ASPA Gene Aspartoacylase
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Global Histone Modification Fingerprinting in Human Cells Using
OPEN Citation: Cell Death Discovery (2017) 3, 16077; doi:10.1038/cddiscovery.2016.77 Official journal of the Cell Death Differentiation Association www.nature.com/cddiscovery ARTICLE Global histone modification fingerprinting in human cells using epigenetic reverse phase protein array Marina Partolina1,HazelCThoms1, Kenneth G MacLeod2, Giovanny Rodriguez-Blanco1,MatthewNClarke1, Anuroop V Venkatasubramani1,3, Rima Beesoo4, Vladimir Larionov5, Vidushi S Neergheen-Bhujun4, Bryan Serrels2, Hiroshi Kimura6, Neil O Carragher2 and Alexander Kagansky1,7 The balance between acetylation and deacetylation of histone proteins plays a critical role in the regulation of genomic functions. Aberrations in global levels of histone modifications are linked to carcinogenesis and are currently the focus of intense scrutiny and translational research investments to develop new therapies, which can modify complex disease pathophysiology through epigenetic control. However, despite significant progress in our understanding of the molecular mechanisms of epigenetic machinery in various genomic contexts and cell types, the links between epigenetic modifications and cellular phenotypes are far from being clear. For example, enzymes controlling histone modifications utilize key cellular metabolites associated with intra- and extracellular feedback loops, adding a further layer of complexity to this process. Meanwhile, it has become increasingly evident that new assay technologies which provide robust and precise measurement of global histone modifications are required, -
Lineage-Specific Programming Target Genes Defines Potential for Th1 Temporal Induction Pattern of STAT4
Downloaded from http://www.jimmunol.org/ by guest on October 1, 2021 is online at: average * The Journal of Immunology published online 26 August 2009 from submission to initial decision 4 weeks from acceptance to publication J Immunol http://www.jimmunol.org/content/early/2009/08/26/jimmuno l.0901411 Temporal Induction Pattern of STAT4 Target Genes Defines Potential for Th1 Lineage-Specific Programming Seth R. Good, Vivian T. Thieu, Anubhav N. Mathur, Qing Yu, Gretta L. Stritesky, Norman Yeh, John T. O'Malley, Narayanan B. Perumal and Mark H. Kaplan Submit online. Every submission reviewed by practicing scientists ? is published twice each month by http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://www.jimmunol.org/content/suppl/2009/08/26/jimmunol.090141 1.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* • Why • • Material Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of October 1, 2021. Published August 26, 2009, doi:10.4049/jimmunol.0901411 The Journal of Immunology Temporal Induction Pattern of STAT4 Target Genes Defines Potential for Th1 Lineage-Specific Programming1 Seth R. Good,2* Vivian T. Thieu,2† Anubhav N. Mathur,† Qing Yu,† Gretta L. -
Generated by SRI International Pathway Tools Version 25.0, Authors S
Authors: Pallavi Subhraveti Ron Caspi Quang Ong Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_000725805Cyc: Streptomyces xanthophaeus Cellular Overview Connections between pathways are omitted for legibility. -
Identification of Proteins Differentially Expressed in the Conventional Renal Cell Carcinoma by Proteomic Analysis
J Korean Med Sci 2005; 20: 450-5 Copyright � The Korean Academy ISSN 1011-8934 of Medical Sciences Identification of Proteins Differentially Expressed in the Conventional Renal Cell Carcinoma by Proteomic Analysis Renal cell carcinoma (RCC) is one of the most malignant tumors in urology, and Jeong Seok Hwa, Hyo Jin Park*, due to its insidious onset patients frequently have advanced disease at the time of Jae Hun Jung, Sung Chul Kam, clinical presentation. Thus, early detection is crucial in management of RCC. To Hyung Chul Park, Choong Won Kim*, identify tumor specific proteins of RCC, we employed proteomic analysis. We pre- Kee Ryeon Kang*, Jea Seog Hyun, Ky Hyun Chung pared proteins from conventional RCC and the corresponding normal kidney tis- sues from seven patients with conventional RCC. The expression of proteins was Department of Urology and Biochemistry*, College of determined by silver stain after two-dimensional polyacrylamide gel electrophore- Medicine and Institute of Health Science, sis (2D-PAGE). The overall protein expression patterns in the RCC and the normal Gyeongsang National University, Jinju, Korea kidney tissues were quite similar except some areas. Of 66 differentially expressed Received : 29 December 2004 protein spots (p<0.05 by Student t-test), 8 different proteins from 11 spots were Accepted : 13 January 2005 identified by MALDI-TOF-MS. The expression of the following proteins was repress- ed (p<0.05); aminoacylase-1, enoyl-CoA hydratase, aldehyde reductase, tropo- Address for correspondence myosin -4 chain, agmatinase and ketohexokinase. Two proteins, vimentin and -1 Jeong Seok Hwa, M.D. Department of Urology, College of Medicine, antitrypsin precursor, were dominantly expressed in RCC (p<0.05). -
Neutrophils Regulate Humoral Autoimmunity by Restricting Interferon-Γ Production Via the Generation of Reactive Oxygen Species
UCSF UC San Francisco Previously Published Works Title Neutrophils Regulate Humoral Autoimmunity by Restricting Interferon-γ Production via the Generation of Reactive Oxygen Species Permalink https://escholarship.org/uc/item/3dn9r8j2 Journal Cell Reports, 12(7) ISSN 0022-1767 Authors Huang, X Li, J Dorta-Estremera, S et al. Publication Date 2015-08-18 DOI 10.1016/j.celrep.2015.07.021 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Article Neutrophils Regulate Humoral Autoimmunity by Restricting Interferon-g Production via the Generation of Reactive Oxygen Species Graphical Abstract Authors Xinfang Huang, Jingjing Li, Stephanie Dorta-Estremera, ..., Kimberly S. Schluns, Lewis L. Lanier, Wei Cao Correspondence [email protected] In Brief Huang et al. find that IFN-a/b produced by plasmacytoid dendritic cells (pDCs) stimulates NK cells to secrete IFN-g, which is essential for the development of autoantibodies. ROS-producing neutrophils negatively regulate this NK- IFN-g pathway and control autoimmune progression in lupus-prone mice. Highlights d Mice pre-depleted of neutrophils develop more autoantibodies after pDC activation d The pDC-IFN-a/b pathway stimulates NK cells to produce IFN-g by inducing IL-15 d ROS released by neutrophils decreases IL-15 and thus inhibits IFN-g production d Neutrophils in male NZB/W F1 mice suppress NK cell and autoimmune B cell activation Huang et al., 2015, Cell Reports 12, 1120–1132 August 18, 2015 ª2015 The Authors http://dx.doi.org/10.1016/j.celrep.2015.07.021 Cell Reports Article Neutrophils Regulate Humoral Autoimmunity by Restricting Interferon-g Production via the Generation of Reactive Oxygen Species Xinfang Huang,1,2,7 Jingjing Li,1,7 Stephanie Dorta-Estremera,1,3 Jeremy Di Domizio,1,8 Scott M. -
CUMMINGS-DISSERTATION.Pdf (4.094Mb)
D-AMINOACYLASES AND DIPEPTIDASES WITHIN THE AMIDOHYDROLASE SUPERFAMILY: RELATIONSHIP BETWEEN ENZYME STRUCTURE AND SUBSTRATE SPECIFICITY A Dissertation by JENNIFER ANN CUMMINGS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2010 Major Subject: Chemistry D-AMINOACYLASES AND DIPEPTIDASES WITHIN THE AMIDOHYDROLASE SUPERFAMILY: RELATIONSHIP BETWEEN ENZYME STRUCTURE AND SUBSTRATE SPECIFICITY A Dissertation by JENNIFER ANN CUMMINGS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Frank Raushel Committee Members, Paul Lindahl David Barondeau Gregory Reinhart Head of Department, David Russell December 2010 Major Subject: Chemistry iii ABSTRACT D-Aminoacylases and Dipeptidases within the Amidohydrolase Superfamily: Relationship Between Enzyme Structure and Substrate Specificity. (December 2010) Jennifer Ann Cummings, B.S., Southern Oregon University; M.S., Texas A&M University Chair of Advisory Committee: Dr. Frank Raushel Approximately one third of the genes for the completely sequenced bacterial genomes have an unknown, uncertain, or incorrect functional annotation. Approximately 11,000 putative proteins identified from the fully-sequenced microbial genomes are members of the catalytically diverse Amidohydrolase Superfamily. Members of the Amidohydrolase Superfamily separate into 24 Clusters of Orthologous Groups (cogs). Cog3653 includes proteins annotated as N-acyl-D-amino acid deacetylases (DAAs), and proteins within cog2355 are homologues to the human renal dipeptidase. The substrate profiles of three DAAs (Bb3285, Gox1177 and Sco4986) and six microbial dipeptidase (Sco3058, Gox2272, Cc2746, LmoDP, Rsp0802 and Bh2271) were examined with N-acyl-L-, N-acyl-D-, L-Xaa-L-Xaa, L-Xaa-D-Xaa and D-Xaa-L-Xaa substrate libraries. -
WO2019226953A1.Pdf
) ( 2 (51) International Patent Classification: Street, Brookline, MA 02446 (US). WILSON, Christo¬ C12N 9/22 (2006.01) pher, Gerard; 696 Main Street, Apartment 311, Waltham, MA 0245 1(US). DOMAN, Jordan, Leigh; 25 Avon Street, (21) International Application Number: Somverville, MA 02143 (US). PCT/US20 19/033 848 (74) Agent: HEBERT, Alan, M. et al. ;Wolf, Greenfield, Sacks, (22) International Filing Date: P.C., 600 Atlanitc Avenue, Boston, MA 02210-2206 (US). 23 May 2019 (23.05.2019) (81) Designated States (unless otherwise indicated, for every (25) Filing Language: English kind of national protection av ailable) . AE, AG, AL, AM, (26) Publication Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (30) Priority Data: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, 62/675,726 23 May 2018 (23.05.2018) US HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, 62/677,658 29 May 2018 (29.05.2018) US KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (71) Applicants: THE BROAD INSTITUTE, INC. [US/US]; MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 415 Main Street, Cambridge, MA 02142 (US). PRESI¬ OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, DENT AND FELLOWS OF HARVARD COLLEGE SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, [US/US]; 17 Quincy Street, Cambridge, MA 02138 (US). -
Genetic Testing Policy Number: PG0041 ADVANTAGE | ELITE | HMO Last Review: 04/11/2021
Genetic Testing Policy Number: PG0041 ADVANTAGE | ELITE | HMO Last Review: 04/11/2021 INDIVIDUAL MARKETPLACE | PROMEDICA MEDICARE PLAN | PPO GUIDELINES This policy does not certify benefits or authorization of benefits, which is designated by each individual policyholder terms, conditions, exclusions and limitations contract. It does not constitute a contract or guarantee regarding coverage or reimbursement/payment. Paramount applies coding edits to all medical claims through coding logic software to evaluate the accuracy and adherence to accepted national standards. This medical policy is solely for guiding medical necessity and explaining correct procedure reporting used to assist in making coverage decisions and administering benefits. SCOPE X Professional X Facility DESCRIPTION A genetic test is the analysis of human DNA, RNA, chromosomes, proteins, or certain metabolites in order to detect alterations related to a heritable or acquired disorder. This can be accomplished by directly examining the DNA or RNA that makes up a gene (direct testing), looking at markers co-inherited with a disease-causing gene (linkage testing), assaying certain metabolites (biochemical testing), or examining the chromosomes (cytogenetic testing). Clinical genetic tests are those in which specimens are examined and results reported to the provider or patient for the purpose of diagnosis, prevention or treatment in the care of individual patients. Genetic testing is performed for a variety of intended uses: Diagnostic testing (to diagnose disease) Predictive -
Inhibition of N-Acetylglutamate Synthase by Various Monocarboxylic and Dicarboxylic Short-Chain Coenzyme a Esters and the Production of Alternative Glutamate Esters☆
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1842 (2014) 2510–2516 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbadis Inhibition of N-acetylglutamate synthase by various monocarboxylic and dicarboxylic short-chain coenzyme A esters and the production of alternative glutamate esters☆ M. Dercksen a,b,⁎, L. IJlst a, M. Duran a, L.J. Mienie b, A. van Cruchten a, F.H. van der Westhuizen b, R.J.A. Wanders a a Laboratory Genetic Metabolic Diseases, Departments of Pediatrics and Clinical Chemistry, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands b Centre for Human Metabonomics, North-West University (Potchefstroom Campus), Hoffman street 11, Potchefstroom, South Africa, 2520 article info abstract Article history: Hyperammonemia is a frequent finding in various organic acidemias. One possible mechanism involves the Received 11 December 2012 inhibition of the enzyme N-acetylglutamate synthase (NAGS), by short-chain acyl-CoAs which accumulate due Received in revised form 9 April 2013 to defective catabolism of amino acids and/or fatty acids in the cell. The aim of this study was to investigate the Accepted 29 April 2013 effect of various acyl-CoAs on the activity of NAGS in conjunction with the formation of glutamate esters. NAGS Available online 2 May 2013 activity was measured in vitro using a sensitive enzyme assay with ultraperformance liquid chromatography– – Keywords: tandem mass spectrometry (UPLC MS/MS) product analysis. Propionyl-CoA and butyryl-CoA proved to be the N-acetylglutamate synthase most powerful inhibitors of N-acetylglutamate (NAG) formation. -
Canavan Disease: a Neurometabolic Disease Caused by Aspartoacylase Deficiency
Journal of Pediatric Sciences SPECIAL ISSUE Current opinion in pediatric metabolic disease Editor: Ertan MAYATEPEK Canavan Disease: A Neurometabolic Disease Caused By Aspartoacylase Deficiency Ute Lienhard and Jörn Oliver Sass Journal of Pediatric Sciences 2011;3(1):e71 How to cite this article: Lienhard U, Sass JO. Canavan disease: a neurometabolic disease caused by aspartoacylase deficiency. Journal of Pediatric Sciences. 2011;3(1):e71 JPS 2 REVIEW ARTICLE Canavan Disease: A Neurometabolic Disease Caused By Aspartoacylase Deficiency Ute Lienhard and Jörn Oliver Sass Abstract: Canavan disease is a genetic neurodegenerative disorder caused by mutations in the ASPA gene encoding aspartoacylase, also known as aminoacylase 2. Important clinical features comprise progressive psychomotor delay, macrocephaly, muscular hypotonia as well as spasticity and visual impairment. Cerebral imaging usually reveals leukodystrophy. While it is often expected that patients with Canavan disease will die in childhood, there is increasing evidence for heterogeneity of the clinical phenotype. Aspartoacylase catalyzes the hydrolysis of N- acetylaspartate (NAA) to aspartate and acetate. Its deficiency leads to accumulation of NAA in the brain, blood, cerebrospinal fluid and in the urine of the patients. High levels of NAA in urine are detectable via the assessment of organic acids by gas chromatography - mass spectrometry. Confirmation is available by enzyme activity tests and mutation analyses. Up to now, treatment of patients with Canavan disease is only symptomatic. Although it is a panethnic disorder, information on affected individuals in populations of other than Ashkenazi Jewish origin is rather limited. Ongoing research aims at a better understanding of Canavan disease (and of related inborn errors of metabolism such as aminoacylase 1 deficiency). -
Aspartoacylase Is a Regulated Nuclear-Cytoplasmic Enzyme
The FASEB Journal • FJ Express Full-Length Article Aspartoacylase is a regulated nuclear-cytoplasmic enzyme Jeremy R. Hershfield,* Chikkathur N. Madhavarao,* John R. Moffett,* Joyce A. Benjamins,† James Y. Garbern,†,‡ and Aryan Namboodiri*,1 *Department of Anatomy, Physiology, and Genetics, The Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA; †Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA; ‡Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA ABSTRACT Mutations in the gene for aspartoacylase mental increases in ASPA and NAA correlate with (ASPA), which catalyzes deacetylation of N-acetyl-L- myelination (3–8) and several studies have shown aspartate in the central nervous system (CNS), result in incorporation of acetate from NAA into myelin lipids Canavan Disease, a fatal dysmyelinating disease. Con- (9–13). Overall acetate levels and lipid synthesis have sistent with its role in supplying acetate for myelin lipid recently been shown to be deficient in brains of CD synthesis, ASPA is thought to be cytoplasmic. Here we knockout mice (14), providing strong support for the describe the occurrence of ASPA within nuclei of rat hypothesis that NAA in the CNS supplies acetyl groups brain and kidney, and in cultured rodent oligodendro- for lipid synthesis during myelination (3, 7, 14). The cytes. Immunohistochemistry showed cytoplasmic and functions served by ASPA in other tissues such as kidney nuclear ASPA staining, the specificity of which was (17) are currently unknown. demonstrated by its absence from tissues of the Tremor ASPA activity was originally found to be restricted to rat, an ASPA-null mutant.