuscript, complete with illustrations from the original text, then served as a valuable source book in the Botany Department. In due course, the desirability of obtaining permission to publish the translation arose and the matter was discussed with the University of Western Australia Press. Repeated attempts were then made to trace and contact the original publishing firm, W. Engelmann of Leipzig, or its possible successors in West Germany, but without success, and there the matter was forced to rest. However, in 1981, Dr B.B. Lamont, who had independently commenced a translation of a chapter in the book relating to his researches, was, after much searching and correspondence, successful in contacting the new firm which had taken over the copyright for the book and he obtained formal permission to proceed with the translation. Learning of the existence of the Botany Department complete translation, i Lamont agreed to collaborate with Grieve, and later with the invaluable assistance of E.O. Hellmuth in jointly editing the work. In the same year Carr (1981) independently published a translation of a small section of Diel’s work. In an effort illustrate the vegetation changes since Diels’ time, as many as possible of the original photographic sites that could be identified were visited and new photographs made by Lamont (Lamont & Grieve1984). For purposes of comparison, these were placed in an appendix alongside the original plates. The publication of this work was unfortunately halted when funding could not be raised to publish the book and the project lapsed for quite some while. The advent of widespread accessibility to digital media made it feasible in the early 21st century to publish this document in an electronic form with the kind permission of J. Cramer in Gebrüder Borntraeger Verlagsbuchhandlung. To that end Grieve’s manuscript was edited and original figures and photographic plates scanned to complete this task. Unfortunately Grieve’s updated taxonomy and ecological data incorporated in his translation has seriously dated over the intervening 20 years. Therefore the original taxonomy and data published by Diels has been used in this translation. To assist the reader in understanding taxonomic changes an appendix of name changes current to 2002 has been added. Points of clarification are added to the text enclosed in [square brackets], but these have kept to a minimum. Translations of the captions of the tables and figures can be found in appendices. With regard to the title of Diels’ work, a direct translation from the German would be “The Plant World of Western Australia”. We have chosen to translate this as “The Plant Life of Western Australia” to highlight the strong connection between the seminal work of Diels at the start of the 20th century with the other major work on Western Australian biogeography of the same name produced by Dr John Beard in the last decade of that millennium (Beard 1990). Beard has recently produced several papers highlighting the contribution of Diels during the centenary of his visit (Beard 2001a, 2001b). Dr Beard and Dr Kilian (B) have also recently published further information on Diels and Pritzel’s travels in eastern Australia in 1902 and are hoping be able to further expand this work in the future (Beard & Kilian 2003). The electronic version of this translation had a limited release in June 2003. This current opportunity to provide a limited number of printed copies of Diels’ work and an updated electronic version has been taken to provide easy access to this first major work on plant biogeography in Western Australia. References Beard JS (1990) Plant Life of Western Australia. Kangaroo Press, Sydney. Beard JS (2001a) A historic vegetation map of Australia. Austral Ecology 26: 441–443. Beard JS (2001b) The botanists Diels and Pritzel in Western Australia: A centenary. Journal of the Royal Society of Western Australia 84:143–148. Beard JS, Kilian N (2003) Diels and Pritzel in Eastern Australia: Further information on their travels of 1902. Bulletin of the Ecological Society of Australia 33: 31–33 Carr DJ (1981) Extra-Tropical Western Australia. In: People and Plants in Australia (eds D J & S G M Carr). Academic Press, Sydney, 47–78. Diels L (1906) Die Pflanzenwelt von West-Australien südlich des Wendekreises. Vegetation der Erde VII, Leipzig. Diels L, Darkin WJ, Herbert DA, Gardner CA. Unpublished manuscript dated 1927 held in the library of the Western Australian Herbarium Lamont BB, Grieve BJ (1984) Diels photographic sites – 82 years later: a study of resilience in southwestern Australia. Proceedings of the Fourth International Conference on Mediterranean Ecosystems. University of Western Australia, Nedlands. pp. 91–92 & poster. ii The Vegetation of the World A series of Plant Geographical Monographs Edited by A. ENGLER and O. DRUDE Professor of Botany Professor of Botany Director of the Botanic Director of the Botanic Gardens in Berlin Gardens in Dresden VII The Plant Life of Western Australia south of the tropics With an Introductory Part dealing with the salient features of the vegetation of the whole of Australia The results of an expedition carried out during 900-90 under the auspices of the Humboldt Foundation Royal Prussian Academy of Science by Dr. L. DIELS LEIPZIG Published by Wilhelm Engelmann 906 The Plant Life of Western Australia south of the Tropic with an Introductory Part dealing with the salient features of the Vegetation of the whole of Australia The results of an expedition undertaken during 90-90 under the auspices of the Humboldt Foundation Royal Prussian Academy of Science Dr. L. Diels Lecturer at the University of Berlin Assistant at the Royal Botanical Museum With 1 vegetation map and 82 text figures, together with original photographic plates taken by Dr. E. Pritzel Leipzig Published by Wilhelm Engelmann 906 A translation by Emeritus Professor B.J. GRIEVE, Professor B.B. LAMONT and Dr E.O. HELLMUTH Edited Dr N. Gibson Acknowledgments The publication of the translation of this classic work was assisted by generous grants from the Utah Foundation in Brisbane, and the German Government in Bonn through Agencie Internationale to B.J. Grieve. Special thanks are due to: K. Holland who typed the whole of the original manu- script as completed by BJ Grieve in 90 and the revisions of 990/9; the School of Plant Biology, University of Western Australia for the curation of Prof. Grieve’s manuscript and notes over many years; L. Cobb and the Wildflower Society of Western Australia for facilitating access to these materials which has allowed the publication of this long delayed work. The copyright to the original 906 publication and the 976 facsimile is held by J. Cramer in Gebrüder Borntraeger Verlagsbuchhandlung http:/www.schweizerbart.de [email protected] who kindly gave permission for the publication of this translation. All rights reserved. Perth 007 v .0 AUTHOR’S PREFACE Knowledge of the plant life of Western Australia was very limited at the time of my visit. While the floral elements were well known, no studies had been made on their inter-relationships in the field. Again, although their external affinities had been noted by Hooker, little was known about the conditions that determined the inner relationships of the endemic flora. These aspects were considered as being fundamentally important. Because of the variation in form of its vegetation and the fact that this variation occurred in a winter rainfall area of the earth (where the vegetation is more closely defined and shows a more regular gradation than in any other part) it appeared that it might provide solutions to many questions of general interest. Also the country’s unrivalled richness in species could be expected to prove rewarding to those who studied its vegetation. For these reasons I proposed a study visit there and in 900 submitted my plan to the governors of the Humboldt-Foundation for Biological Research and Travel. The account of the vegetation formations of Western Australia and the investigation of the conditions influencing the develop- ment of the wide range of species existing in the flora were considered to be the most important matters to be investigated.
Recommended publications
  • Five Hundred Plant Species in Gunung Halimun Salak National Park, West Java a Checklist Including Sundanese Names, Distribution and Use
    Five hundred plant species in Gunung Halimun Salak National Park, West Java A checklist including Sundanese names, distribution and use Hari Priyadi Gen Takao Irma Rahmawati Bambang Supriyanto Wim Ikbal Nursal Ismail Rahman Five hundred plant species in Gunung Halimun Salak National Park, West Java A checklist including Sundanese names, distribution and use Hari Priyadi Gen Takao Irma Rahmawati Bambang Supriyanto Wim Ikbal Nursal Ismail Rahman © 2010 Center for International Forestry Research. All rights reserved. Printed in Indonesia ISBN: 978-602-8693-22-6 Priyadi, H., Takao, G., Rahmawati, I., Supriyanto, B., Ikbal Nursal, W. and Rahman, I. 2010 Five hundred plant species in Gunung Halimun Salak National Park, West Java: a checklist including Sundanese names, distribution and use. CIFOR, Bogor, Indonesia. Photo credit: Hari Priyadi Layout: Rahadian Danil CIFOR Jl. CIFOR, Situ Gede Bogor Barat 16115 Indonesia T +62 (251) 8622-622 F +62 (251) 8622-100 E [email protected] www.cifor.cgiar.org Center for International Forestry Research (CIFOR) CIFOR advances human wellbeing, environmental conservation and equity by conducting research to inform policies and practices that affect forests in developing countries. CIFOR is one of 15 centres within the Consultative Group on International Agricultural Research (CGIAR). CIFOR’s headquarters are in Bogor, Indonesia. It also has offices in Asia, Africa and South America. | iii Contents Author biographies iv Background v How to use this guide vii Species checklist 1 Index of Sundanese names 159 Index of Latin names 166 References 179 iv | Author biographies Hari Priyadi is a research officer at CIFOR and a doctoral candidate funded by the Fonaso Erasmus Mundus programme of the European Union at Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences.
    [Show full text]
  • Interim Recovery Plan No
    INTERIM RECOVERY PLAN NO. 202 ALBANY WOOLLYBUSH (ADENANTHOS x CUNNINGHAMII) INTERIM RECOVERY PLAN 2005-2010 Sandra Gilfillan1, Sarah Barrett2 and Renée Hartley3 1 Conservation Officer, CALM Albany Region, 120 Albany Hwy, Albany 6330. 2 Flora Conservation Officer, CALM Albany Work Centre, 120 Albany Hwy, Albany 6330 3 Technical Officer, CALM Albany Work Centre, 120 Albany Hwy, Albany 6330 Photo: Ellen Hickman April 2005 Department of Conservation and Land Management Albany Work Centre, South Coast Region, 120 Albany Hwy, Albany WA 6331 Interim Recovery Plan for Adenanthos x cunninghammi FOREWORD Interim Recovery Plans (IRPs) are developed within the framework laid down in Department of Conservation and Land Management (CALM) Policy Statements Nos. 44 and 50. IRPs outline the recovery actions that are required to urgently address those threatening processes most affecting the ongoing survival of threatened taxa or ecological communities, and begin the recovery process. CALM is committed to ensuring that Threatened taxa are conserved through the preparation and implementation of Recovery Plans (RPs) or IRPs and by ensuring that conservation action commences as soon as possible. This IRP will operate from April 2005 to March 2010 but will remain in force until withdrawn or replaced. It is intended that, if the taxon is still ranked Endangered, this IRP will be reviewed after five years and the need further recovery actions assessed. This IRP was given regional approval on 26 October, 2005 and was approved by the Director of Nature Conservation on 26 October, 2005. The provision of funds and personnel identified in this IRP is dependent on budgetary and other constraints affecting CALM, as well as the need to address other priorities.
    [Show full text]
  • Proteaceae (Banksia Species)
    Proteaceae (Banksia Species) Information: 90% of all Banksia species occur in South Western Australia. The two most com- mon Banksia species in the Perth region are the Firewood Banksia (Banksia menziesii) and the Slender or Candle Banksia (Banksia attenuata). These two species each flower throughout the two halves of the year and are an important source of food for countless animals. Large Banksias such as these as well as B. grandis, B. ilicifolia B. Prionotes and B. littoralis produce an abun- dance of nectar from their large flower spikes that sustain countless species and have traditionally been used as a source of food and drink by indigenous Australians. Banksias are highly adapted to a nutrient poor environment with harsh, dry climate having sunken stomata to preserve water and cluster roots to enhance nutrient uptake in Phosphorus deficient soils. Firewood Banksia (Banksia menziesii) with parasitic ’witches broom’ (insert) Pictures by A. Price Candle Banksia (Banksia attenuata) feeding a Honey Possum (Tarsipes rostratus) Picture courtesy of Kwongan Foundation Associated Life: Many animals drink nectar from Banksia flower heads including Perching birds such as Honeyeaters, Spinebills, robins and Wagtails as well as the Honey Possum, the worlds only nectarvorious marsupial. Bull Banksia European Honeybees are commonly (Banksia Grandis) found in or near flower spikes as are wee- vils and jewel beetles. Picture courtesy of Friends of Queens Park Bushland The seeds of the B.grandis are eaten by Carnaby’s black-cockatoo and the red- capped parrot. The Twig-mound ant builds its nest at the base of B. ilicifolia. Some moth species larvae burrow into Banksia cones and leaves.
    [Show full text]
  • Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1
    Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1 Authors: Jiang, Wei, He, Hua-Jie, Lu, Lu, Burgess, Kevin S., Wang, Hong, et. al. Source: Annals of the Missouri Botanical Garden, 104(2) : 171-229 Published By: Missouri Botanical Garden Press URL: https://doi.org/10.3417/2019337 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Annals-of-the-Missouri-Botanical-Garden on 01 Apr 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Kunming Institute of Botany, CAS Volume 104 Annals Number 2 of the R 2019 Missouri Botanical Garden EVOLUTION OF ANGIOSPERM Wei Jiang,2,3,7 Hua-Jie He,4,7 Lu Lu,2,5 POLLEN. 7. NITROGEN-FIXING Kevin S. Burgess,6 Hong Wang,2* and 2,4 CLADE1 De-Zhu Li * ABSTRACT Nitrogen-fixing symbiosis in root nodules is known in only 10 families, which are distributed among a clade of four orders and delimited as the nitrogen-fixing clade.
    [Show full text]
  • Inventory of Taxa for the Fitzgerald River National Park
    Flora Survey of the Coastal Catchments and Ranges of the Fitzgerald River National Park 2013 Damien Rathbone Department of Environment and Conservation, South Coast Region, 120 Albany Hwy, Albany, 6330. USE OF THIS REPORT Information used in this report may be copied or reproduced for study, research or educational purposed, subject to inclusion of acknowledgement of the source. DISCLAIMER The author has made every effort to ensure the accuracy of the information used. However, the author and participating bodies take no responsibiliy for how this informrion is used subsequently by other and accepts no liability for a third parties use or reliance upon this report. CITATION Rathbone, DA. (2013) Flora Survey of the Coastal Catchments and Ranges of the Fitzgerald River National Park. Unpublished report. Department of Environment and Conservation, Western Australia. ACKNOWLEDGEMENTS The author would like to thank many people that provided valable assistance and input into the project. Sarah Barrett, Anita Barnett, Karen Rusten, Deon Utber, Sarah Comer, Charlotte Mueller, Jason Peters, Roger Cunningham, Chris Rathbone, Carol Ebbett and Janet Newell provided assisstance with fieldwork. Carol Wilkins, Rachel Meissner, Juliet Wege, Barbara Rye, Mike Hislop, Cate Tauss, Rob Davis, Greg Keighery, Nathan McQuoid and Marco Rossetto assissted with plant identification. Coralie Hortin, Karin Baker and many other members of the Albany Wildflower society helped with vouchering of plant specimens. 2 Contents Abstract ..............................................................................................................................
    [Show full text]
  • Title General Flowering in an Asesonal Tropical Forest : Plant Reproductive Phenology and Plant-Pollinator Interactions in A
    General flowering in an asesonal tropical forest : plant Title reproductive phenology and plant-pollinator interactions in a lowland dipterocarp forest in Sarawak( Dissertation_全文 ) Author(s) Sakai, Shoko Citation 京都大学 Issue Date 1999-03-23 URL https://doi.org/10.11501/3149376 Right Type Thesis or Dissertation Textversion author Kyoto University Shoko Sakai 1 Doctoral thesis General flowering in an aseasonal tropical forest: plant reproductive phenology and plant-pollinator interactions in a lowland dipterocarp forest in Sarawak i1-:;r"J'Ji~tt!3"79 1 \t5-:t:t-*1=d=311 ~f®~m~9m"7 I .J o 9-c f@~7ll-~fJJ~t§B:fJ=f§ Shoko SAKAI Fuculty of Science, Kyoto University March 1999 Shoko Sakai 2 CONTENTS Summary 4 Chapter 1. Introduction 6 Chapter 2. Canopy observation system 11 Chapter 3. Plant reproductive phenology 16 Chapter 4. Pollination system in a general flowering period 56 Chapter 5. General discussion 77 Acknowledgments 88 Reference 89 Appendix 99 Shoko Sakai 3 Jttm 7:; 7 ~m~f~:lt!!. 7 7 ;\ tf .:t-w-r: I±, - =for oo:rE e: Df'Jn ~ :m~-IJ\jo G n -c \,t) ~ o -=for 001£ C: I±, 2-10 ifmJM-r:w7Ct ~ f~hX:T ~ :f*4 ~f!Hi-/J\~7 JJ ~Fa, ~:.:J(4 C: 001£ · ~~T ~ ;m~ -r:~ ~ o -: ~:m~ ~~~~ t-:=&IJ, 1992ifiJ" G? v- Y 7 · -IT 7 r:7 71+1 · 7 / ~-Jv00J1.0~ ~=13 v)-c, JE:M89~: 305{i576f~1*~til!fo/J~001E · fffl~15th~~c&~l .. 53'-;fJl-~13-:~-:>t-:= o i-~~ :lf!;, 1992if-IJ"G 19951f:i-r:'±~1tjt~~til!fo/J~~ ~~OO:rEL-cv)~{i, ~~v)l±f~i*~~Uil '±~~: 2-5% C: 1~-/J"-:> t-:=-/J\, f-~~Ui!L± 19961f: 3 JJ iJ" Gf&,Jt~:_t~ L-c 20% ~=~ l, - =foTOO 1E ~ ~c&~ L t-:= o 001E~Uil~ ~1tL± 5 JJ C: 9 Jn: I!- 7 ~ ~--:::> =L1J ~ ~ L t-:: o it-::, - =for 001£ L± 70 ;~-- r Jv ~-: -t~tH*n" G*f'*f~*-?~~ 7 / i -r:~l*~til!fo/J-/J\--:::> < ~ te-t:m~t! e: v) ~-: (: -/)\ b -/)'> -:> t-:= 0 7 7 ;\if .:t- W~fil!fo/J I± i- ~ Li C: lv C:"-/J\j}J!fo/J ~: ~~' ~ {t(fF L-c v) ~ ~ -r:, - =for OO:f£-/J\13-: ~ C:~f;t~~11ff~-/J\f&,~=r'§J < ~~ 0 ttg:I±1Eit?]Jjt~z Lv)w-r:-=foT001E~~~m-~T- ~AiJ\C:"~ J:: ~ 1: 1 iJ" ~ b n -c \,t) ~ ~ iJ"I±, -=for oo:rE ~ &~J <" ~ * ~ ~ rQ~m~ ---:::> -c- ~ ~ o -: n 1 -r: .
    [Show full text]
  • Plant Life of Western Australia
    INTRODUCTION The characteristic features of the vegetation of Australia I. General Physiography At present the animals and plants of Australia are isolated from the rest of the world, except by way of the Torres Straits to New Guinea and southeast Asia. Even here adverse climatic conditions restrict or make it impossible for migration. Over a long period this isolation has meant that even what was common to the floras of the southern Asiatic Archipelago and Australia has become restricted to small areas. This resulted in an ever increasing divergence. As a consequence, Australia is a true island continent, with its own peculiar flora and fauna. As in southern Africa, Australia is largely an extensive plateau, although at a lower elevation. As in Africa too, the plateau increases gradually in height towards the east, culminating in a high ridge from which the land then drops steeply to a narrow coastal plain crossed by short rivers. On the west coast the plateau is only 00-00 m in height but there is usually an abrupt descent to the narrow coastal region. The plateau drops towards the center, and the major rivers flow into this depression. Fed from the high eastern margin of the plateau, these rivers run through low rainfall areas to the sea. While the tropical northern region is characterized by a wet summer and dry win- ter, the actual amount of rain is determined by additional factors. On the mountainous east coast the rainfall is high, while it diminishes with surprising rapidity towards the interior. Thus in New South Wales, the yearly rainfall at the edge of the plateau and the adjacent coast often reaches over 100 cm.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • Recommendation of Native Species for the Reforestation of Degraded Land Using Live Staking in Antioquia and Caldas’ Departments (Colombia)
    UNIVERSITÀ DEGLI STUDI DI PADOVA Department of Land, Environment Agriculture and Forestry Second Cycle Degree (MSc) in Forest Science Recommendation of native species for the reforestation of degraded land using live staking in Antioquia and Caldas’ Departments (Colombia) Supervisor Prof. Lorenzo Marini Co-supervisor Prof. Jaime Polanía Vorenberg Submitted by Alicia Pardo Moy Student N. 1218558 2019/2020 Summary Although Colombia is one of the countries with the greatest biodiversity in the world, it has many degraded areas due to agricultural and mining practices that have been carried out in recent decades. The high Andean forests are especially vulnerable to this type of soil erosion. The corporate purpose of ‘Reforestadora El Guásimo S.A.S.’ is to use wood from its plantations, but it also follows the parameters of the Forest Stewardship Council (FSC). For this reason, it carries out reforestation activities and programs and, very particularly, it is interested in carrying out ecological restoration processes in some critical sites. The study area is located between 2000 and 2750 masl and is considered a low Andean humid forest (bmh-MB). The average annual precipitation rate is 2057 mm and the average temperature is around 11 ºC. The soil has a sandy loam texture with low pH, which limits the amount of nutrients it can absorb. FAO (2014) suggests that around 10 genera are enough for a proper restoration. After a bibliographic revision, the genera chosen were Alchornea, Billia, Ficus, Inga, Meriania, Miconia, Ocotea, Protium, Prunus, Psidium, Symplocos, Tibouchina, and Weinmannia. Two inventories from 2013 and 2019, helped to determine different biodiversity indexes to check the survival of different species and to suggest the adequate characteristics of the individuals for a successful vegetative stakes reforestation.
    [Show full text]
  • Guava (Eucalyptus) Rust Puccinia Psidii
    INDUSTRY BIOSECURITY PLAN FOR THE NURSERY & GARDEN INDUSTRY Threat Specific Contingency Plan Guava (eucalyptus) rust Puccinia psidii Plant Health Australia March 2009 Disclaimer The scientific and technical content of this document is current to the date published and all efforts were made to obtain relevant and published information on the pest. New information will be included as it becomes available, or when the document is reviewed. The material contained in this publication is produced for general information only. It is not intended as professional advice on any particular matter. No person should act or fail to act on the basis of any material contained in this publication without first obtaining specific, independent professional advice. Plant Health Australia and all persons acting for Plant Health Australia in preparing this publication, expressly disclaim all and any liability to any persons in respect of anything done by any such person in reliance, whether in whole or in part, on this publication. The views expressed in this publication are not necessarily those of Plant Health Australia. Further information For further information regarding this contingency plan, contact Plant Health Australia through the details below. Address: Suite 5, FECCA House 4 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 Email: [email protected] Website: www.planthealthaustralia.com.au PHA & NGIA | Contingency Plan – Guava rust (Puccinia psidii) 1 Purpose and background of this contingency plan .............................................................
    [Show full text]
  • Supplementary Material Saving Rainforests in the South Pacific
    Australian Journal of Botany 65, 609–624 © CSIRO 2017 http://dx.doi.org/10.1071/BT17096_AC Supplementary material Saving rainforests in the South Pacific: challenges in ex situ conservation Karen D. SommervilleA,H, Bronwyn ClarkeB, Gunnar KeppelC,D, Craig McGillE, Zoe-Joy NewbyA, Sarah V. WyseF, Shelley A. JamesG and Catherine A. OffordA AThe Australian PlantBank, The Royal Botanic Gardens and Domain Trust, Mount Annan, NSW 2567, Australia. BThe Australian Tree Seed Centre, CSIRO, Canberra, ACT 2601, Australia. CSchool of Natural and Built Environments, University of South Australia, Adelaide, SA 5001, Australia DBiodiversity, Macroecology and Conservation Biogeography Group, Faculty of Forest Sciences, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany. EInstitute of Agriculture and Environment, Massey University, Private Bag 11 222 Palmerston North 4474, New Zealand. FRoyal Botanic Gardens, Kew, Wakehurst Place, RH17 6TN, United Kingdom. GNational Herbarium of New South Wales, The Royal Botanic Gardens and Domain Trust, Sydney, NSW 2000, Australia. HCorresponding author. Email: [email protected] Table S1 (below) comprises a list of seed producing genera occurring in rainforest in Australia and various island groups in the South Pacific, along with any available information on the seed storage behaviour of species in those genera. Note that the list of genera is not exhaustive and the absence of a genus from a particular island group simply means that no reference was found to its occurrence in rainforest habitat in the references used (i.e. the genus may still be present in rainforest or may occur in that locality in other habitats). As the definition of rainforest can vary considerably among localities, for the purpose of this paper we considered rainforests to be terrestrial forest communities, composed largely of evergreen species, with a tree canopy that is closed for either the entire year or during the wet season.
    [Show full text]
  • Ancistrocladaceae
    Soltis et al—American Journal of Botany 98(4):704-730. 2011. – Data Supplement S2 – page 1 Soltis, Douglas E., Stephen A. Smith, Nico Cellinese, Kenneth J. Wurdack, David C. Tank, Samuel F. Brockington, Nancy F. Refulio-Rodriguez, Jay B. Walker, Michael J. Moore, Barbara S. Carlsward, Charles D. Bell, Maribeth Latvis, Sunny Crawley, Chelsea Black, Diaga Diouf, Zhenxiang Xi, Catherine A. Rushworth, Matthew A. Gitzendanner, Kenneth J. Sytsma, Yin-Long Qiu, Khidir W. Hilu, Charles C. Davis, Michael J. Sanderson, Reed S. Beaman, Richard G. Olmstead, Walter S. Judd, Michael J. Donoghue, and Pamela S. Soltis. Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98(4): 704-730. Appendix S2. The maximum likelihood majority-rule consensus from the 17-gene analysis shown as a phylogram with mtDNA included for Polyosma. Names of the orders and families follow APG III (2009); other names follow Cantino et al. (2007). Numbers above branches are bootstrap percentages. 67 Acalypha Spathiostemon 100 Ricinus 97 100 Dalechampia Lasiocroton 100 100 Conceveiba Homalanthus 96 Hura Euphorbia 88 Pimelodendron 100 Trigonostemon Euphorbiaceae Codiaeum (incl. Peraceae) 100 Croton Hevea Manihot 10083 Moultonianthus Suregada 98 81 Tetrorchidium Omphalea 100 Endospermum Neoscortechinia 100 98 Pera Clutia Pogonophora 99 Cespedesia Sauvagesia 99 Luxemburgia Ochna Ochnaceae 100 100 53 Quiina Touroulia Medusagyne Caryocar Caryocaraceae 100 Chrysobalanus 100 Atuna Chrysobalananaceae 100 100 Licania Hirtella 100 Euphronia Euphroniaceae 100 Dichapetalum 100
    [Show full text]