(SYSTCO I) Expedition—Antarctic Eastern Weddell Sea

Total Page:16

File Type:pdf, Size:1020Kb

(SYSTCO I) Expedition—Antarctic Eastern Weddell Sea Zootaxa 3692 (1): 028–101 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3692.1.5 http://zoobank.org/urn:lsid:zoobank.org:pub:136660B8-7DCC-490E-AB79-46546CC18E40 Demospongiae of ANT XXIV/2 (SYSTCO I) Expedition—Antarctic Eastern Weddell Sea CHRISTIAN GÖCKE1, 2 & DORTE JANUSSEN1 1Forschungsinstitut und Naturmuseum Senckenberg, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany 2Corresponding author. E-mail: [email protected] Table of contents Abstract . 31 Introduction . 31 Materials and methods . 32 Results . 37 Order Spirophorida Bergquist & Hogg, 1969 . 37 Family Tetillidae Sollas, 1886 . 37 Genus Cinachyra Sollas, 1886 . 37 Cinachyra antarctica (Carter, 1872) . 37 Genus Tetilla Schmidt, 1868 . 39 Tetilla leptoderma Sollas, 1886 . 39 Order Hadromerida Topsent, 1894 . 40 Family Polymastiidae Gray, 1867 . 40 Genus Polymastia Bowerbank, 1864. 40 Polymastia invaginata Kirkpatrick, 1907 . 41 Genus Radiella Schmidt, 1870 . 41 Radiella antarctica Plotkin & Janussen, 2008 . 41 Genus Tentorium Vosmaer, 1887. 41 Tentorium papillatum (Kirkpatrick, 1908) . 42 Family Suberitidae Schmidt, 1870 . 42 Genus Pseudosuberites Topsent, 1896 . 42 Pseudosuberites hyalinus (Ridley & Dendy, 1886) . 42 Pseudosuberites nudus Koltun, 1964 . 43 Family Stylocordylidae Topsent, 1892 . 45 Genus Stylocordyla Thomson, 1873 . 45 Stylocordyla cf. chupachups Uriz, Gili, Orejas & Perez-Porro, 2011. 45 Order Poecilosclerida Topsent, 1928 . 46 Suborder Microcionina Hajdu, van Soest & Hooper, 1994. 46 Family Acarnidae Dendy, 1922 . 46 Genus Cornulum Carter, 1876 . 46 Cornulum antarcticum sp. nov. 46 Genus Iophon Gray, 1867 . 50 Iophon unicorne Topsent, 1907. 50 Family Raspailiidae Nardo, 1833 . 50 Subfamily Raspailiinae Nardo, 1833. 50 Genus Raspailia Nardo, 1833 . 50 Subgenus Hymeraphiopsis Hooper, 1991 . 50 Raspailia (Hymeraphiopsis) irregularis Hentschel, 1914. 51 Suborder Myxillina Hajdu, Van Soest & Hooper, 1994 . 51 Family Coelosphaeridae Dendy, 1922 . 51 Genus Inflatella Schmidt, 1875 . 51 Inflatella belli (Kirkpatrick, 1907) . 51 Genus Lissodendoryx Topsent, 1892 . 51 Subgenus Ectyodoryx . 51 Lissodendoryx (Ectyodoryx) ramilobosa (Topsent, 1916) . 52 28 Accepted by M. Schueller: 24 Apr. 2013; published: 25 Jul. 2013 Subgenus Lissodendoryx Topsent, 1892 . ..
Recommended publications
  • New Zealand Oceanographic Institute Memoir 100
    ISSN 0083-7903, 100 (Print) ISSN 2538-1016; 100 (Online) , , II COVER PHOTO. Dictyodendrilla cf. cavernosa (Lendenfeld, 1883) (type species of Dictyodendri/la Bergquist, 1980) (see page 24), from NZOI Stn I827, near Rikoriko Cave entrance, Poor Knights Islands Marine Reserve. Photo: Ken Grange, NZOI. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ NATIONAL INSTITUTE OF WATER AND ATMOSPHERIC RESEARCH The Marine Fauna of New Zealand: Index to the Fauna 2. Porifera by ELLIOT W. DAWSON N .Z. Oceanographic Institute, Wellington New Zealand Oceanographic Institute Memoir 100 1993 • This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Cataloguing in publication DAWSON, E.W. The marine fauna of New Zealand: Index to the Fauna 2. Porifera / by Elliot W. Dawson - Wellington: New Zealand Oceanographic Institute, 1993. (New Zealand Oceanographic Institute memoir, ISSN 0083-7903, 100) ISBN 0-478-08310-6 I. Title II. Series UDC Series Editor Dennis P. Gordon Typeset by Rose-Marie C. Thompson NIWA Oceanographic (NZOI) National Institute of Water and Atmospheric Research Received for publication: 17 July 1991 © NIWA Copyright 1993 2 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ CONTENTS Page ABSTRACT 5 INTRODUCTION 5 SCOPE AND ARRANGEMENT 7 SYSTEMATIC LIST 8 Class DEMOSPONGIAE 8 Subclass Homosclcromorpha ..............................................................................................
    [Show full text]
  • Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
    Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data.
    [Show full text]
  • Appendix: Some Important Early Collections of West Indian Type Specimens, with Historical Notes
    Appendix: Some important early collections of West Indian type specimens, with historical notes Duchassaing & Michelotti, 1864 between 1841 and 1864, we gain additional information concerning the sponge memoir, starting with the letter dated 8 May 1855. Jacob Gysbert Samuel van Breda A biography of Placide Duchassaing de Fonbressin was (1788-1867) was professor of botany in Franeker (Hol­ published by his friend Sagot (1873). Although an aristo­ land), of botany and zoology in Gent (Belgium), and crat by birth, as we learn from Michelotti's last extant then of zoology and geology in Leyden. Later he went to letter to van Breda, Duchassaing did not add de Fon­ Haarlem, where he was secretary of the Hollandsche bressin to his name until 1864. Duchassaing was born Maatschappij der Wetenschappen, curator of its cabinet around 1819 on Guadeloupe, in a French-Creole family of natural history, and director of Teyler's Museum of of planters. He was sent to school in Paris, first to the minerals, fossils and physical instruments. Van Breda Lycee Louis-le-Grand, then to University. He finished traveled extensively in Europe collecting fossils, especial­ his studies in 1844 with a doctorate in medicine and two ly in Italy. Michelotti exchanged collections of fossils additional theses in geology and zoology. He then settled with him over a long period of time, and was received as on Guadeloupe as physician. Because of social unrest foreign member of the Hollandsche Maatschappij der after the freeing of native labor, he left Guadeloupe W etenschappen in 1842. The two chief papers of Miche­ around 1848, and visited several islands of the Antilles lotti on fossils were published by the Hollandsche Maat­ (notably Nevis, Sint Eustatius, St.
    [Show full text]
  • Marine News Iucn Global Marine and Polar Programme
    MARINE NEWS IUCN GLOBAL MARINE AND POLAR PROGRAMME ISSUE 12 - NOVEMBER 2015 Climate Change Adaptation Special MARINE NEWS Issue 12 -November 2015 In this Issue... IUCN Global Marine and Polar Programme 1 Editorial Rue Mauverney 28 By Pierre-Yves Cousteau 1196 Gland, Switzerland Tel +4122 999 0217 Fax +4122 999 0002 2 Overview of the GMPP www.iucn.org/marine 4 Global Threats Editing and design: Oceans and Climate Change, Alexis McGivern © Pierre-Yves Cousteau Ocean Warming, Ocean Acidifi- Back issues available cation, Plastic pollution The ocean is our future; for better or externalisation of environmental costs beginning of the “digitization of the at: www.iucn.org/about/ for worse. (to abolish the business practice of Earth”. How will Big Data shape con- work/programmes/marine/ deferring onto society and natural servation, sustainable development gmpp_newsletter “There are no passengers on space- capital all the negative impacts of and decision making? 12 Global Coasts ship Earth. We are all crew.” - Mar- economic activities), and the cogni- Front cover: © XL Catlin shall McLuhan, 1965. tive frameworks and values that we We are living a fascinating time, where Blue Solutions and Blue Forests, are conditioned for by mainstream the immense challenges mankind fac- Seaview Survey The advent of agriculture over 10,000 media and politicians (obsession with es are matched by the technological Vamizi, Maldives, WGWAP, BEST years ago had a profound socio-eco- financial success, personal image ability to innovate and adapt. The bar- Top picture: A fire coral be- Initiative nomic impact on mankind. Today and hedonism). These challenges riers that hold us back from designing fore and after bleaching.
    [Show full text]
  • Isodictya Palmata Class: Demospongiae Order
    Remains of sponges can be found along the shoreline. Isodictya palmata Class: Demospongiae Order: Poecilosclerida Family: Isodictyidae Genus: Isodictya Distribution This species occurs in the Demospongiae is the most diverse class of sponges, including more boreal and sub-arctic North than 90% of the known species commonly known as Atlantic. It is widespread at demosponges. In this class the order Poecilosclerida is the largest both sides of the North and most diverse order, with 25 families and several thousand Atlantic Ocean, as far south species. One of these families is Isodictyidae. This family contains as the British Isles in the a great variety of species with a wide global distribution. The east and the Gulf of Main genus Isodictya is a North Atlantic species in this family. It is in the west. found from Newfoundland to North Carolina and occurs in Nova Scotian waters. Habitat For the most part sponges occur on bedrock. They attach They are benthic, living at themselves firmly to solid surfaces. The hard substrate is the bottom of seas, lakes or typically located at the base of rock cliffs and consists of rivers. At Burntcoat Head outcrops, boulders, and rock debris of decreasing size. This they occupy the species is most often seen on rocky locations at depths of 10 surrounding coastal area. metres and further down to about 37 metres. Depths vary with geographic location. Some other species range from intertidal to hadal depths. Food These are suspension Ambient water is drawn into the body of the sponge through feeders. Minute particles of minute openings (ostia).
    [Show full text]
  • Lithistid’ Tetractinellid
    1 Systematics of ‘lithistid’ tetractinellid 2 demosponges from the Tropical Western 3 Atlantic – implications for phylodiversity 4 and bathymetric distribution 1,2 3 4 5 Astrid Schuster , Shirley A. Pomponi , Andrzej Pisera , Paco 5 6 1,7,8 1,8 6 Cardenas´ , Michelle Kelly , Gert Worheide¨ , and Dirk Erpenbeck 1 7 Department of Earth- & Environmental Sciences, Palaeontology and Geobiology, 8 Ludwig-Maximilians-Universitat¨ M ¨unchen, Richard-Wagner Str. 10, 80333 Munich, 9 Germany 2 10 Current address: Department of Biology, NordCEE, Southern University of Denmark, 11 Campusvej 55, 5300 M Odense, Denmark 3 12 Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 U.S. 1 North, 13 Ft Pierce, FL 34946, USA 4 14 Institute of Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 15 Warszawa, Poland 5 16 Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Husargatan 17 3, 75123 Uppsala, Sweden 6 18 National Centre for Coasts and Oceans, National Institute of Water and Atmospheric 19 Research, Private Bag 99940, Newmarket, Auckland, 1149, New Zealand 7 20 SNSB-Bayerische Staatssammlung f ¨urPalaontologie¨ und Geologie, Richard-Wagner 21 Str. 10, 80333 Munich, Germany 8 22 GeoBio-CenterLMU, Ludwig-Maximilians-Universitat¨ M ¨unchen, Richard-Wagner Str. 10, 23 80333 Munich, Germany 24 Corresponding author: 1,8 25 Dirk Erpenbeck 26 Email address: [email protected] 27 ABSTRACT PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27673v1 | CC BY 4.0 Open Access | rec: 22 Apr 2019, publ: 22 Apr 2019 28 Background Among all present demosponges, lithistids represent a polyphyletic group with 29 exceptionally well preserved fossils dating back to the Cambrian.
    [Show full text]
  • Proposal for a Revised Classification of the Demospongiae (Porifera) Christine Morrow1 and Paco Cárdenas2,3*
    Morrow and Cárdenas Frontiers in Zoology (2015) 12:7 DOI 10.1186/s12983-015-0099-8 DEBATE Open Access Proposal for a revised classification of the Demospongiae (Porifera) Christine Morrow1 and Paco Cárdenas2,3* Abstract Background: Demospongiae is the largest sponge class including 81% of all living sponges with nearly 7,000 species worldwide. Systema Porifera (2002) was the result of a large international collaboration to update the Demospongiae higher taxa classification, essentially based on morphological data. Since then, an increasing number of molecular phylogenetic studies have considerably shaken this taxonomic framework, with numerous polyphyletic groups revealed or confirmed and new clades discovered. And yet, despite a few taxonomical changes, the overall framework of the Systema Porifera classification still stands and is used as it is by the scientific community. This has led to a widening phylogeny/classification gap which creates biases and inconsistencies for the many end-users of this classification and ultimately impedes our understanding of today’s marine ecosystems and evolutionary processes. In an attempt to bridge this phylogeny/classification gap, we propose to officially revise the higher taxa Demospongiae classification. Discussion: We propose a revision of the Demospongiae higher taxa classification, essentially based on molecular data of the last ten years. We recommend the use of three subclasses: Verongimorpha, Keratosa and Heteroscleromorpha. We retain seven (Agelasida, Chondrosiida, Dendroceratida, Dictyoceratida, Haplosclerida, Poecilosclerida, Verongiida) of the 13 orders from Systema Porifera. We recommend the abandonment of five order names (Hadromerida, Halichondrida, Halisarcida, lithistids, Verticillitida) and resurrect or upgrade six order names (Axinellida, Merliida, Spongillida, Sphaerocladina, Suberitida, Tetractinellida). Finally, we create seven new orders (Bubarida, Desmacellida, Polymastiida, Scopalinida, Clionaida, Tethyida, Trachycladida).
    [Show full text]
  • Carnivorous Sponges of the Atlantic and Arctic Oceans
    &DUQLYRURXVVSRQJHVRIWKH$WODQWLFDQG $UFWLF2FHDQV 3K\ORJHQ\WD[RQRP\GLVWULEXWLRQDQGPLFURELDODVVRFLDWLRQVRIWKH &ODGRUKL]LGDH 'HPRVSRQJLDH3RHFLORVFOHULGD -RQ7KRPDVVHQ+HVWHWXQ Dissertation for the degree of philosophiae doctor (PhD) at the University of Bergen 'LVVHUWDWLRQGDWH1RYHPEHUWK © Copyright Jon Thomassen Hestetun The material in this publication is protected by copyright law. Year: 2016 Title: Carnivorous sponges of the Atlantic and Arctic Oceans Phylogeny, taxonomy, distribution and microbial associations of the Cladorhizidae (Demospongiae, Poecilosclerida) Author: Jon Thomassen Hestetun Print: AiT Bjerch AS / University of Bergen 3 Scientific environment This PhD project was financed through a four-year PhD position at the University of Bergen, and the study was conducted at the Department of Biology, Marine biodiversity research group, and the Centre of Excellence (SFF) Centre for Geobiology at the University of Bergen. The work was additionally funded by grants from the Norwegian Biodiversity Centre (grant to H.T. Rapp, project number 70184219), the Norwegian Academy of Science and Letters (grant to H.T. Rapp), the Research Council of Norway (through contract number 179560), the SponGES project through Horizon 2020, the European Union Framework Programme for Research and Innovation (grant agreement No 679849), the Meltzer Fund, and the Joint Fund for the Advancement of Biological Research at the University of Bergen. 4 5 Acknowledgements I have, initially through my master’s thesis and now during these four years of my PhD, in all been involved with carnivorous sponges for some six years. Trying to look back and somehow summarizing my experience with this work a certain realization springs to mind: It took some time before I understood my luck. My first in-depth exposure to sponges was in undergraduate zoology, and I especially remember watching “The Shape of Life”, an American PBS-produced documentary series focusing on the different animal phyla, with an enthusiastic Dr.
    [Show full text]
  • The Extent of Indigenous-Norse Contact and Trade Prior to Columbus Donald E
    Oglethorpe Journal of Undergraduate Research Volume 6 | Issue 1 Article 3 August 2016 The Extent of Indigenous-Norse Contact and Trade Prior to Columbus Donald E. Warden Oglethorpe University, [email protected] Follow this and additional works at: https://digitalcommons.kennesaw.edu/ojur Part of the Canadian History Commons, European History Commons, Indigenous Studies Commons, Medieval History Commons, Medieval Studies Commons, and the Scandinavian Studies Commons Recommended Citation Warden, Donald E. (2016) "The Extent of Indigenous-Norse Contact and Trade Prior to Columbus," Oglethorpe Journal of Undergraduate Research: Vol. 6 : Iss. 1 , Article 3. Available at: https://digitalcommons.kennesaw.edu/ojur/vol6/iss1/3 This Article is brought to you for free and open access by DigitalCommons@Kennesaw State University. It has been accepted for inclusion in Oglethorpe Journal of Undergraduate Research by an authorized editor of DigitalCommons@Kennesaw State University. For more information, please contact [email protected]. The Extent of Indigenous-Norse Contact and Trade Prior to Columbus Cover Page Footnote I would like to thank my honors thesis committee: Dr. Michael Rulison, Dr. Kathleen Peters, and Dr. Nicholas Maher. I would also like to thank my friends and family who have supported me during my time at Oglethorpe. Moreover, I would like to thank my academic advisor, Dr. Karen Schmeichel, and the Director of the Honors Program, Dr. Sarah Terry. I could not have done any of this without you all. This article is available in Oglethorpe Journal of Undergraduate Research: https://digitalcommons.kennesaw.edu/ojur/vol6/iss1/3 Warden: Indigenous-Norse Contact and Trade Part I: Piecing Together the Puzzle Recent discoveries utilizing satellite technology from Sarah Parcak; archaeological sites from the 1960s, ancient, fantastical Sagas, and centuries of scholars thereafter each paint a picture of Norse-Indigenous contact and relations in North America prior to the Columbian Exchange.
    [Show full text]
  • Comparative Ultrastructure of the Spermatogenesis of Three Species of Poecilosclerida (Porifera, Demospongiae)
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/329545710 Comparative ultrastructure of the spermatogenesis of three species of Poecilosclerida (Porifera, Demospongiae) Article in Zoomorphology · December 2018 DOI: 10.1007/s00435-018-0429-4 CITATION READS 1 72 4 authors: Vivian Vasconcellos Philippe Willenz Universidade Federal da Bahia Royal Belgian Institute of Natural Sciences 6 PUBLICATIONS 118 CITATIONS 85 PUBLICATIONS 1,200 CITATIONS SEE PROFILE SEE PROFILE Alexander V Ereskovsky Emilio Lanna French National Centre for Scientific Research Universidade Federal da Bahia 202 PUBLICATIONS 3,317 CITATIONS 31 PUBLICATIONS 228 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Organization and patterning of sponge epithelia View project Sponges from Peru - Esponjas del Perú View project All content following this page was uploaded by Alexander V Ereskovsky on 25 April 2020. The user has requested enhancement of the downloaded file. Zoomorphology https://doi.org/10.1007/s00435-018-0429-4 ORIGINAL PAPER Comparative ultrastructure of the spermatogenesis of three species of Poecilosclerida (Porifera, Demospongiae) Vivian Vasconcellos1,2 · Philippe Willenz3,4 · Alexander Ereskovsky5,6 · Emilio Lanna1,2 Received: 15 August 2018 / Revised: 26 November 2018 / Accepted: 30 November 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract The spermatogenesis of Porifera is still relatively poorly understood. In the past, it was accepted that all species presented a primitive-type spermatozoon, lacking special structures and acrosome. Nonetheless, a very peculiar spermatogenesis resulting in a sophisticated V-shaped spermatozoon with an acrosome was found in Poecilosclerida.
    [Show full text]
  • 3P OHIO. Beyond the Dreamers, and the Approach to the Infernal Regions
    beyond the dreamers, and the approach Iona or the Irish were not, perhaps, the Sfcakcspcaro at Sohpol.' of London, has recently proposed a what chance there would be in the to the infernal regions was neiir at hand. first tishers or oven forgotten colonists plan for the abolition of tho liver. It is citv for .him. The country seems small Froni various sources, contemporary & well-known principle of the develop­ to him; the city large. He feels the 3P The polar ico* snow and darkness were at that strange island. According to nndyquasi-oontemporary, we may form naturally supposed to be pretty near Tacitus an expedition sent by Agricola ment, theory that an organ or limb gqsjsip that-flutters ,about his ears to-be a/trustworthy -general estimate of which is notused-grMual&disappears. disgusting and degrading; and chafes the point where extremes meet. Turn­ conquered the inhabitants of the Ork­ Shakespeare's course of inatructioa. ing away from this awful country, the neys -And proceeded so far into the Thus; the ancestral tail of the human under ~the Bondage^ imposed -by Bis OHIO. during his school days. At that time, species disappeared affervprimeval man neighbors through .their surveillance'of Argonauts, with favoring winds, 'sailed Northern Ocean as even to see Thulo as we nave seen, boys usually^ went to into tha ocean of the west, passing (Icelandic a nlace of show and winjtry ceased tQ use it in climbuuzixaaa. ami JUxaLnrltlainm txrwcm^WlLUiaotuma Ha ror^somerea- the latesVsevenuyears or age, BJRTCTP »>M'>T» mj auuvuia -xatxm- vrnv xivsuu Pillars of Hercules (the Straits of Gib­ the land of the Sviones (SoandinavTans) the practice of cramping tnemvcogetn "— —1 hn tered at once upon the.
    [Show full text]
  • 9 · the Growth of an Empirical Cartography in Hellenistic Greece
    9 · The Growth of an Empirical Cartography in Hellenistic Greece PREPARED BY THE EDITORS FROM MATERIALS SUPPLIED BY GERMAINE AUJAe There is no complete break between the development of That such a change should occur is due both to po­ cartography in classical and in Hellenistic Greece. In litical and military factors and to cultural developments contrast to many periods in the ancient and medieval within Greek society as a whole. With respect to the world, we are able to reconstruct throughout the Greek latter, we can see how Greek cartography started to be period-and indeed into the Roman-a continuum in influenced by a new infrastructure for learning that had cartographic thought and practice. Certainly the a profound effect on the growth of formalized know­ achievements of the third century B.C. in Alexandria had ledge in general. Of particular importance for the history been prepared for and made possible by the scientific of the map was the growth of Alexandria as a major progress of the fourth century. Eudoxus, as we have seen, center of learning, far surpassing in this respect the had already formulated the geocentric hypothesis in Macedonian court at Pella. It was at Alexandria that mathematical models; and he had also translated his Euclid's famous school of geometry flourished in the concepts into celestial globes that may be regarded as reign of Ptolemy II Philadelphus (285-246 B.C.). And it anticipating the sphairopoiia. 1 By the beginning of the was at Alexandria that this Ptolemy, son of Ptolemy I Hellenistic period there had been developed not only the Soter, a companion of Alexander, had founded the li­ various celestial globes, but also systems of concentric brary, soon to become famous throughout the Mediter­ spheres, together with maps of the inhabited world that ranean world.
    [Show full text]