Ancistrocladaceae

Total Page:16

File Type:pdf, Size:1020Kb

Ancistrocladaceae Soltis et al—American Journal of Botany 98(4):704-730. 2011. – Data Supplement S2 – page 1 Soltis, Douglas E., Stephen A. Smith, Nico Cellinese, Kenneth J. Wurdack, David C. Tank, Samuel F. Brockington, Nancy F. Refulio-Rodriguez, Jay B. Walker, Michael J. Moore, Barbara S. Carlsward, Charles D. Bell, Maribeth Latvis, Sunny Crawley, Chelsea Black, Diaga Diouf, Zhenxiang Xi, Catherine A. Rushworth, Matthew A. Gitzendanner, Kenneth J. Sytsma, Yin-Long Qiu, Khidir W. Hilu, Charles C. Davis, Michael J. Sanderson, Reed S. Beaman, Richard G. Olmstead, Walter S. Judd, Michael J. Donoghue, and Pamela S. Soltis. Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98(4): 704-730. Appendix S2. The maximum likelihood majority-rule consensus from the 17-gene analysis shown as a phylogram with mtDNA included for Polyosma. Names of the orders and families follow APG III (2009); other names follow Cantino et al. (2007). Numbers above branches are bootstrap percentages. 67 Acalypha Spathiostemon 100 Ricinus 97 100 Dalechampia Lasiocroton 100 100 Conceveiba Homalanthus 96 Hura Euphorbia 88 Pimelodendron 100 Trigonostemon Euphorbiaceae Codiaeum (incl. Peraceae) 100 Croton Hevea Manihot 10083 Moultonianthus Suregada 98 81 Tetrorchidium Omphalea 100 Endospermum Neoscortechinia 100 98 Pera Clutia Pogonophora 99 Cespedesia Sauvagesia 99 Luxemburgia Ochna Ochnaceae 100 100 53 Quiina Touroulia Medusagyne Caryocar Caryocaraceae 100 Chrysobalanus 100 Atuna Chrysobalananaceae 100 100 Licania Hirtella 100 Euphronia Euphroniaceae 100 Dichapetalum 100 Dichapetalaceae 100 Tapura Trigonia Trigoniaceae Balanops Balanopaceae 98 Hugonia 91 Durandea 100 Linum Linaceae 100 Reinwardtia 100 Panda Galearia Pandaceae 81 Microdesmis Bhesa Centroplacaceae Centroplacus 79 Rhizophora 100 Bruguiera 100 100 Carallia Rhizophoraceae Paradrypetes Erythroxylum Erythroxylaceae Ctenolophon Ctenolophonaceae 100 Drypetes Putranjivaceae 100 Putranjiva Lophopyxis Lophopyxidaceae 66 Austrobuxus 100 Micrantheum 100 Dissiliaria 99 100 Petalostigma Picrodendraceae 100 Tetracoccus Androstachys 99 Podocalyx Malpighiales 96 Croizatia 72 Lachnostylis 100 Phyllanthus Phyllanthaceae Heywoodia 100 100 Aporusa Bischofia 100 Malpighia 100 Dicella 100 Malpighiaceae 100 Thryallis 100 Acridocarpus Byrsonima 100 Elatine Bergia Elatinaceae 100 Prockia 100 100 Abatia Dovyalis 85 100 100Flacourtia 100 Salix Populus Salicaceae 51 100 Idesia 100 Poliothyrsis 100 Scyphostegia 100 Lunania Casearia 100 Lozania Lacistemataceae Lacistema 95 Viola 100 Hymenanthera 97 Violaceae 71 100 Hybanthus Leonia Rinorea Goupia Goupiaceae 97 100 Passiflora 100 Paropsia 100 Turnera Passifloraceae 100 Malesherbia 97 Carpotroche 100 Caloncoba 57 Erythrospermum Hydnocarpus Achariaceae 100 98 Kiggelaria 100 Acharia Pangium 100 Hypericum 87 Triadenum Hypericaceae 100 Vismia 100 Cratoxylum 100 Marathrum Podostemaceae 83 Podostemum 100 96 Mammea Calophyllum Calophyllaceae 100 Mesua 100 Garcinia 70 100 Pentaphalangium Clusiaceae Clusia Bonnetia 61 100Archytaea Bonnetiaceae Fabidae 100 Klainedoxa Irvingia Irvingiaceae Ochthocosmus 81 Vantanea 100 Humiria Humiriaceae Sacoglottis 100 Eucryphia Geissois Cunoniaceae 99 100 Cephalotus Cephalotaceae Elaeocarpus 96 Crinodendron Elaeocarpaceae 100 Sloanea Brunellia Brunelliaceae 100 Dapania Oxalidales 78 98 100 Averrhoa Oxalidaceae 100 100 Oxalis Rourea Connarus Connaraceae 100 Afrostyrax Huaceae Hua 100 Celastrus 82 100 Tripterygium Paxistima 100 100 Euonymus 100 Elaeodendron 66 Brexia 100 Plagiopteron Celastraceae Maytenus 99 100 98 Denhamia Celastrales Stackhousia 100 Siphonodon Parnassia 100 Ruptiliocarpon Lepidobotrys Lepidobotryaceae 85 Juglans Juglandaceae 100 Myrica Myricaceae 64 94 Alnus Betulaceae 100 Casuarina Casuarinceae 100 100 Chrysolepis Fagales 100 Quercus Fagaceae Fagus 74 Nothofagus Nothofagaceae 100 Cucumis 79 Cucurbitaceae 67 Cucurbita Datisca Datiscaceae 55 Cucurbitales 100 Begonia Begoniaceae Coriaria Coriariaceae 93 Anisophyllea Anisophylleaceae 100 Urtica 97 Pilea Urticaceae 100 Morus Moraceae 100 100 Celtis 99 Cannabis Cannabaceae Zelkova 100 100 Ulmaceae Rosales 99 Rhamnus Rhamnaceae 100 Ceanothus Elaeagnus Elaeagnaceae 100 Spiraea Prunus Rosaceae 94 Medicago 100 Pisum 99 100 Cicer Fabaceae Lotus 100 Glycine Fabales 68 Albizia 100 Stylobasium Surianaceae Polygala Polygalaceae Quillaja Quillajaceae 100 Krameria Krameriaceae Zygophyllales Guaiacum Zygophyllaceae 100 Arabidopsis 100 Brassica Brassicaceae 100 Capparis Capparaceae 100 Reseda 100 Resedaceae Brassicales Batis Bataceae 78 100 Floerkea Limnanthaceae 100 Carica Caricaceae Tropaeolum Tropaeolaceae 88 100 100 Sterculia 56 Gossypium Malvaceae Thymelaea Thymelaeaceae Malvales 99 99 100 Helianthemum Cistaceae Anisoptera Dipterocarpaceae 86 Bixa Bixaceae Tapiscia Tapisciaceae 100 Dipentodon Dipentodontaceae Huerteales 82 Citrus Rutaceae 100 Ailanthus Simaroubaceae 70 Swietenia Meliaceae 99 100 96 Cupaniopsis Sapindaceae Sapindales 61 Schinus Anacardiaceae Bursera Burseraceae 98 Nitraria Nitrariaceae Malvidae 99 Picramnia Picramniaceae 85 100 Strasburgeria Strasburgeriaceae 99 Ixerba Ixerbaceae Aphloia Aphloiaceae Crossosomatales 98 Crossosoma Crossosomataceae 100 Stachyurus Stachyuraceae Staphylea Staphyleaceae 100 Eucalyptus 97 100 Myrtus Myrtaceae 100 Qualea Vochysiaceae 100 Olinia Penaeaceae 100 Crypteroniaceae 100 Crypteronia Myrtales 100 Clidemia Melastomataceae 79 Lythrum Lythraceae Oenothera Onagraceae 78 Terminalia Combretaceae 100 Viviania Vivianiaceae Melianthus Melianthaceae Geraniales Geranium Geraniaceae 100 100 Leea Vitis Vitaceae Vitales 100 Myriophyllum 100 Haloragis Haloragaceae 100 Penthorum Penthoraceae 100 Tetracarpaea Tetracarpaeaceae 100 Aphanopetalum Aphanopetalaceae 100 Sedum Crassulaceae 100 99 Kalanchoe 100 Heuchera 100 Saxifraga Saxifragaceae 100 Ribes Grossulariaceae Itea 98 Iteaceae Saxifragales 100 Choristylis 95 Corylopsis 100 Hamamelis Hamamelidaceae 76 Exbucklandia 100 Rhodoleia 87 100 Cercidiphyllum Cercidiphyllaceae Daphniphyllum Daphniphyllaceae 60 100 Liquidambar Altingia Altingiaceae Paeonia Paeoniaceae Peridiscus 100 Peridiscaceae Soyauxia 99 Centranthus 100 100 Valeriana 99 Fedia 100 Valerianella Nardostachys Patrinia 100 Dipsacus 100 100 Pterocephalodes 82 Scabiosa 77 Triplostegia 100 Acanthocalyx 79 Morina 100 Cryptothladia Caprifoliaceae Zabelia 67 Dipelta 90 Dipsacales 100 Kolkwitzia 99 Abelia Linnaea 74 Leycesteria 100 Triosteum 61 100 Symphoricarpos Lonicera 100 Heptacodium Weigela 100 Diervilla 72 Adoxa 100 100 Tetradoxa 100 Sinadoxa Adoxaceae Sambucus 92 Viburnum Quintinia Paracryphiaceae 87 Polyosma Escalloniaceae 100 Paracryphia Paracryphiales Paracryphiaceae Sphenostemon 100 Apium 100100 Anethum 100 Angelica 100 Coriandrum Daucus 100 Apiaceae 100 Heteromorpha 100 Sanicula Arctopus 100 Azorella Mackinlaya 98 Platysace 100 Myodocarpus Delarbrea Myodocarpaceae 80 Schefflera Tetrapanax 99 Hedera Apiales 100 Pseudopanax Tetraplasandra 51 Araliaceae Polyscias 10094 Cussonia 100 98 Aralia Panax 86 Hydrocotyle 100 Pittosporum 100 Sollya Pittosporaceae 100 96 Griselinia Griseliniaceae 100 Melanophylla Torricellia Torricelliaceae Aralidium Pennantia Pennantiaceae 100 Desfontainia Columellia Columelliaceae 100 Berzelia Bruniales Brunia Bruniaceae 76 Guizotia 100 Helianthus Campanulidae 100100 Tagetes 100 Cichorium 97 Lactuca Asteraceae 100 Tragopogon 99 Echinops Gerbera 100 Barnadesia 100 Acicarpha Calyceraceae 100 Moschopsis Boopis 100 100 100 Scaevola 100 Goodenia Goodeniaceae Dampiera 100 100 Villarsia 100 Nymphoides 69 Fauria Menyanthaceae 100 Menyanthes 100 Forstera Stylidium Stylidiaceae Asterales 100 Donatia 100 Alseuosmia 97 Wittsteinia 100 Crispiloba Alseuosmiaceae 100 Platyspermation 100 Corokia Argophyllum Argophyllaceae Phelline Phellinaceae 100 Campanula Trachelium 100 100 100 Cyphia Campanulaceae 65 100 Lobelia 100 Dialypetalum 100 Pseudonemacladus 100 Cuttsia 65 100 Abrophyllum Carpodetus Rousseaceae 100 Roussea Pentaphragma Pentaphragmataceae 100 Valdivia 100 Forgesia 91 Escallonia Tribeles Escalloniaceae Escalloniales Anopterus Eremosyne 99 54 Cardiopteris Gonocaryum Cardiopteridace 100 Citronella 80 Gomphandra 100 100 Irvingbaileya Stemonuraceae Aquifoliales 100 Grisollea 97 Phyllonoma Phyllonomaceae Helwingia Helwingiaceae Ilex Aquifoliaceae 92 Pedicularis Orobanchaceae 100 Phryma Phrymaceae 71 Paulownia Paulowniaceae 80 Lamium Lamiaceae Verbena Verbenaceae 66 Thomandersia Thomandersiaceae Pinguicula Lentibulariaceae Acanthus Acanthaceae 58 Byblis Byblidaceae 100 Catalpa 72 Bignoniaceae Martynia Martyniaceae 100 Sesamum Pedaliaceae Lamiidae Antirrhinum Plantaginaceae Lamiales 100 Scrophularia Scrophulariaceae 95 Halleria Stilbaceae 100 Saintpaulia Gesneriaceae Calceolaria Calceolariaceae 100 Peltanthera unplaced Polypremum 100 Tetrachondraceae 100 Jasminum Syringa Oleaceae 100 Plocosperma Plocospermataceae 86 Ehretia Hydrophyllum Boraginaceae Borago 100 Exacum 95 Gentiana Gentianaceae 73 Nerium Apocynaceae 100 100 Gelsemium Gelsemiaceae Gentianales 100 Strychnos Loganiaceae 98 Coffea Galium Rubiaceae 100 Luculia 100 93 Atropa 100 100 Solanum Solanaceae Nicotiana Cuscuta 99 100 Convolvulaceae 58 100 Ipomoea Solanales Sphenoclea Sphenocleaceae 100 Hydrolea Hydroleaceae Montinia 100 Montiniaceae Vahlia Vahliaceae 74 100 Oncotheca Oncothecaceae Garrya Garryaceae Eucommia Eucommiaceae Garryales Icacina Icacinaceae 100 Arbutus Ericaceae 100 Cyrilla Cyrillaceae 99 67 Clethra Clethaceae Sarracenia Sarraceniaceae Actinidia Actinidiaceae Galax Diapensiaceae 100 Styrax Styracaceae Camellia Theaceae Ternstroemia Pentaphylacaceae 100 Primula 100
Recommended publications
  • Toward a Resolution of Campanulid Phylogeny, with Special Reference to the Placement of Dipsacales
    TAXON 57 (1) • February 2008: 53–65 Winkworth & al. • Campanulid phylogeny MOLECULAR PHYLOGENETICS Toward a resolution of Campanulid phylogeny, with special reference to the placement of Dipsacales Richard C. Winkworth1,2, Johannes Lundberg3 & Michael J. Donoghue4 1 Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 11461–CEP 05422-970, São Paulo, SP, Brazil. [email protected] (author for correspondence) 2 Current address: School of Biology, Chemistry, and Environmental Sciences, University of the South Pacific, Private Bag, Laucala Campus, Suva, Fiji 3 Department of Phanerogamic Botany, The Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden 4 Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, P.O. Box 208106, New Haven, Connecticut 06520-8106, U.S.A. Broad-scale phylogenetic analyses of the angiosperms and of the Asteridae have failed to confidently resolve relationships among the major lineages of the campanulid Asteridae (i.e., the euasterid II of APG II, 2003). To address this problem we assembled presently available sequences for a core set of 50 taxa, representing the diver- sity of the four largest lineages (Apiales, Aquifoliales, Asterales, Dipsacales) as well as the smaller “unplaced” groups (e.g., Bruniaceae, Paracryphiaceae, Columelliaceae). We constructed four data matrices for phylogenetic analysis: a chloroplast coding matrix (atpB, matK, ndhF, rbcL), a chloroplast non-coding matrix (rps16 intron, trnT-F region, trnV-atpE IGS), a combined chloroplast dataset (all seven chloroplast regions), and a combined genome matrix (seven chloroplast regions plus 18S and 26S rDNA). Bayesian analyses of these datasets using mixed substitution models produced often well-resolved and supported trees.
    [Show full text]
  • Griselinia Littoralis Broadway Mint
    Griselinia littoralis Broadway Mint Griselinia littoralis Broadway Mint Botanical Name: Griselinia littoralis Broadway Mint Common Names: Kapuka, New Zealand Broadleaf, Native: No Foliage Type: Evergreen Plant Type: Hedging / Screening, Shrubs Plant Habit: Dense, Shrub Like, Upright, Upright Narrow Description: Lush, emerald green glossy wavy-leaved tall dense growing shrub perfect for a compact, low hedge. Naturally growing to 4m, the Griselinia hedges well 1-4m tall. Tough, wind tolerant and quick growing, this is also a great choice for screens and coastal plantings. Mature Height: 2-4m Position: Full Sun, Semi Shade Mature Width: 1-2m Soil Type: Loam, Sandy, Well Drained Family Name: TBA Landscape Use(s): Borders / Shrubbery, Coastal Garden, Courtyard, Foliage Feature / Colour, Formal Garden, Hedging / Screening, Park And Gardens, Wind Origin: PacificIslands Break, Container / Pot Characteristics: Pest & Diseases: Foliage Colours: Green Generally trouble free Flower Colours: Insignificant Flower Fragrant: No Cultural Notes: Flowering Season: N/A Fruit: Insignificant Plant Care: Requirements: Annual slow release fertiliser, Keep moist during dry periods, Liquid feed Growth Rate: Moderate Maintenance Level: Low Water Usage: Medium / Moderate Tolerances: Drought: Medium / Moderate Frost: Moderate Wind: Moderate Disclaimer: Information and images provided is to be used as a guide only. While every reasonable effort is made to ensure accuracy and relevancy of all information, any decisions based on this information are the sole responsibility of the viewer. Call 1300 787 401 plantmark.com.au.
    [Show full text]
  • Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE
    Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE LILIACEAE de Jussieu 1789 (Lily Family) (also see AGAVACEAE, ALLIACEAE, ALSTROEMERIACEAE, AMARYLLIDACEAE, ASPARAGACEAE, COLCHICACEAE, HEMEROCALLIDACEAE, HOSTACEAE, HYACINTHACEAE, HYPOXIDACEAE, MELANTHIACEAE, NARTHECIACEAE, RUSCACEAE, SMILACACEAE, THEMIDACEAE, TOFIELDIACEAE) As here interpreted narrowly, the Liliaceae constitutes about 11 genera and 550 species, of the Northern Hemisphere. There has been much recent investigation and re-interpretation of evidence regarding the upper-level taxonomy of the Liliales, with strong suggestions that the broad Liliaceae recognized by Cronquist (1981) is artificial and polyphyletic. Cronquist (1993) himself concurs, at least to a degree: "we still await a comprehensive reorganization of the lilies into several families more comparable to other recognized families of angiosperms." Dahlgren & Clifford (1982) and Dahlgren, Clifford, & Yeo (1985) synthesized an early phase in the modern revolution of monocot taxonomy. Since then, additional research, especially molecular (Duvall et al. 1993, Chase et al. 1993, Bogler & Simpson 1995, and many others), has strongly validated the general lines (and many details) of Dahlgren's arrangement. The most recent synthesis (Kubitzki 1998a) is followed as the basis for familial and generic taxonomy of the lilies and their relatives (see summary below). References: Angiosperm Phylogeny Group (1998, 2003); Tamura in Kubitzki (1998a). Our “liliaceous” genera (members of orders placed in the Lilianae) are therefore divided as shown below, largely following Kubitzki (1998a) and some more recent molecular analyses. ALISMATALES TOFIELDIACEAE: Pleea, Tofieldia. LILIALES ALSTROEMERIACEAE: Alstroemeria COLCHICACEAE: Colchicum, Uvularia. LILIACEAE: Clintonia, Erythronium, Lilium, Medeola, Prosartes, Streptopus, Tricyrtis, Tulipa. MELANTHIACEAE: Amianthium, Anticlea, Chamaelirium, Helonias, Melanthium, Schoenocaulon, Stenanthium, Veratrum, Toxicoscordion, Trillium, Xerophyllum, Zigadenus.
    [Show full text]
  • Floral Symmetry Affects Speciation Rates in Angiosperms Risa D
    Received 25 July 2003 Accepted 13 November 2003 Published online 16 February 2004 Floral symmetry affects speciation rates in angiosperms Risa D. Sargent Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada ([email protected]) Despite much recent activity in the field of pollination biology, the extent to which animal pollinators drive the formation of new angiosperm species remains unresolved. One problem has been identifying floral adaptations that promote reproductive isolation. The evolution of a bilaterally symmetrical corolla restricts the direction of approach and movement of pollinators on and between flowers. Restricting pollin- ators to approaching a flower from a single direction facilitates specific placement of pollen on the pollin- ator. When coupled with pollinator constancy, precise pollen placement can increase the probability that pollen grains reach a compatible stigma. This has the potential to generate reproductive isolation between species, because mutations that cause changes in the placement of pollen on the pollinator may decrease gene flow between incipient species. I predict that animal-pollinated lineages that possess bilaterally sym- metrical flowers should have higher speciation rates than lineages possessing radially symmetrical flowers. Using sister-group comparisons I demonstrate that bilaterally symmetric lineages tend to be more species rich than their radially symmetrical sister lineages. This study supports an important role for pollinator- mediated speciation and demonstrates that floral morphology plays a key role in angiosperm speciation. Keywords: reproductive isolation; pollination; sister group comparison; zygomorphy 1. INTRODUCTION The importance of pollinator-mediated selection in angiosperms is well supported by theory (Kiester et al.
    [Show full text]
  • Flowering Plant Families of Northwestern California: a Tabular Comparison
    Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 12-2019 Flowering Plant Families of Northwestern California: A Tabular Comparison James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Flowering Plant Families of Northwestern California: A Tabular Comparison" (2019). Botanical Studies. 95. https://digitalcommons.humboldt.edu/botany_jps/95 This Flora of Northwest California-Regional is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. FLOWERING PLANT FAMILIES OF NORTHWESTERN CALIFORNIA: A TABULAR COMPARISON James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State University December 2019 Scientific Name Habit Leaves Sexuality • Floral Formula Common Name Fruit Type • Comments Aceraceae TSV SC:O U-m [P] • K 4-5 C 4-5 A 4-10 G (2) Maple Paired samaras • leaves often palmately lobed Acoraceae H S:A U-m • P 3+3 A 6 or G (3) Sweet Flag Berry • aquatic; aromatic rhizomes Aizoaceae HS S:AO B • P [3] 5 [8] A 0-4 Gsi (2-5-4) Ice Plant Capsule (berry-like) • fleshy; stamens divided, petaloid Alismataceae
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Extreme Ecological Specialization in a Rainforest Mammal, the Bornean
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.03.233999; this version posted August 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 3 4 Extreme ecological specialization in a rainforest mammal, 5 the Bornean tufted ground squirrel, Rheithrosciurus macrotis 6 7 8 Andrew J. Marshall1*, Erik Meijaard2, and Mark Leighton3 9 10 1Department of Anthropology, Department of Ecology and Evolutionary Biology, Program in the 11 Environment, and School for Environment and Sustainability, 101 West Hall, 1085 S. University 12 Ave, Ann Arbor, Michigan, 48109 USA. 13 2Borneo Futures, Block C, Unit C8, Second Floor, Lot 51461, Kg Kota Batu, Mukim Kota Batu, 14 BA 2711, Brunei Darussalam. 15 3Harvard University, 11 Divinity Ave, Cambridge, MA, 02138, U.S.A. 16 17 * Corresponding author 18 E-mail: [email protected] (AJM) 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.03.233999; this version posted August 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 19 Abstract 20 The endemic Bornean tufted ground squirrel, Rheithrosciurus macrotis, has attracted great 21 interest among biologists and the public recently. Nevertheless, we lack information on the most 22 basic aspects of its biology.
    [Show full text]
  • Ultramafic Geocology of South and Southeast Asia
    Galey et al. Bot Stud (2017) 58:18 DOI 10.1186/s40529-017-0167-9 REVIEW Open Access Ultramafc geoecology of South and Southeast Asia M. L. Galey1, A. van der Ent2,3, M. C. M. Iqbal4 and N. Rajakaruna5,6* Abstract Globally, ultramafc outcrops are renowned for hosting foras with high levels of endemism, including plants with specialised adaptations such as nickel or manganese hyperaccumulation. Soils derived from ultramafc regoliths are generally nutrient-defcient, have major cation imbalances, and have concomitant high concentrations of potentially phytotoxic trace elements, especially nickel. The South and Southeast Asian region has the largest surface occur- rences of ultramafc regoliths in the world, but the geoecology of these outcrops is still poorly studied despite severe conservation threats. Due to the paucity of systematic plant collections in many areas and the lack of georeferenced herbarium records and databased information, it is not possible to determine the distribution of species, levels of end- emism, and the species most threatened. However, site-specifc studies provide insights to the ultramafc geoecology of several locations in South and Southeast Asia. The geoecology of tropical ultramafc regions difers substantially from those in temperate regions in that the vegetation at lower elevations is generally tall forest with relatively low levels of endemism. On ultramafc mountaintops, where the combined forces of edaphic and climatic factors inter- sect, obligate ultramafc species and hyperendemics often occur. Forest clearing, agricultural development, mining, and climate change-related stressors have contributed to rapid and unprecedented loss of ultramafc-associated habitats in the region. The geoecology of the large ultramafc outcrops of Indonesia’s Sulawesi, Obi and Halmahera, and many other smaller outcrops in South and Southeast Asia, remains largely unexplored, and should be prioritised for study and conservation.
    [Show full text]
  • Plant Life of Western Australia
    INTRODUCTION The characteristic features of the vegetation of Australia I. General Physiography At present the animals and plants of Australia are isolated from the rest of the world, except by way of the Torres Straits to New Guinea and southeast Asia. Even here adverse climatic conditions restrict or make it impossible for migration. Over a long period this isolation has meant that even what was common to the floras of the southern Asiatic Archipelago and Australia has become restricted to small areas. This resulted in an ever increasing divergence. As a consequence, Australia is a true island continent, with its own peculiar flora and fauna. As in southern Africa, Australia is largely an extensive plateau, although at a lower elevation. As in Africa too, the plateau increases gradually in height towards the east, culminating in a high ridge from which the land then drops steeply to a narrow coastal plain crossed by short rivers. On the west coast the plateau is only 00-00 m in height but there is usually an abrupt descent to the narrow coastal region. The plateau drops towards the center, and the major rivers flow into this depression. Fed from the high eastern margin of the plateau, these rivers run through low rainfall areas to the sea. While the tropical northern region is characterized by a wet summer and dry win- ter, the actual amount of rain is determined by additional factors. On the mountainous east coast the rainfall is high, while it diminishes with surprising rapidity towards the interior. Thus in New South Wales, the yearly rainfall at the edge of the plateau and the adjacent coast often reaches over 100 cm.
    [Show full text]
  • P020110307527551165137.Pdf
    CONTENT 1.MESSAGE FROM DIRECTOR …………………………………………………………………………………………………………………………………………………… 03 2.ORGANIZATION STRUCTURE …………………………………………………………………………………………………………………………………………………… 05 3.HIGHLIGHTS OF ACHIEVEMENTS …………………………………………………………………………………………………………………………………………… 06 Coexistence of Conserve and Research----“The Germplasm Bank of Wild Species ” services biodiversity protection and socio-economic development ………………………………………………………………………………………………………………………………………………… 06 The Structure, Activity and New Drug Pre-Clinical Research of Monoterpene Indole Alkaloids ………………………………………… 09 Anti-Cancer Constituents in the Herb Medicine-Shengma (Cimicifuga L) ……………………………………………………………………………… 10 Floristic Study on the Seed Plants of Yaoshan Mountain in Northeast Yunnan …………………………………………………………………… 11 Higher Fungi Resources and Chemical Composition in Alpine and Sub-alpine Regions in Southwest China ……………………… 12 Research Progress on Natural Tobacco Mosaic Virus (TMV) Inhibitors…………………………………………………………………………………… 13 Predicting Global Change through Reconstruction Research of Paleoclimate………………………………………………………………………… 14 Chemical Composition of a traditional Chinese medicine-Swertia mileensis……………………………………………………………………………… 15 Mountain Ecosystem Research has Made New Progress ………………………………………………………………………………………………………… 16 Plant Cyclic Peptide has Made Important Progress ………………………………………………………………………………………………………………… 17 Progresses in Computational Chemistry Research ………………………………………………………………………………………………………………… 18 New Progress in the Total Synthesis of Natural Products ………………………………………………………………………………………………………
    [Show full text]
  • Rare Plants of Louisiana
    Rare Plants of Louisiana Agalinis filicaulis - purple false-foxglove Figwort Family (Scrophulariaceae) Rarity Rank: S2/G3G4 Range: AL, FL, LA, MS Recognition: Photo by John Hays • Short annual, 10 to 50 cm tall, with stems finely wiry, spindly • Stems simple to few-branched • Leaves opposite, scale-like, about 1mm long, barely perceptible to the unaided eye • Flowers few in number, mostly born singly or in pairs from the highest node of a branchlet • Pedicels filiform, 5 to 10 mm long, subtending bracts minute • Calyx 2 mm long, lobes short-deltoid, with broad shallow sinuses between lobes • Corolla lavender-pink, without lines or spots within, 10 to 13 mm long, exterior glabrous • Capsule globe-like, nearly half exerted from calyx Flowering Time: September to November Light Requirement: Full sun to partial shade Wetland Indicator Status: FAC – similar likelihood of occurring in both wetlands and non-wetlands Habitat: Wet longleaf pine flatwoods savannahs and hillside seepage bogs. Threats: • Conversion of habitat to pine plantations (bedding, dense tree spacing, etc.) • Residential and commercial development • Fire exclusion, allowing invasion of habitat by woody species • Hydrologic alteration directly (e.g. ditching) and indirectly (fire suppression allowing higher tree density and more large-diameter trees) Beneficial Management Practices: • Thinning (during very dry periods), targeting off-site species such as loblolly and slash pines for removal • Prescribed burning, establishing a regime consisting of mostly growing season (May-June) burns Rare Plants of Louisiana LA River Basins: Pearl, Pontchartrain, Mermentau, Calcasieu, Sabine Side view of flower. Photo by John Hays References: Godfrey, R. K. and J. W. Wooten.
    [Show full text]
  • Phylogeographical Structure of Liquidambar Formosana Hance Revealed by Chloroplast Phylogeography and Species Distribution Models
    Article Phylogeographical Structure of Liquidambar formosana Hance Revealed by Chloroplast Phylogeography and Species Distribution Models 1,2, 1, 1 2 1 1, Rongxi Sun y , Furong Lin y, Ping Huang , Xuemin Ye , Jiuxin Lai and Yongqi Zheng * 1 State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; [email protected] (R.S.); [email protected] (F.L.); [email protected] (P.H.); [email protected] (J.L.) 2 Jiangxi Provincial Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-6288-8565 These authors contributed equally to this work. y Received: 2 September 2019; Accepted: 29 September 2019; Published: 1 October 2019 Abstract: To understand the origin and evolutionary history, and the geographical and historical causes for the formation of the current distribution pattern of Lquidambar formosana Hance, we investigated the phylogeography by using chloroplasts DNA (cpDNA) non-coding sequences and species distribution models (SDM). Four cpDNA intergenic spacer regions were amplified and sequenced for 251 individuals from 25 populations covering most of its geographical range in China. A total of 20 haplotypes were recovered. The species had a high level of chloroplast genetic variation (Ht = 0.909 0.0192) and a significant phylogeographical structure (genetic differentiation takes into ± account distances among haplotypes (Nst) = 0.730 > population differentiation that does not consider distances among haplotypes (Gst) = 0.645; p < 0.05), whereas the genetic variation within populations (Hs = 0.323 0.0553) was low.
    [Show full text]