PHARMACOLOGY REVIEW(S) Comments on N 22-562 Carbaglu Carglumic Acid from Abby Jacobs, AD Date: 3/15/10

Total Page:16

File Type:pdf, Size:1020Kb

PHARMACOLOGY REVIEW(S) Comments on N 22-562 Carbaglu Carglumic Acid from Abby Jacobs, AD Date: 3/15/10 CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 22-562 PHARMACOLOGY REVIEW(S) Comments on N 22-562 Carbaglu carglumic acid From Abby Jacobs, AD Date: 3/15/10 1. I concur that there are no pharm/tox issues with approval and the labeling of pharm/tox portions is acceptable, with the changes suggested by the reviewer. 2. I do not concur with the postmarketing requests a. There is no need for a chronic study in nonrodents in addition to the rodent chronic study -The number of animals per group will be small -There are human data sufficient for approval. -The animals tested will not have the condition of hyperammonemia, and thus adverse effects observed at high doses may not be relevant to the patient population -the drug is lifesaving - the number of persons having this condition is rather small b. There is no need for a carcinogenicity study The animals tested will not have the condition of hyperammonemia, and thus adverse effects observed at high doses may not be relevant to the patient population -the drug is lifesaving and - the number of persons having this condition is rather small Application Submission Type/Number Type/Number Submitter Name Product Name -------------------- -------------------- -------------------- ------------------------------------------ NDA-22562 ORIG-1 ORPHAN EUROPE CARBAGLU (CARGLUMIC ACID) --------------------------------------------------------------------------------------------------------- This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature. --------------------------------------------------------------------------------------------------------- /s/ ---------------------------------------------------- ABIGAIL ABBY C C JACOBS 03/15/2010 MEMORANDUM DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION CENTER FOR DRUG EVALUATION AND RESEARCH FROM: David B. Joseph, Acting Pharmacology Team Leader DATE: March 11, 2010 SUBJECT: NDA 22,562 (serial # 000 dated June 17, 2009) Sponsor: Orphan Europe, SARL Drug Product: Carbaglu (carglumic acid) Comments: 1. Carbaglu (carglumic acid, or N-carbamoyl-L-glutamic acid) was developed for the treatment of hyperammonemia due to N-acetylglutamate synthase (NAGS) deficiency. Carglumic acid is a structural analog of N-acetyl-L-glutamate (NAG), which is an obligatory allosteric activator of mitochondrial carbamoyl phosphate synthetase 1 (CPS 1), the first enzyme of the urea cycle. NAG is synthesized by the enzyme NAGS. In the absence of NAGS, NAG is not produced and plasma levels of ammonia are elevated due to impaired function of the urea cycle. NAGS deficiency is the rarest of the hereditary urea cycle disorders. The time of onset of clinical signs in NAGS deficiency patients is variable, ranging from shortly after birth through adulthood. The neonatal onset of NAGS deficiency is severe, with death expected to occur within a few days. Carglumic acid acts as a replacement for NAG in NAGS deficiency patients by activating CPS 1. 2. The nonclinical dataset did not identify any safety issues that would impact the approvability of carglumic acid. The most notable findings in the nonclinical data were the high mortality in orally-treated neonatal rats, and the impaired growth and survival of rat pups in a peri- /post-natal developmental study. In a 2-week oral toxicity study, administration of 2000 mg/kg/day produced deaths in most rat pups (neonates) within 2-3 days, whereas drug- related deaths were not observed at lower dose levels (250-1000 mg/kg/day). The lethal dose in this study is 8 times the maximum recommended starting dose for Carbaglu (250 mg/kg), based on a bodyweight comparison (mg/kg). Since the cause of hyperammonemia in neonates is usually unknown and because of the length of time needed to obtain a diagnosis, it is expected that carglumic acid will be administered in neonates with hyperammonemia as an adjunctive treatment with other ammonia lowering therapies (e.g., sodium phenylbutyrate). In this scenario, treatment with carglumic acid would likely continue until a cause of hyperammonemia is identified (e.g., a specific urea cycle enzyme deficiency). Therefore, the observed toxicity in orally-treated neonatal rats and in the offspring of carglumic acid-treated rats is a safety concern. Page 2 However, this concern can be addressed in the labeling (see the Pharmacology/Toxicology review by Dr. Yuk-Chow Ng). 3. General toxicology studies were conducted in rats only, although the Agency did request submission of a chronic toxicity study in a nonrodent species. The Sponsor has not provided any convincing rationale for the omission of toxicity studies in a nonrodent species. This deficiency is discussed in detail in Dr. Ng’s review. I concur with Dr. Ng’s recommendation that the Sponsor should conduct a chronic (9-month) oral toxicity study in a nonrodent species, as a post-marketing requirement. 4. I concur with Dr. Ng’s recommendation that the Sponsor should conduct a 2-year carcinogenicity study in a single species, as a post-marketing requirement. The Sponsor has committed to performing this study following the approval of Carbaglu. Recommendations: There are no nonclinical issues which preclude the approval of Carbaglu for treatment of hyperammonemia due to NAGS deficiency. I concur with Dr. Ng’s recommendation for approval, and with the recommendations for post-marketing nonclinical studies, as described above. __________________________________ ____________ David B. Joseph, Ph.D. Date Acting Pharmacology Team Leader Division of Gastroenterology Products cc: NDA 22,562 DGP DGP/CSO DGP/Dr. Joseph DGP/Dr. Ng OND IO/Dr. Jacobs Application Submission Type/Number Type/Number Submitter Name Product Name -------------------- -------------------- -------------------- ------------------------------------------ NDA-22562 ORIG-1 ORPHAN EUROPE CARBAGLU (CARGLUMIC ACID) --------------------------------------------------------------------------------------------------------- This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature. --------------------------------------------------------------------------------------------------------- /s/ ---------------------------------------------------- DAVID B JOSEPH 03/11/2010 DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION CENTER FOR DRUG EVALUATION AND RESEARCH PHARMACOLOGY/TOXICOLOGY REVIEW AND EVALUATION NDA NUMBER: 22-562 SERIAL NUMBER: 000 DATE RECEIVED BY CENTER: 6/17/2009 PRODUCT: Carbaglu® INTENDED CLINICAL POPULATION: Patients with hyperammonemia associated with N-Acetylglutamate synthase deficiency SPONSOR: Orphan Europe Paris, France DOCUMENTS REVIEWED: Vol. 1-15 REVIEW DIVISION: Division of Gastroenterology Products PHARM/TOX REVIEWER: Yuk-Chow Ng, Ph.D. ACTING PHARM/TOX TEAM LEADER: David B. Joseph, Ph.D. DIVISION DIRECTOR: Donna Griebel, M.D. PROJECT MANAGER: Roland Girardet, MHS, MS, MBA TABLE OF CONTENTS EXECUTIVE SUMMARY .............................................................................................. 3 2.6 PHARMACOLOGY/TOXICOLOGY REVIEW................................................. 13 2.6.1 INTRODUCTION AND DRUG HISTORY................................................................. 13 2.6.2 PHARMACOLOGY....................................................................................................... 17 2.6.2.1 Brief summary ...................................................................................................................... 17 2.6.2.2 Primary pharmacodynamics ................................................................................................. 18 2.6.2.3 Secondary pharmacodynamics ............................................................................................. 19 2.6.2.4 Safety pharmacology ............................................................................................................ 19 2.6.2.5 Pharmacodynamic drug interactions..................................................................................... 20 2.6.3 PHARMACOLOGY TABULATED SUMMARY....................................................... 20 2.6.4 PHARMACOKINETICS/TOXICOKINETICS .......................................................... 20 2.6.4.1 Brief summary ...................................................................................................................... 20 2.6.4.2 Methods of Analysis.............................................................................................................21 2.6.4.3 Absorption ............................................................................................................................ 21 2.6.4.4 Distribution........................................................................................................................... 25 2.6.4.5 Metabolism........................................................................................................................... 28 2.6.4.6 Excretion............................................................................................................................... 31 2.6.4.7 Pharmacokinetic drug interactions........................................................................................ 31 2.6.4.8 Other Pharmacokinetic Studies............................................................................................. 32 2.6.4.9 Discussion and Conclusions ................................................................................................
Recommended publications
  • Drug Consumption in 2017 - 2020
    Page 1 Drug consumption in 2017 - 2020 2020 2019 2018 2017 DDD/ DDD/ DDD/ DDD/ 1000 inhab./ Hospital 1000 inhab./ Hospital 1000 inhab./ Hospital 1000 inhab./ Hospital ATC code Subgroup or chemical substance day % day % day % day % A ALIMENTARY TRACT AND METABOLISM 322,79 3 312,53 4 303,08 4 298,95 4 A01 STOMATOLOGICAL PREPARATIONS 14,28 4 12,82 4 10,77 6 10,46 7 A01A STOMATOLOGICAL PREPARATIONS 14,28 4 12,82 4 10,77 6 10,46 7 A01AA Caries prophylactic agents 11,90 3 10,48 4 8,42 5 8,45 7 A01AA01 sodium fluoride 11,90 3 10,48 4 8,42 5 8,45 7 A01AA03 olaflur 0,00 - 0,00 - 0,00 - 0,00 - A01AB Antiinfectives for local oral treatment 2,36 8 2,31 7 2,31 7 2,02 7 A01AB03 chlorhexidine 2,02 6 2,10 7 2,09 7 1,78 7 A01AB11 various 0,33 21 0,21 0 0,22 0 0,24 0 A01AD Other agents for local oral treatment 0,02 0 0,03 0 0,04 0 - - A01AD02 benzydamine 0,02 0 0,03 0 0,04 0 - - A02 DRUGS FOR ACID RELATED DISORDERS 73,05 3 71,13 3 69,32 3 68,35 3 A02A ANTACIDS 2,23 1 2,22 1 2,20 1 2,30 1 A02AA Magnesium compounds 0,07 22 0,07 22 0,08 22 0,10 19 A02AA04 magnesium hydroxide 0,07 22 0,07 22 0,08 22 0,10 19 A02AD Combinations and complexes of aluminium, 2,17 0 2,15 0 2,12 0 2,20 0 calcium and magnesium compounds A02AD01 ordinary salt combinations 2,17 0 2,15 0 2,12 0 2,20 0 A02B DRUGS FOR PEPTIC ULCER AND 70,82 3 68,91 3 67,12 3 66,05 4 GASTRO-OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 0,17 7 0,74 4 1,10 4 1,11 5 A02BA02 ranitidine 0,00 1 0,63 3 0,99 3 0,99 4 A02BA03 famotidine 0,16 7 0,11 8 0,11 10 0,12 9 A02BB Prostaglandins 0,04 62
    [Show full text]
  • ASPA Gene Aspartoacylase
    ASPA gene aspartoacylase Normal Function The ASPA gene provides instructions for making an enzyme called aspartoacylase. In the brain, this enzyme breaks down a compound called N-acetyl-L-aspartic acid (NAA) into aspartic acid (an amino acid that is a building block of many proteins) and another molecule called acetic acid. The production and breakdown of NAA appears to be critical for maintaining the brain's white matter, which consists of nerve fibers surrounded by a myelin sheath. The myelin sheath is the covering that protects nerve fibers and promotes the efficient transmission of nerve impulses. The precise function of NAA is unclear. Researchers had suspected that it played a role in the production of the myelin sheath, but recent studies suggest that NAA does not have this function. The enzyme may instead be involved in the transport of water molecules out of nerve cells (neurons). Health Conditions Related to Genetic Changes Canavan disease More than 80 mutations in the ASPA gene are known to cause Canavan disease, which is a rare inherited disorder that affects brain development. Researchers have described two major forms of this condition: neonatal/infantile Canavan disease, which is the most common and most severe form, and mild/juvenile Canavan disease. The ASPA gene mutations that cause the neonatal/infantile form severely impair the activity of aspartoacylase, preventing the breakdown of NAA and allowing this substance to build up to high levels in the brain. The mutations that cause the mild/juvenile form have milder effects on the enzyme's activity, leading to less accumulation of NAA.
    [Show full text]
  • L-Citrulline
    L‐Citrulline Pharmacy Compounding Advisory Committee Meeting November 20, 2017 Susan Johnson, PharmD, PhD Associate Director Office of Drug Evaluation IV Office of New Drugs L‐Citrulline Review Team Ben Zhang, PhD, ORISE Fellow, OPQ Ruby Mehta, MD, Medical Officer, DGIEP, OND Kathleen Donohue, MD, Medical Officer, DGIEP, OND Tamal Chakraborti, PhD, Pharmacologist, DGIEP, OND Sushanta Chakder, PhD, Supervisory Pharmacologist, DGIEP, OND Jonathan Jarow, MD, Advisor, Office of the Center Director, CDER Susan Johnson, PharmD, PhD, Associate Director, ODE IV, OND Elizabeth Hankla, PharmD, Consumer Safety Officer, OUDLC, OC www.fda.gov 2 Nomination • L‐citrulline has been nominated for inclusion on the list of bulk drug substances for use in compounding under section 503A of the Federal Food, Drug and Cosmetic Act (FD&C Act) • It is proposed for oral use in the treatment of urea cycle disorders (UCDs) www.fda.gov 3 Physical and Chemical Characterization • Non‐essential amino acid, used in the human body in the L‐form • Well characterized substance • Soluble in water • Likely to be stable under ordinary storage conditions as solid or liquid oral dosage forms www.fda.gov 4 Physical and Chemical Characterization (2) • Possible synthetic routes – L‐citrulline is mainly produced by fermentation of L‐arginine as the substrate with special microorganisms such as the L‐arginine auxotrophs arthrobacterpa rafneus and Bacillus subtilis. – L‐citrulline can also be obtained through chemical synthesis. The synthetic route is shown in the scheme below. This
    [Show full text]
  • Carbaglu; INN-Carglumic Acid
    London, 19 August 2016 EMA/532759/2016 Committee for Medicinal Products for Human Use (CHMP) Assessment report for paediatric studies submitted according to Article 46 of the Regulation (EC) No 1901/2006 Carbaglu carglumic acid Procedure no: EMEA/H/C/000461/P46/033 Note Assessment report as adopted by the CHMP with all information of a commercially confidential nature deleted. 7 Westferry Circus ● Canary Wharf ● London E14 4HB ● United Kingdom Telephone +44 (0)20 7418 8400 Facsimile +44 (0)20 7418 8613 E -mail [email protected] Website www.ema.europa.eu An agency of the European Union © European Medicines Agency, 2016. Reproduction is authorised provided the source is acknowledged. Table of contents 1. Introduction ............................................................................................ 3 2. Scientific discussion ................................................................................ 3 2.1. Information on the development program ............................................................... 3 2.2. Information on the pharmaceutical formulation used in the study ............................... 3 2.3. Clinical aspects .................................................................................................... 3 2.3.1. Introduction ...................................................................................................... 3 2.3.2. Clinical study .................................................................................................... 4 2.3.3. Discussion on clinical aspects ...........................................................................
    [Show full text]
  • Orphan Drugs Used for Treatment in Pediatric Patients in the Slovak Republic
    DOI 10.2478/v10219-012-0001-0 ACTA FACULTATIS PHARMACEUTICAE UNIVERSITATIS COMENIANAE Supplementum VI 2012 ORPHAN DRUGS USED FOR TREATMENT IN PEDIATRIC PATIENTS IN THE SLOVAK REPUBLIC 1Foltánová, T. – 2Konečný, M. – 3Hlavatá, A. –.4Štepánková, K. 5Cisárik, F. 1Comenius University in Bratislava, Faculty of Pharmacy, Department of Pharmacology and Toxicology 2Department of Clinical Genetics, St. Elizabeth Cancer Institute, Bratislava 32nd Department of Pediatrics, UniversityChildren'sHospital, Bratislava 4Slovak Cystic Fibrosis Association, Košice 5Department of Medical Genetics, Faculty Hospital, Žilina Due to the enormous success of scientific research in the field of paediatric medicine many once fatal children’s diseases can now be cured. Great progress has also been achieved in the rehabilitation of disabilities. However, there is still a big group of diseases defined as rare, treatment of which has been traditionally neglected by the drug companies mainly due to unprofitability. Since 2000 the treatment of rare diseases has been supported at the European level and in 2007 paediatric legislation was introduced. Both decisions together support treatment of rare diseases in children. In this paper, we shortly characterise the possibilities of rare diseases treatment in children in the Slovak republic and bring the list of orphan medicine products (OMPs) with defined dosing in paediatrics, which were launched in the Slovak market. We also bring a list of OMPs with defined dosing in children, which are not available in the national market. This incentive may help in further formation of the national plan for treating rare diseases as well as improvement in treatment options and availability of rare disease treatment in children in Slovakia.
    [Show full text]
  • Global Histone Modification Fingerprinting in Human Cells Using
    OPEN Citation: Cell Death Discovery (2017) 3, 16077; doi:10.1038/cddiscovery.2016.77 Official journal of the Cell Death Differentiation Association www.nature.com/cddiscovery ARTICLE Global histone modification fingerprinting in human cells using epigenetic reverse phase protein array Marina Partolina1,HazelCThoms1, Kenneth G MacLeod2, Giovanny Rodriguez-Blanco1,MatthewNClarke1, Anuroop V Venkatasubramani1,3, Rima Beesoo4, Vladimir Larionov5, Vidushi S Neergheen-Bhujun4, Bryan Serrels2, Hiroshi Kimura6, Neil O Carragher2 and Alexander Kagansky1,7 The balance between acetylation and deacetylation of histone proteins plays a critical role in the regulation of genomic functions. Aberrations in global levels of histone modifications are linked to carcinogenesis and are currently the focus of intense scrutiny and translational research investments to develop new therapies, which can modify complex disease pathophysiology through epigenetic control. However, despite significant progress in our understanding of the molecular mechanisms of epigenetic machinery in various genomic contexts and cell types, the links between epigenetic modifications and cellular phenotypes are far from being clear. For example, enzymes controlling histone modifications utilize key cellular metabolites associated with intra- and extracellular feedback loops, adding a further layer of complexity to this process. Meanwhile, it has become increasingly evident that new assay technologies which provide robust and precise measurement of global histone modifications are required,
    [Show full text]
  • Reference ID: 4182329 FULL PRESCRIBING INFORMATION
    HIGHLIGHTS OF PRESCRIBING INFORMATION --------------------DOSAGE FORMS AND STRENGTHS-------------------­ These highlights do not include all the information needed to Tablets for oral suspension: 200 mg, functionally scored (3) use CARBAGLU safely and effectively. See full prescribing information for CARBAGLU. ----------------------------CONTRAINDICATIONS----------------------------­ ® None. (4) CARBAGLU (carglumic acid) tablet for oral suspension Initial U.S. Approval: 2010 ----------------------WARNINGS AND PRECAUTIONS---------------------- -------------------------RECENT MAJOR CHANGES-------------------------­ Hyperammonemia: Monitor plasma ammonia level during treatment. Dosage and Administration (2) 11/2017 Prolonged exposure to elevated plasma ammonia level can result in brain Warnings and Precautions (5.1) 11/2017 injury or death. Prompt use of all therapies necessary to reduce plasma ammonia level is essential. (5.1) --------------------------INDICATIONS AND USAGE-------------------------­ CARBAGLU is a Carbamoyl Phosphate Synthetase 1 (CPS 1) activator -----------------------------ADVERSE REACTIONS----------------------------­ indicated as: Most common adverse reactions (>9%) are: vomiting, abdominal pain, • Adjunctive therapy for the treatment of acute hyperammonemia due to pyrexia, tonsillitis, anemia, diarrhea, ear infection, infections, the deficiency of the hepatic enzyme N-acetylglutamate synthase nasopharyngitis, hemoglobin decreased, and headache (6.1). (NAGS). (1.1) • Maintenance therapy for the treatment of chronic
    [Show full text]
  • Generated by SRI International Pathway Tools Version 25.0, Authors S
    Authors: Pallavi Subhraveti Ron Caspi Quang Ong Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_000725805Cyc: Streptomyces xanthophaeus Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • Identification of Proteins Differentially Expressed in the Conventional Renal Cell Carcinoma by Proteomic Analysis
    J Korean Med Sci 2005; 20: 450-5 Copyright � The Korean Academy ISSN 1011-8934 of Medical Sciences Identification of Proteins Differentially Expressed in the Conventional Renal Cell Carcinoma by Proteomic Analysis Renal cell carcinoma (RCC) is one of the most malignant tumors in urology, and Jeong Seok Hwa, Hyo Jin Park*, due to its insidious onset patients frequently have advanced disease at the time of Jae Hun Jung, Sung Chul Kam, clinical presentation. Thus, early detection is crucial in management of RCC. To Hyung Chul Park, Choong Won Kim*, identify tumor specific proteins of RCC, we employed proteomic analysis. We pre- Kee Ryeon Kang*, Jea Seog Hyun, Ky Hyun Chung pared proteins from conventional RCC and the corresponding normal kidney tis- sues from seven patients with conventional RCC. The expression of proteins was Department of Urology and Biochemistry*, College of determined by silver stain after two-dimensional polyacrylamide gel electrophore- Medicine and Institute of Health Science, sis (2D-PAGE). The overall protein expression patterns in the RCC and the normal Gyeongsang National University, Jinju, Korea kidney tissues were quite similar except some areas. Of 66 differentially expressed Received : 29 December 2004 protein spots (p<0.05 by Student t-test), 8 different proteins from 11 spots were Accepted : 13 January 2005 identified by MALDI-TOF-MS. The expression of the following proteins was repress- ed (p<0.05); aminoacylase-1, enoyl-CoA hydratase, aldehyde reductase, tropo- Address for correspondence myosin -4 chain, agmatinase and ketohexokinase. Two proteins, vimentin and -1 Jeong Seok Hwa, M.D. Department of Urology, College of Medicine, antitrypsin precursor, were dominantly expressed in RCC (p<0.05).
    [Show full text]
  • CUMMINGS-DISSERTATION.Pdf (4.094Mb)
    D-AMINOACYLASES AND DIPEPTIDASES WITHIN THE AMIDOHYDROLASE SUPERFAMILY: RELATIONSHIP BETWEEN ENZYME STRUCTURE AND SUBSTRATE SPECIFICITY A Dissertation by JENNIFER ANN CUMMINGS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2010 Major Subject: Chemistry D-AMINOACYLASES AND DIPEPTIDASES WITHIN THE AMIDOHYDROLASE SUPERFAMILY: RELATIONSHIP BETWEEN ENZYME STRUCTURE AND SUBSTRATE SPECIFICITY A Dissertation by JENNIFER ANN CUMMINGS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Frank Raushel Committee Members, Paul Lindahl David Barondeau Gregory Reinhart Head of Department, David Russell December 2010 Major Subject: Chemistry iii ABSTRACT D-Aminoacylases and Dipeptidases within the Amidohydrolase Superfamily: Relationship Between Enzyme Structure and Substrate Specificity. (December 2010) Jennifer Ann Cummings, B.S., Southern Oregon University; M.S., Texas A&M University Chair of Advisory Committee: Dr. Frank Raushel Approximately one third of the genes for the completely sequenced bacterial genomes have an unknown, uncertain, or incorrect functional annotation. Approximately 11,000 putative proteins identified from the fully-sequenced microbial genomes are members of the catalytically diverse Amidohydrolase Superfamily. Members of the Amidohydrolase Superfamily separate into 24 Clusters of Orthologous Groups (cogs). Cog3653 includes proteins annotated as N-acyl-D-amino acid deacetylases (DAAs), and proteins within cog2355 are homologues to the human renal dipeptidase. The substrate profiles of three DAAs (Bb3285, Gox1177 and Sco4986) and six microbial dipeptidase (Sco3058, Gox2272, Cc2746, LmoDP, Rsp0802 and Bh2271) were examined with N-acyl-L-, N-acyl-D-, L-Xaa-L-Xaa, L-Xaa-D-Xaa and D-Xaa-L-Xaa substrate libraries.
    [Show full text]
  • Carbaglu and Ravicti
    PHARMACY COVERAGE GUIDELINES ORIGINAL EFFECTIVE DATE: 7/16/2015 SECTION: DRUGS LAST REVIEW DATE: 2/18/2021 LAST CRITERIA REVISION DATE: 2/13/2020 ARCHIVE DATE: CARBAGLU® (carglumic acid) oral tablet RAVICTI® (glycerol phenylbutyrate) oral liquid Coverage for services, procedures, medical devices and drugs are dependent upon benefit eligibility as outlined in the member's specific benefit plan. This Pharmacy Coverage Guideline must be read in its entirety to determine coverage eligibility, if any. This Pharmacy Coverage Guideline provides information related to coverage determinations only and does not imply that a service or treatment is clinically appropriate or inappropriate. The provider and the member are responsible for all decisions regarding the appropriateness of care. Providers should provide BCBSAZ complete medical rationale when requesting any exceptions to these guidelines. The section identified as “Description” defines or describes a service, procedure, medical device or drug and is in no way intended as a statement of medical necessity and/or coverage. The section identified as “Criteria” defines criteria to determine whether a service, procedure, medical device or drug is considered medically necessary or experimental or investigational. State or federal mandates, e.g., FEP program, may dictate that any drug, device or biological product approved by the U.S. Food and Drug Administration (FDA) may not be considered experimental or investigational and thus the drug, device or biological product may be assessed only on the basis of medical necessity. Pharmacy Coverage Guidelines are subject to change as new information becomes available. For purposes of this Pharmacy Coverage Guideline, the terms "experimental" and "investigational" are considered to be interchangeable.
    [Show full text]
  • Drug Repurposing Opportunities in Pancreatic Ductal Adenocarcinoma
    pharmaceuticals Review Drug Repurposing Opportunities in Pancreatic Ductal Adenocarcinoma Rita Rebelo 1,2,† ,Bárbara Polónia 1,2,†,Lúcio Lara Santos 3,4, M. Helena Vasconcelos 1,2,5,* and Cristina P. R. Xavier 1,2,5,* 1 Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; [email protected] (R.R.); [email protected] (B.P.) 2 i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal 3 Experimental Pathology and Therapeutics Group, IPO—Instituto Português de Oncologia, 4200-072 Porto, Portugal; [email protected] 4 ICBAS—Biomedical Sciences Institute Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal 5 Department of Biological Sciences, FFUP—Faculty of Pharmacy of the University of Porto, 4200-135 Porto, Portugal * Correspondence: [email protected] (M.H.V.); [email protected] (C.P.R.X.) † These authors equally contributed to this work. Abstract: Pancreatic ductal adenocarcinoma (PDAC) is considered one of the deadliest tumors worldwide. The diagnosis is often possible only in the latter stages of the disease, with patients already presenting an advanced or metastatic tumor. It is also one of the cancers with poorest prognosis, presenting a five-year survival rate of around 5%. Treatment of PDAC is still a major challenge, with cytotoxic chemotherapy remaining the basis of systemic therapy. However, no major advances have been made recently, and therapeutic options are limited and highly toxic. Thus, novel therapeutic options are urgently needed. Drug repurposing is a strategy for the development of novel treatments using approved or investigational drugs outside the scope of the original clinical indication.
    [Show full text]