UNIVERSITY of CALIFORNIA, SAN DIEGO Vanadium-Dependent

Total Page:16

File Type:pdf, Size:1020Kb

UNIVERSITY of CALIFORNIA, SAN DIEGO Vanadium-Dependent UNIVERSITY OF CALIFORNIA, SAN DIEGO Vanadium-dependent bromoperoxidase in a marine Synechococcus A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Marine Biology by Todd L. Johnson Committee in charge: Brian Palenik, Chair Bianca Brahamsha, Co-Chair Lihini Aluwihare James Golden Jens Mühle Bradley Moore 2013 Copyright Todd L. Johnson, 2013 All rights reserved. The dissertation of Todd L. Johnson is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ________________________________________________________ ________________________________________________________ ________________________________________________________ ________________________________________________________ ________________________________________________________ Co-Chair ________________________________________________________ Chair University of California, San Diego 2013 iii DEDICATION To Janet, Tim, and Andrew Johnson, for unconditional love and support. iv TABLE OF CONTENTS Signature Page……………………………………………………………………………iii Dedication ………………………………………………………………………………..iv Table of Contents………………………………………………………………………….v List of Abbreviations………………………………………………………………......…vi List of Figures………………………………………………………………………...…viii List of Tables…………………………………………………………..…………………xi Acknowledgements………………………………………….…………………….……xiii Vita……………………………………………………….………………………...……xiv Abstract…………………....……………………………………………………...…...…xv Chapter 1: Introduction………..………………………………………………….….……1 Chapter 2: Characterization of a functional vanadium-dependent bromoperoxidase in the marine cyanobacterium Synechococcus sp. CC9311 ..…………………………..………10 Chapter 3: Expression patterns of vanadium-dependent bromoperoxidase in Synechococcus sp. CC9311 as a response to physical agitation and a bacterial assemblage …………..………………………………………………………………………………..27 Chapter 4: Halomethane production by vanadium-dependent bromoperoxidase in marine Synechococcus………………………………………………………………………….107 Chapter 5: Conclusions………………..………………….………………….…………149 Appendix 1……………………………………………………………………………...154 v LIST OF ABBREVIATIONS VBPO – vanadium-dependent bromoperoxidase bp – base pair kDa – kilodalton °C – degrees Celsius DNA – deoxyribonucleic acid PCR – polymerase chain reaction MES - 2-(N-morpholino)ethanesulfonic acid Na3VO4 – sodium orthovanadate H2O2 – hydrogen peroxide hr - hour min – minute μmol - micromole μM - micromolar nM – nanomolar ppt – parts per trillion SDS-PAGE – sodium dodecyl sulfate - polyacrylamide gel electrophoresis Br- – bromide I- - iodide Cl- - chloride ppt – parts per trillion mTorr – millitorr VHOC – volatile halogenated organic compounds vi CH3Br – methyl bromide CH3I – methyl iodide CH3Cl – methyl chloride CH2Br2 - dibromomethane CH2Cl2 - dichloromethane CHBr3 - bromoform CHCl3 - chloroform vii LIST OF FIGURES Figure 1: SDS-PAGE gels of total proteins from Synechococcus strains WH8102, CC9311, and VBPO from Corallina officinialis (Co VBPO, Sigma) stained with Sypro Ruby (left) and with phenol red (right) for bromoperoxidase activity. The migrations of molecular mass standards are indicated on the left in kDa………………...…………….13 Figure 2: Amino acid alignment of VBPO from Synechococcus sp. strain CC9311 and strain WH8020. Active site is shown by the solid bar while vanadium-coordinating residues are shown in bold, as determined by homology to Ascophyllum nodosom. Arrows indicate residues used for the design of environmental probes ………………...14 Figure 3: Neighbor-joining tree of known bromoperoxidase sequences and related genes. Amino acid sequences obtained from NCBI using Synechococcus sp. strain CC9311 (YP_731869.1) in a BLASTp. Asterisk (*) indicates only node with less than 50% bootstrap support. Accession numbers are shown in Supplementary Table 1……..….…14 Figure 4: Neighbor-Joining tree of environmental VBPO sequences. Nucleotide sequences were trimmed to a conserved region of approximately 180-bp (alignment shown in Supplementary Figure 2). “Pier#” samples were obtained from a degenerate primer (PierF and PierR) clone library from the Scripps Pier in La Jolla, CA………..…15 Fig. S1: Alignment of the well-conserved region between cyanobacterial and eukaryotic algal vanadium-dependent bromoperoxidases (VBPOs) used to construct the phylogenetic tree shown in Figure 3. Sequences were obtained from the National Center for Biotechnology Information’s nr protein database……………………………………20 Fig. S2: Nucleotide alignment of the Scripps Pier clone library to metagenomic sequences (see “Materials and Methods”). This alignment was used for the neighbor- joining analysis and phylogenetic tree construction shown in Figure 4…………………23 Figure 3.1: A diagram of the insertional gene inactivation of VBPO (sync_2681) in Synechococcus CC9311 (shown in A) to form the VMUT genotype (shown in B). Steps: 1. PCR amplification of gene fragment, 2. Clone into TOPO vector to form pTOP2681, 3. Excise new fragment with EcoRI and cloned into pMUT100 form pVBR1, 4………....84 Figure 3.2: Mutant genotyping, a 1% agarose gel showing PCR products from boiling DNA extraction of stock cultures using A) RPOC1 primers (303 bp) and B) verifications primers (750 bp). Lanes left to right: 1 Kb Plus Ladder (bp); CC9311; VMUT; VMUT2; no DNA control…………………………………………………………………………..85 Figure 3.3: Mutant growth curves showing the cell counts (lines) comparing the growth of CC9311 and the original mutant, VMUT, under stirred and still conditions over the first three growth curves (A-C) as well as CC9311 and VMUT2 (D-F). VBPO specific activities (bars) are also shown comparing CC9311 to VMUT2 (D-F) over three……...86 viii Figure 3.4: VBPO specific activity of proteins harvested from cultures of A) CC9311 and B) VMUT2 at different phases of growth. VBPO activities of biological triplicates are shown from cultures grown under still conditions (white bars), cultures grown under still conditions and subjected to a short term (4 hr) period of stirring (grey bars), and ……..87 Figure 3.5: Genotype of VMUT after disappearance of stir-sensitive phenotype. PCR products from boiling DNA extraction shown on 1% agarose gels. Panel A: verifications primers (750 bp) lanes left to right: 1) 1 Kb Plus Ladder (bp); 2) CC9311; 3) VMUT stir; 4) VMUT still; 5) no DNA control. Panel B: RPOC1 primers (303 bp) ………………..88 Figure 3.6: Duplicate SDS-PAGE of proteins extracted from CC9311 and VMUT2 in stationary phase; grown still, still with only four hours of stirring, or constant stirring. Each lane was loaded with 55 μg protein and stained with A) sypro ruby or B) phenol-red in the presence of Na3VO4, KBr, and H2O2 for VBPO activity. Lanes left to right….....89 Figure 3.7: Induction and persistence of VBPO with stirring. A) Cell counts from cultures of CC9311 used to test the induction of VBPO with stirring over time. Vertical solid line shows when stirring was either initiated or halted in cultures. Growth rates of the cultures after the vertical line are 0.56 d-1 for the culture that was stirred from inoculation……..90 Figure 3.8: VBPO and cell resistance to hydrogen peroxide. Phycoerythrin autofluorescence of CC9311 and VMUT cultures after the addition of hydrogen peroxide. Solid lines represent cultures that have been preconditioned with stirring while dotted lines represent cultures that have been grown still from inoculation. Top left: Trial 1….91 Figure 3.9: VBPO specific activities of CC9311 cultures exposed to A) 25 μM hydrogen peroxide and b) 0.1 μM methyl viologen (MV)………………………………………....92 Figure 3.10: Cell counts of Acaryochloris marina cultures tested for VBPO activity (trial 2). ……………………………………………………………………………..…………93 Figure 3.11: Native PAGE Gel of Synechococcus sp. CC9311 and Acaryochloris marina proteins, 21 μg protein per lane, from still and stirred cultures. Gel in panel A was stained with Sypro Ruby for total proteins, Gel in panel B was stained with phenol red for VBPO activity. Lanes left to right A) 1. Benchmark Protein ladder; 2. CC9311, still……......…94 Figure 3.12: SDS-PAGE of Synechococcus CC9311 and Acaryochloris marina proteins, 26.5 μg protein per lane. Gel in panel A was stained with Sypro Ruby for total proteins, Gel in panel B was stained with phenol red for VBPO activity. Lanes left to right A) 1. Benchmark Protein ladder; 2. CC9311, still; 3. CC9311, stirred; 4. A. marina. …..……95 ix Figure 3.13: Neighbor-joining tree showing the 16S gene library constructed of the bacterial assemblage that induces VBPO in Synechococcus CC9311, the 19 isolates, as well known sequences. TJ# refers to a clone from the 16S rRNA gene library and PTB# refers to a strain isolated from the Pteridomonas enrichment. ………………….……....96 Figure 3.14: Alignment of the 421 bp fragment of the 16s rRNA genes from the PTB enrichment clone library (TJ#), 19 isolated strains (PTB#) and known sequences……...97 Figure 4.1: Experimental design used to measure halomethane production in Synechococcus cultures……………………………………………………………….. 140 Figure 4.2: Cell concentrations of cultures (1.5 L) used in the purge-and-trap experiment (solid lines days 2-7). Vertical solid line at day seven indicates when CC9311 (Black) and VMUT2 (light grey) cultures were split and sealed in a serum bottle for 24 hrs with (dotted) and without (dotted) stirring. Vertical dotted line at day 8 indicates when...…141 Figure 4.3: Reaction mechanism for the biosynthesis of polyhalomethanes mediated by bromoperoxidase activity as proposed by Beissner et al. (1981)...……………….……142 Figure 4.4: Reaction scheme for vanadium-dependent
Recommended publications
  • UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Vanadium-dependent bromoperoxidase in a marine Synechococcus / Permalink https://escholarship.org/uc/item/34x4t8rp Author Johnson, Todd Laurel Publication Date 2013 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Vanadium-dependent bromoperoxidase in a marine Synechococcus A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Marine Biology by Todd L. Johnson Committee in charge: Brian Palenik, Chair Bianca Brahamsha, Co-Chair Lihini Aluwihare James Golden Jens Mühle Bradley Moore 2013 Copyright Todd L. Johnson, 2013 All rights reserved. The dissertation of Todd L. Johnson is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ________________________________________________________ ________________________________________________________ ________________________________________________________ ________________________________________________________ ________________________________________________________ Co-Chair ________________________________________________________ Chair University of California, San Diego 2013 iii DEDICATION To Janet, Tim, and Andrew Johnson, for unconditional love and support. iv TABLE OF CONTENTS Signature Page……………………………………………………………………………iii Dedication ………………………………………………………………………………..iv Table of Contents………………………………………………………………………….v List
    [Show full text]
  • Electronic Supplementary Material (ESI) for Analyst. This Journal Is © the Royal Society of Chemistry 2017
    Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2017 Supplemental Table 2. Proteins Increased in Either Blood or Horizon media Table 2A. Proteins Increased in Spores Produced on Horizon Soil Over Spores Produced on Blood Medium quasi.fdr Protein Protein Class/Name KEGG Pathway Names or Function (if ID Pathways found in KEGG) Amino Acid Metabolism bat00250, bat00280, Alanine, aspartate and glutamate metabolism, bat00410, Valine, leucine and isoleucine degradation, bat00640, beta-Alanine metabolism to acetyl CoA, 4.50E-07 BAS0310 4-aminobutyrate aminotransferase bat00650 Propanoate metabolism, Butanoate metabolism bat00270, bat00330, Cysteine and methionine metabolism, Arginine bat00410, and proline metabolism, beta-Alanine 3.84E-10 BAS5060 spermidine synthase bat00480 metabolism, Glutathione metabolism bat00270, bat00330, Cysteine and methionine metabolism, Arginine bat00410, and proline metabolism, beta-Alanine 2.30E-09 BAS5219 spermidine synthase bat00480 metabolism, Glutathione metabolism bat00250, Alanine, aspartate and glutamate metabolism, 6.94E-07 BAS0561 alanine dehydrogenase bat00430 Taurine and hypotaurine metabolism bat00250, Alanine, aspartate and glutamate metabolism, 5.23E-07 BAS4521 alanine dehydrogenase bat00430 Taurine and hypotaurine metabolism 0.005627 BAS5218 agmatinase, putative bat00330 Arginine and proline metabolism 2,3,4,5-tetrahydropyridine-2- carboxylate N-succinyltransferase, 1.40E-10 BAS3891 putative bat00300 Lysine biosynthesis bat00010, bat00020, Glycolysis
    [Show full text]
  • Generated by SRI International Pathway Tools Version 25.0, Authors S
    An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_000238675-HmpCyc: Bacillus smithii 7_3_47FAA Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • Supplementary Table S1. Table 1. List of Bacterial Strains Used in This Study Suppl
    Supplementary Material Supplementary Tables: Supplementary Table S1. Table 1. List of bacterial strains used in this study Supplementary Table S2. List of plasmids used in this study Supplementary Table 3. List of primers used for mutagenesis of P. intermedia Supplementary Table 4. List of primers used for qRT-PCR analysis in P. intermedia Supplementary Table 5. List of the most highly upregulated genes in P. intermedia OxyR mutant Supplementary Table 6. List of the most highly downregulated genes in P. intermedia OxyR mutant Supplementary Table 7. List of the most highly upregulated genes in P. intermedia grown in iron-deplete conditions Supplementary Table 8. List of the most highly downregulated genes in P. intermedia grown in iron-deplete conditions Supplementary Figures: Supplementary Figure 1. Comparison of the genomic loci encoding OxyR in Prevotella species. Supplementary Figure 2. Distribution of SOD and glutathione peroxidase genes within the genus Prevotella. Supplementary Table S1. Bacterial strains Strain Description Source or reference P. intermedia V3147 Wild type OMA14 isolated from the (1) periodontal pocket of a Japanese patient with periodontitis V3203 OMA14 PIOMA14_I_0073(oxyR)::ermF This study E. coli XL-1 Blue Host strain for cloning Stratagene S17-1 RP-4-2-Tc::Mu aph::Tn7 recA, Smr (2) 1 Supplementary Table S2. Plasmids Plasmid Relevant property Source or reference pUC118 Takara pBSSK pNDR-Dual Clonetech pTCB Apr Tcr, E. coli-Bacteroides shuttle vector (3) plasmid pKD954 Contains the Porpyromonas gulae catalase (4)
    [Show full text]
  • Yeast Genome Gazetteer P35-65
    gazetteer Metabolism 35 tRNA modification mitochondrial transport amino-acid metabolism other tRNA-transcription activities vesicular transport (Golgi network, etc.) nitrogen and sulphur metabolism mRNA synthesis peroxisomal transport nucleotide metabolism mRNA processing (splicing) vacuolar transport phosphate metabolism mRNA processing (5’-end, 3’-end processing extracellular transport carbohydrate metabolism and mRNA degradation) cellular import lipid, fatty-acid and sterol metabolism other mRNA-transcription activities other intracellular-transport activities biosynthesis of vitamins, cofactors and RNA transport prosthetic groups other transcription activities Cellular organization and biogenesis 54 ionic homeostasis organization and biogenesis of cell wall and Protein synthesis 48 plasma membrane Energy 40 ribosomal proteins organization and biogenesis of glycolysis translation (initiation,elongation and cytoskeleton gluconeogenesis termination) organization and biogenesis of endoplasmic pentose-phosphate pathway translational control reticulum and Golgi tricarboxylic-acid pathway tRNA synthetases organization and biogenesis of chromosome respiration other protein-synthesis activities structure fermentation mitochondrial organization and biogenesis metabolism of energy reserves (glycogen Protein destination 49 peroxisomal organization and biogenesis and trehalose) protein folding and stabilization endosomal organization and biogenesis other energy-generation activities protein targeting, sorting and translocation vacuolar and lysosomal
    [Show full text]
  • ASPA Gene Aspartoacylase
    ASPA gene aspartoacylase Normal Function The ASPA gene provides instructions for making an enzyme called aspartoacylase. In the brain, this enzyme breaks down a compound called N-acetyl-L-aspartic acid (NAA) into aspartic acid (an amino acid that is a building block of many proteins) and another molecule called acetic acid. The production and breakdown of NAA appears to be critical for maintaining the brain's white matter, which consists of nerve fibers surrounded by a myelin sheath. The myelin sheath is the covering that protects nerve fibers and promotes the efficient transmission of nerve impulses. The precise function of NAA is unclear. Researchers had suspected that it played a role in the production of the myelin sheath, but recent studies suggest that NAA does not have this function. The enzyme may instead be involved in the transport of water molecules out of nerve cells (neurons). Health Conditions Related to Genetic Changes Canavan disease More than 80 mutations in the ASPA gene are known to cause Canavan disease, which is a rare inherited disorder that affects brain development. Researchers have described two major forms of this condition: neonatal/infantile Canavan disease, which is the most common and most severe form, and mild/juvenile Canavan disease. The ASPA gene mutations that cause the neonatal/infantile form severely impair the activity of aspartoacylase, preventing the breakdown of NAA and allowing this substance to build up to high levels in the brain. The mutations that cause the mild/juvenile form have milder effects on the enzyme's activity, leading to less accumulation of NAA.
    [Show full text]
  • On the Regiospecificity of Vanadium Bromoperoxidase
    J. Am. Chem. Soc. 2001, 123, 3289-3294 3289 On the Regiospecificity of Vanadium Bromoperoxidase Jennifer S. Martinez, Georgia L. Carroll, Richard A. Tschirret-Guth, Gereon Altenhoff, R. Daniel Little, and Alison Butler* Contribution from the Department of Chemistry and Biochemistry, UniVersity of California, Santa Barbara, California 93106-9510 ReceiVed December 5, 2000 Abstract: Vanadium haloperoxidase enzymes catalyze the oxidation of halide ions by hydrogen peroxide, producing an oxidized intermediate, which can halogenate an organic substrate or react with a second equivalent of hydrogen peroxide to produce dioxygen. Haloperoxidases are thought to be involved in the biogenesis of halogenated natural products isolated from marine organisms, including indoles and terpenes, of which many are selectively oxidized or halogenated. Little has been shown concerning the ability of the marine haloperoxidases to catalyze regioselective reactions. Here we report the regiospecific bromoperoxidative oxidation of 1,3-di-tert-butylindole by V-BrPO from the marine algae Ascophyllum nodosum and Corallina officinalis. Both enzymes catalyze the regiospecific oxidation of 1,3-di-tert-butylindole in a reaction requiring - both H2O2 and Br as substrates, but which produce the unbrominated 1,3-di-tert-butyl-2-indolinone product exclusively, in near quantitative yield (i.e. one H2O2 consumed per product). By contrast, reactions with the - controlled addition of aqueous bromine solution (HOBr ) Br2 ) Br3 ) produce three monobromo and one dibromo-2-indolinone products, all of which differ from the V-BrPO-catalyzed product. Further, reactivities of 1,3-di-tert-butyl-2-indolinone with both aqueous bromine and V-BrPO differ significantly and shed light onto the possible nature of the oxidizing intermediate.
    [Show full text]
  • Supplemental Methods
    Supplemental Methods: Sample Collection Duplicate surface samples were collected from the Amazon River plume aboard the R/V Knorr in June 2010 (4 52.71’N, 51 21.59’W) during a period of high river discharge. The collection site (Station 10, 4° 52.71’N, 51° 21.59’W; S = 21.0; T = 29.6°C), located ~ 500 Km to the north of the Amazon River mouth, was characterized by the presence of coastal diatoms in the top 8 m of the water column. Sampling was conducted between 0700 and 0900 local time by gently impeller pumping (modified Rule 1800 submersible sump pump) surface water through 10 m of tygon tubing (3 cm) to the ship's deck where it then flowed through a 156 µm mesh into 20 L carboys. In the lab, cells were partitioned into two size fractions by sequential filtration (using a Masterflex peristaltic pump) of the pre-filtered seawater through a 2.0 µm pore-size, 142 mm diameter polycarbonate (PCTE) membrane filter (Sterlitech Corporation, Kent, CWA) and a 0.22 µm pore-size, 142 mm diameter Supor membrane filter (Pall, Port Washington, NY). Metagenomic and non-selective metatranscriptomic analyses were conducted on both pore-size filters; poly(A)-selected (eukaryote-dominated) metatranscriptomic analyses were conducted only on the larger pore-size filter (2.0 µm pore-size). All filters were immediately submerged in RNAlater (Applied Biosystems, Austin, TX) in sterile 50 mL conical tubes, incubated at room temperature overnight and then stored at -80oC until extraction. Filtration and stabilization of each sample was completed within 30 min of water collection.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Lineage-Specific Programming Target Genes Defines Potential for Th1 Temporal Induction Pattern of STAT4
    Downloaded from http://www.jimmunol.org/ by guest on October 1, 2021 is online at: average * The Journal of Immunology published online 26 August 2009 from submission to initial decision 4 weeks from acceptance to publication J Immunol http://www.jimmunol.org/content/early/2009/08/26/jimmuno l.0901411 Temporal Induction Pattern of STAT4 Target Genes Defines Potential for Th1 Lineage-Specific Programming Seth R. Good, Vivian T. Thieu, Anubhav N. Mathur, Qing Yu, Gretta L. Stritesky, Norman Yeh, John T. O'Malley, Narayanan B. Perumal and Mark H. Kaplan Submit online. Every submission reviewed by practicing scientists ? is published twice each month by http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://www.jimmunol.org/content/suppl/2009/08/26/jimmunol.090141 1.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* • Why • • Material Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of October 1, 2021. Published August 26, 2009, doi:10.4049/jimmunol.0901411 The Journal of Immunology Temporal Induction Pattern of STAT4 Target Genes Defines Potential for Th1 Lineage-Specific Programming1 Seth R. Good,2* Vivian T. Thieu,2† Anubhav N. Mathur,† Qing Yu,† Gretta L.
    [Show full text]
  • Letters to Nature
    letters to nature Received 7 July; accepted 21 September 1998. 26. Tronrud, D. E. Conjugate-direction minimization: an improved method for the re®nement of macromolecules. Acta Crystallogr. A 48, 912±916 (1992). 1. Dalbey, R. E., Lively, M. O., Bron, S. & van Dijl, J. M. The chemistry and enzymology of the type 1 27. Wolfe, P. B., Wickner, W. & Goodman, J. M. Sequence of the leader peptidase gene of Escherichia coli signal peptidases. Protein Sci. 6, 1129±1138 (1997). and the orientation of leader peptidase in the bacterial envelope. J. Biol. Chem. 258, 12073±12080 2. Kuo, D. W. et al. Escherichia coli leader peptidase: production of an active form lacking a requirement (1983). for detergent and development of peptide substrates. Arch. Biochem. Biophys. 303, 274±280 (1993). 28. Kraulis, P.G. Molscript: a program to produce both detailed and schematic plots of protein structures. 3. Tschantz, W. R. et al. Characterization of a soluble, catalytically active form of Escherichia coli leader J. Appl. Crystallogr. 24, 946±950 (1991). peptidase: requirement of detergent or phospholipid for optimal activity. Biochemistry 34, 3935±3941 29. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and (1995). the thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281±296 (1991). 4. Allsop, A. E. et al.inAnti-Infectives, Recent Advances in Chemistry and Structure-Activity Relationships 30. Meritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505± (eds Bently, P. H. & O'Hanlon, P. J.) 61±72 (R. Soc. Chem., Cambridge, 1997).
    [Show full text]
  • Unintentional Genomic Changes Endow Cupriavidus Metallidurans with an Augmented Heavy-Metal Resistance
    G C A T T A C G G C A T genes Article Unintentional Genomic Changes Endow Cupriavidus metallidurans with an Augmented Heavy-Metal Resistance Felipe A. Millacura 1, Paul J. Janssen 2, Pieter Monsieurs 2, Ann Janssen 2, Ann Provoost 2, Rob Van Houdt 2 and Luis A. Rojas 3,* 1 School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JQ, UK; [email protected] 2 Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK•CEN, 2400 Mol, Belgium; [email protected] (P.J.J.); [email protected] (P.M.); [email protected] (A.J); [email protected] (A.P.); [email protected] (R.V.H.) 3 Chemistry Department, Faculty of Sciences, Universidad Católica del Norte, UCN, Antofagasta 1240000, Chile * Correspondence: [email protected]; Tel.: +56-55-235-5629 Received: 6 October 2018; Accepted: 8 November 2018; Published: 13 November 2018 Abstract: For the past three decades, Cupriavidus metallidurans has been one of the major model organisms for bacterial tolerance to heavy metals. Its type strain CH34 contains at least 24 gene clusters distributed over four replicons, allowing for intricate and multilayered metal responses. To gain organic mercury resistance in CH34, broad-spectrum mer genes were introduced in a previous work via conjugation of the IncP-1β plasmid pTP6. However, we recently noted that this CH34-derived strain, MSR33, unexpectedly showed an increased resistance to other metals (i.e., Co2+, Ni2+, and Cd2+). To thoroughly investigate this phenomenon, we resequenced the entire genome of MSR33 and compared its DNA sequence and basal gene expression profile to those of its parental strain CH34.
    [Show full text]