Description of the Edgemont Quadrangle

Total Page:16

File Type:pdf, Size:1020Kb

Description of the Edgemont Quadrangle DESCRIPTION OF THE EDGEMONT QUADRANGLE. By N. H. Dartoii and W. S. Tangier Smith. GEOGRAPHY. Laramie Mountains eastward through Wyoming, The streams which flow down its western slope are the older and harder rocks outcrop. The normal across the northwest corner of Nebraska, and for affluents of Beaver Creek to the southwest and of slopes, however, have been so modified by erosion Position and extent. The Edgemont quadrangle many miles into southern South Dakota, Pine the Belle Fourche to the northwest. Rising in that the lowest points are not toward the south but embraces the quarter of a square degree which Ridge marks the northern margin of the higher shallow, park-like valleys on the plateau, they sink in the central and eastern parts, along Cheyenne lies between parallels 43° and 43° 30' north lati­ levels of the Great Plains, and presents cliffs and into deep canyons with precipitous walls of lime­ River, to which all the other streams of the quad­ tude and meridians 103° 30' and 104° west longi­ steep slopes descending a thousand feet into the stone, often many hundred feet high. The lime­ rangle are tributary. tude. It measures approximately 34 i miles from drainage basin of Cheyenne River, one of the most stone plateau extending southward swings around The lower slopes of the Black Hills are charac­ north to south and 25i miles from east to west, and important branches of the Missouri. From this to the eastern side of the hills, where, owing to the terized by bare rocks and generally thin soils. The its area is about 871 square miles. It comprises basin northward there is a succession of other steeper dip of the strata, it narrows to a ridge rocks of the quadrangle have, therefore, a marked the western half of Fall River County, S. Dak., basins with relatively low intervening divides, having a steep western face. This ridge is inter­ influence on its topography, the three chief factors with a strip of Ouster County on the north and which do not attain the high level of the Great rupted by water gaps of all the larger streams in governing the physiographic development of the a little of Sioux County, Nebr., on the south. Plains to the south. It is in this lower portion the southeastern and eastern portion of the hills, region being the hardness, the attitude, and the The northeastern portion of the quadrangle lies on of the plains that the Edgemont quadrangle is situ­ which rise in the high limestone plateau, cross the thickness of the formations. the slopes of the Black Hills, but the larger part ated. region of crystalline rocks, and flow through The quadrangle includes a considerable part of of it belongs to the Great Plains, although these Drainage. The northern portion of the Great canyons in the flanking rocks of the eastern side the southern portion of the Black Hills dome, the plains are lower here than in the greater part of Plains above described is drained by the middle to Cheyenne River. All around the Black Hills axis of the uplift passing a little east of and nearly adjoining portions of Nebraska and Wyoming. branches of Missouri River, of which the larger the limestone plateau slopes outward, but near parallel to a north-south line through the center of The district is crossed by South Branch of Chey­ members are Yellowstone, Powder, Little Mis­ its base there is a low ridge of Minnekahta lime­ the quadrangle. Normally the rocks west of the enne River and it all lies within the drainage souri, Grand, Cannonball, Moreau, Cheyenne, Bad, stone with a steep infacing escarpment from. 40 axial line have a comparatively low dip, while those basin of that stream. and White rivers. On the summit of Pine Ridge to 50 feet high, surmounted by a bare, rocky east of it are inclined at a somewhat greater angle. Being part of the Black Hills and the Great not far south of the escarpment is Niobrara River, incline which descends several hundred feet into This simple structure is modified by minor folding Plains, this quadrangle illustrates many features which rises in the midst of the plains some dis­ the Red Valley. This minor escarpment and slope which has caused local variations in the dip. of both, and a general account of these provinces tance east of the northern end of the Laramie is at intervals sharply notched by canyons, which Most of these minor folds have steep westerly and will be given before the detailed description is Mountains. To the south are the Rio Grande, on each stream form a characteristic narrows or low easterly dips, and are roughly parallel to the presented. Platte River with two large branches heading far "gate." main Black Hills axis. The most important fold back in the Rocky Mountains, and Arkansas River, The Red Valley. The Red Valley is a wide occurs in a low dome more than 20 miles in GREAT PLAINS PROVINCE. which crosses the plains to the southeast and depression that extends continuously around the length, near the eastern margin of the quadrangle. General features. The Great Plains province affords an outlet for the drainage from a large hills, with long, high limestone slopes on the inner While the main Black Hills dome and the minor is that part of the continental slope which extends watershed of mountains and plains. Between the side and the steep hogback ridge on the outer side. folds have had a marked effect on the development from the foot of the Rocky Mountains eastward Rio Grande and the Arkansas are Cimarron River It is often 2 miles wide, though it is much narrower of the physiographic features, they did not have so to the valley of the Mississippi, where it merges and numerous smaller streams heading in the where the strata dip steeply, and is one of the great an influence as the character of the rocks. into the prairies on the north and the low plains western portion of the plains. Between Arkansas most conspicuous features of the region, owing in There is no structural break corresponding to the adjoining the Gulf coast and the Mississippi and Platte rivers is Republican River, rising near no small degree to the red color of its soil and the marked contrast in the topography north and embayment on the south. The plains present wide the one hundred and fifth meridian, and an ex­ absence of trees, the main forests of the Black south of Cheyenne River, and since the Black areas of tabular surfaces traversed by broad, shal­ tended system of local drainage in eastern Kansas Hills ending at the margin of the limestone slopes. Hills structure does not cease with the hogback or low valleys of large rivers that rise mainly in the and Nebraska. The larger streams flowing out of the hills gen­ the Cheyenne, but continues unbroken over the Rocky Mountains and are more or less deeply cut erally cross it without material deflection, and entire quadrangle, the changes in topography must by narrower valleys of the lateral drainage. THE BLACK HILLS. between divides which are usually so low as to give be ascribed to differences in the character of the Smooth surfaces and eastward-sloping plains are General features. In western South Dakota the valley the appearance of being continuous, but rocks. the characteristic features, but in portions of the and eastern Wyoming a small group of mountains in its middle eastern section it is extensively choked Relief. The rocks of the quadrangle vary province there are buttes, extended escarpments, known as the Black Hills rises several thousand with Oligocene deposits. greatly in hardness, ranging from extremely soft and local areas of badlands. Wide districts of feet above the plains. Having abundant rainfall, The hogback rim. The hogback range consti­ shale and chalk to resistant quartzite, and the sand hills surmount the plains in some localities, it constitutes, through its vegetation and streams, tuting the outer rim of the hills is usually a topographic forms are due largely to alternation of notably in northwestern Nebraska, where sand an oasis in the semiarid region. The hills are single-crested ridge of hard sandstone, varying in harder and softer layers. The softer rocks, espe­ dunes occupy an area of several thousand square carved from a dome-shaped uplift of the earth's prominence and in steepness of slope. At the north cially where they occur between the more resistant miles. The province is developed on a great crust, and consist largely of rocks which are older and south and locally along the middle western formations, are characterized by valleys, while the thickness of soft rocks, sands, clays, and loams, in than those forming the surface of the Great Plains section it spreads out into long, sloping plateaus. harder strata tend to form uplands or ridges. If general spread in thin but extensive beds sloping and which contain valuable minerals. The length It nearly always presents a steep face toward the the hard rocks are underlain by a softer formation, gently eastward with the slope of the plains. of the more elevated area is about 100 miles, and Red Valley, above which the crest line rises several mesas bordered by abrupt cliffs are formed when These deposits lie on relatively smooth surfaces of its greatest width is 50 miles. The hills rise hundred feet, but on the outer side it slopes more the strata are horizontal or nearly so, and "hog­ the older rocks. The materials of the formations abruptly from the plains, although the flanking or less steeply down to the plains that extend far back" ridges result when the beds are inclined.
Recommended publications
  • Geologic Assessment of Undiscovered Oil and Gas in the Powder River Basin Province, Wyoming and Montana Click Here to Return to Volume Title Page by Lawrence O
    Chapter 1 Geologic Assessment of Undiscovered Oil and Gas in the Powder River Basin Province, Wyoming and Montana Click here to return to Volume Title Page By Lawrence O. Anna Chapter 1 of Total Petroleum Systems and Geologic Assessment of Oil and Gas Resources in the Powder River Basin Province, Wyoming and Montana By U.S. Geological Survey Powder River Basin Assessment Team U.S. Geological Survey Digital Data Series DDS–69–U U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2010 Revised: April 2010 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Lawrence O. Anna, 2010, Geologic assessment of undiscovered oil and gas in the Powder River Basin Province Wyoming and Montana, in Total Petroleum Systems and Geologic Assessment of Oil and Gas Resources in the Powder River Basin Province, Wyoming and Montana: U.S.
    [Show full text]
  • Post-Carboniferous Stratigraphy, Northeastern Alaska by R
    Post-Carboniferous Stratigraphy, Northeastern Alaska By R. L. DETTERMAN, H. N. REISER, W. P. BROSGE,and]. T. DUTRO,JR. GEOLOGICAL SURVEY PROFESSIONAL PAPER 886 Sedirnentary rocks of Permian to Quaternary age are named, described, and correlated with standard stratigraphic sequences UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1975 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Detterman, Robert L. Post-Carboniferous stratigraphy, northeastern Alaska. (Geological Survey Professional Paper 886) Bibliography: p. 45-46. Supt. of Docs. No.: I 19.16:886 1. Geology-Alaska. I. Detterman, Robert L. II. Series: United States. Geological Survey. Professional Paper 886. QE84.N74P67 551.7'6'09798 74-28084 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-02687-2 CONTENTS Page Page Abstract __ _ _ _ _ __ __ _ _ _ _ _ _ _ _ _ _ _ _ __ __ _ _ _ _ _ _ __ __ _ _ __ __ __ _ _ _ _ __ 1 Stratigraphy__:_Continued Introduction __________ ----------____ ----------------____ __ 1 Kingak Shale ---------------------------------------- 18 Purpose and scope ----------------------~------------- 1 Ignek Formation (abandoned) -------------------------- 20 Geographic setting ------------------------------------ 1 Okpikruak Formation (geographically restricted) ________ 21 Previous work and acknowledgments ------------------ 1 Kongakut Formation ----------------------------------
    [Show full text]
  • Understanding and Mapping Variability of the Niobrara Formation
    UNDERSTANDING AND MAPPING VARIABILITY OF THE NIOBRARA FORMATION ACROSS WATTENBERG FIELD, DENVER BASIN by Nicholas Matthies A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Geology). Golden, Colorado Date________________ Signed:____________________________________ Nicholas Matthies Signed:____________________________________ Dr. Stephen A. Sonnenberg Thesis Advisor Golden, Colorado Date:_______________ Signed:____________________________________ Dr. Paul Santi Professor and Head Department of Geology and Geological Engineering ii ABSTRACT Wattenberg Field has been a prolific producer of oil and gas since the 1970s, and a resurgence of activity in recent years in the Niobrara Formation has created the need for a detailed study of this area. This study focuses on mapping regional trends in stratigraphy, structure, and well log properties using digital well logs, 3D seismic data, and core X-ray diffraction data. Across Wattenberg, the Niobrara is divided into the Smoky Hill Member (made up of A Chalk, A Marl, B Chalk, B Marl, C Chalk, C Marl, and Basal Chalk/Marl) and the Fort Hays Limestone Member. Directly beneath the Niobrara, the Codell Sandstone is the uppermost part of the Carlile Formation. Stratigraphic trends in these units are primarily due to differential compaction and compensational sedimentation. The largest structural trend is a paleo-high that runs east-west to northeast-southwest across the middle of the field. It has a relief of about 100 ft, and is 20 mi wide. The A Chalk and A Marl show evidence of submarine erosion over this area. Faults mapped from 3D seismic data are consistent with previously published data on a proposed polygonal fault system in the Denver Basin.
    [Show full text]
  • Status of Mineral Resource Information for the Fort Berthold Indian Reservation, North Dakota
    STATUS OF MINERAL RESOURCE INFORMATION FOR THE FORT BERTHOLD INDIAN RESERVATION, NORTH DAKOTA By Bradford B. Williams Mary E. Bluemle U.S. Bureau of Mines N. Dak. Geological Survey Administrative report BIA-40 1978 CONTENTS SUMMARY AND CONCLUSIONS ................................................. 1 INTRODUCTION ................................................................ 1 Area Location and Access .................................................... 1 Past Investigations .......................................................... 2 Present Study and Acknowledgments ........................................... 2 Land Status................................................................ 2 Physiography .............................................................. 3 GEOLOGY ..................................................................... 4 Stratigraphy ............................................................... 4 Subsurface .......................................................... 4 Surface ............................................................. 4 General ....................................................... 4 Bullion Creek and Sentinel Butte Formations ......................... 8 Golden Valley Formation......................................... 9 Cole Harbor Formation .......................................... 9 Structure................................................................. 10 MINERAL RESOURCES ......................................................... 11 General .................................................................
    [Show full text]
  • Stratigraphy of the Upper Cretaceous Fox Hills Sandstone and Adjacent
    Stratigraphy of the Upper Cretaceous Fox Hills Sandstone and AdJa(-erit Parts of the Lewis Sliale and Lance Formation, East Flank of the Rock Springs Uplift, Southwest lo U.S. OEOLOGI AL SURVEY PROFESSIONAL PAPER 1532 Stratigraphy of the Upper Cretaceous Fox Hills Sandstone and Adjacent Parts of the Lewis Shale and Lance Formation, East Flank of the Rock Springs Uplift, Southwest Wyoming By HENRYW. ROEHLER U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1532 Description of three of/lapping barrier shorelines along the western margins of the interior seaway of North America UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1993 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Library of Congress Cataloging-in-Publication Data Roehler, Henry W. Stratigraphy of the Upper Cretaceous Fox Hills sandstone and adjacent parts of the Lewis shale and Lance formation, east flank of the Rock Springs Uplift, southwest Wyoming / by Henry W. Roehler. p. cm. (U.S. Geological Survey professional paper ; 1532) Includes bibliographical references. Supt.ofDocs.no.: I19.16:P1532 1. Geology, Stratigraphic Cretaceous. 2. Geology Wyoming. 3. Fox Hills Formation. I. Geological Survey (U.S.). II. Title. III. Series. QE688.R64 1993 551.7T09787 dc20 92-36645 CIP For sale by USGS Map Distribution Box 25286, Building 810 Denver Federal Center Denver, CO 80225 CONTENTS Page Page Abstract......................................................................................... 1 Stratigraphy Continued Introduction................................................................................... 1 Formations exposed on the east flank of the Rock Springs Description and accessibility of the study area ................
    [Show full text]
  • Niobrara Total Petroleum System in the Southwestern Wyoming Province
    Chapter 6 Niobrara Total Petroleum System in the Southwestern Wyoming Province By Thomas M. Finn and Ronald C. Johnson Volume Title Page Chapter 6 of Petroleum Systems and Geologic Assessment of Oil and Gas in the Southwestern Wyoming Province, Wyoming, Colorado, and Utah By USGS Southwestern Wyoming Province Assessment Team U.S. Geological Survey Digital Data Series DDS–69–D U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey Charles G. Groat, Director U.S. Geological Survey, Denver, Colorado: Version 1, 2005 For sale by U.S. Geological Survey, Information Services Box 25286, Denver Federal Center Denver, CO 80225 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Manuscript approved for publication May 10, 2005 ISBN= 0-607-99027-9 Contents Abstract ……………………………………………………………………………………… 1 Introduction …………………………………………………………………………………… 1 Acknowledgments ……………………………………………………………………………
    [Show full text]
  • Schmitz, M. D. 2000. Appendix 2: Radioisotopic Ages Used In
    Appendix 2 Radioisotopic ages used in GTS2020 M.D. SCHMITZ 1285 1286 Appendix 2 GTS GTS Sample Locality Lat-Long Lithostratigraphy Age 6 2s 6 2s Age Type 2020 2012 (Ma) analytical total ID ID Period Epoch Age Quaternary À not compiled Neogene À not compiled Pliocene Miocene Paleogene Oligocene Chattian Pg36 biotite-rich layer; PAC- Pieve d’Accinelli section, 43 35040.41vN, Scaglia Cinerea Fm, 42.3 m above base of 26.57 0.02 0.04 206Pb/238U B2 northeastern Apennines, Italy 12 29034.16vE section Rupelian Pg35 Pg20 biotite-rich layer; MCA- Monte Cagnero section (Chattian 43 38047.81vN, Scaglia Cinerea Fm, 145.8 m above base 31.41 0.03 0.04 206Pb/238U 145.8, equivalent to GSSP), northeastern Apennines, Italy 12 28003.83vE of section MCA/84-3 Pg34 biotite-rich layer; MCA- Monte Cagnero section (Chattian 43 38047.81vN, Scaglia Cinerea Fm, 142.8 m above base 31.72 0.02 0.04 206Pb/238U 142.8 GSSP), northeastern Apennines, Italy 12 28003.83vE of section Eocene Priabonian Pg33 Pg19 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 14.7 m above base of 34.50 0.04 0.05 206Pb/238U 14.7, equivalent to Ancona, northeastern Apennines, 13.6011 E section MAS/86-14.7 Italy Pg32 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 12.9 m above base of 34.68 0.04 0.06 206Pb/238U 12.9 Ancona, northeastern Apennines, 13.6011 E section Italy Pg31 Pg18 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 12.7 m above base of 34.72 0.02 0.04 206Pb/238U
    [Show full text]
  • Cretaceous Research 69 (2017) 49E55
    Cretaceous Research 69 (2017) 49e55 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes High-resolution calcareous nannofossil biostratigraphy of the Santonian/Campanian Stage boundary, Western Interior Basin, USA * Zachary A. Kita a, , David K. Watkins a, Bradley B. Sageman b a Department of Earth and Atmospheric Sciences, University of Nebraska, Lincoln, NE 68588, USA b Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL 60208, USA article info abstract Article history: The base of the Campanian Stage does not have a ratified Global Stratotype Section and Point (GSSP); Received 26 June 2016 however, several potential boundary markers have been proposed including the base of the Scaphites leei Received in revised form III ammonite Zone and the base of the paleomagnetic Chron C33r. Calcareous nannofossil assemblages 25 August 2016 from the Smoky Hill Member of the Niobrara Formation in the central Western Interior Seaway, USA Accepted in revised form 28 August 2016 were analyzed from two localities to determine relevant biohorizons and their relationships to these Available online 30 August 2016 potential boundary markers. In a previous study, the Aristocrat Angus 12-8 core (Colorado) was astro- chronologically dated and constrained using macrofossil zonations and radiometric ages. The Smoky Hill Keywords: Calcareous nannofossils Member type area (Kansas) provides an expanded interval with good to excellent nannofossil Biostratigraphy preservation.
    [Show full text]
  • Karst Features in the Black Hills, Wyoming and South Dakota- Prepared for the Karst Interest Group Workshop, September 2005
    193 INTRODUCTION TO THREE FIELD TRIP GUIDES: Karst Features in the Black Hills, Wyoming and South Dakota- Prepared for the Karst Interest Group Workshop, September 2005 By Jack B. Epstein1 and Larry D. Putnam2 1U.S. Geological Survey, National Center, MS 926A, Reston, VA 20192 2Hydrologist, U.S. Geological Survey, 1608 Mountain View Road, Rapid City, SD 57702. This years Karst Interest Group (KIG) field trips will demonstrate the varieties of karst to be seen in the semi-arid Black Hills of South Dakota and Wyoming, and will offer comparisons to karst seen in the two previous KIG trips in Florida (Tihansky and Knochenmus, 2001) and Virginia (Orndorff and Harlow, 2002) in the more humid eastern United States. The Black Hills comprise an irregularly shaped uplift, elongated in a northwest direction, and about 130 miles long and 60 miles wide (figure 1). Erosion, following tectonic uplift in the late Cretaceous, has exposed a core of Precambrian metamorphic and igneous rocks which are in turn rimmed by a series of sed- iments of Paleozoic and Mesozoic age which generally dip away from the center of the uplift. The homocli- nal dips are locally interrupted by monoclines, structural terraces, low-amplitude folds, faults, and igneous intrusions. These rocks are overlapped by Tertiary and Quaternary sediments and have been intruded by scattered Tertiary igneous rocks. The depositional environments of the Paleozoic and Mesozoic sedimen- tary rocks ranged from shallow marine to near shore-terrestrial. Study of the various sandstones, shales, siltstones, dolomites and limestones indicate that these rocks were deposited in shallow marine environ- ments, tidal flats, sand dunes, carbonate platforms, and by rivers.
    [Show full text]
  • Colorado's New Oil Boom — the Niobrara
    Volume 13, Number 1 C OLORADO G EOLOGICAL S URVEY Spring 2011 Colorado’s New Oil Boom — the Niobrara Introduction Note from the Director: Niobrara shale oil is an exciting new by EOG Resources in October 2009 and hydrocarbon prospect for Colorado. produced 50,000 barrels of oil in its first “New oil boom.” Our resource-rich state, while having 90 days. After a year, it is still produc- The words stir developed extensive natural gas reserves ing more than 2,500 barrels of oil per excitement in the over the past couple of decades, is now month. This is significant given that the hearts of landmen, in the process of ‘rediscovering’ its oil average oil well in the U.S. generates just landowners, geol- in organic-rich shale. The current eco- 300 barrels of oil per month. Another ogists, engineers, nomics of fossil fuels, combined with well, the Gemini well drilled by Noble regulators, envi- the development of new drilling and Energy in early 2010, produced over ronmentalists, tax stimulation technologies, is driving this 32,000 barrels of oil in 6 months. These collectors, the unemployed, and renaissance. early results are certainly promising, but charlatans. Although oil production The Niobrara Formation, one such for each of the more prolific wells, there from the Niobrara strata began early organic-rich shale, is a particularly hot are others that show little or no produc- in the 20th century; the new oil target here in Colorado. While a large tion. How quickly the flow of oil wells in Colorado are causing a land volume of natural gas (>700 billion cubic declines is very important for looking rush and drilling boom in many feet by one estimate) has already been towards future potential of the resource parts of the state.
    [Show full text]
  • Coal Resources of New Mexico
    NEW MEXICO BUREAU OF MINES & MINERAL RESOURCES A DIVISION OF NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY RESOURCE MAP 20 C 0 ws ° 0 !07 0 R A .a>1,0jo ,, \ I) .-·- '! ·field-· 0 '- ""-. ,.___ .-. ... - ...S ,;;.,,;!i;;";'. - r '- / \ \ '\ \ ( ;,\) ( ;rqaae -< fie sf'. foad1..,,-;, ' -�- ' \) •' _);i<,,,o ' .1/o,v' _. ·-: No•oool ··· :.:c Grauiand, \ ' e�qm� . I '(';.-- r ring�. f ,, ,\� -,, field ..._ a 'I Nase• ,_,,,- � I • ' 'Ji,( ,.,.j_ ··�• \ \ C "' � Kg 1 , . ' -)' -_---7('+--�\ • I � . \ ' - -'-<- - Star lake field M�ra,,. ;_ ,:_;:, F, Uoioo \_ I // "<. l , ' -� _ leld _\!ooin •\ An;,M-1 ' Irr : °';;, .T'· I I .,v1./ - - • \,._ Cr....___ I ...' · ' �· � -·.-:)"1 ' ··-¼, __ ._,. .-·.' · 'I 51 -....__• •• . � £ (.KP. \ !��·· I ., / Mesa 'I • Lok, ' ""' '--!��·!i c<c,,c..,�� \ ,..�- c,,-.1111, f'��n10,. z a:B,anc., \ ' 5ttnl" ,, I. ' ,, 7 �,ild· Bernal n j()\ 2 BernaltH re." / . cwa,�Y/� Ran �- . L J L L / ) lsh!la Pt1et)lo o: / T I' --._, -'0..._Lo,; Lu/li>S A / ' - � I ' I M��Uow ) .-1a11�11e •ro,,�M Bel<rn c[_,___ J.......___,, . t +---____.,,_ " " " '" JI l2 BA; t-1 - r1ovd PQrtales \ J . <.,, . - ,Y � '.,,7 /, r ' . T _.j.,,' I ' t- -,+! I ' - + I' ,I ' I 107° E X [ C 0 Coal resources of New Mexico Scale 1:1,000,000 1996 1 16 inch equals appro�imate!y mi 10 20 3-0 40 Base modified from "Stote of New Mo•ico, 1981 • by 1he New 0 by Gretchen K. Hoffman Me><ico Neu1 Mexico BHrem1 of Mi11e5 and Mineral Resources, Socorro, New Mexico Si801 Sro1e Highwoy Depor1ment; "Bosa Mop of New Me,ico, 1979" by the Miles og U.S.
    [Show full text]
  • Geologic Characterization 111 Date 7/31/91 List of Appendices
    Characterization GEOLOGIC Prepared by ? TABLE OF CONTENTS Section Page 1.0 INTRODUCTION ....................................... 1 1.1 Purpose ........................................... 1 1.2 Scope of Characterization .............................. 1 1.2.1 Literature Search .... ........................... 1 1.2.2 Core Processing and Description ..................... 2 1.2.3 Reprocessing of Seismic Data ........................ 2 1.2.4 Grain Size Analysis .............................. 2 1.2.5 Geologic Report ................................ 3 1.3 Location and General Setting ...., ........................ 3 1.4 Previous Studies ...................................... 5 2.0 STRATIGRAPHY ....................................... 7 Precambrian ......................................... 2.1 7 2.2 Paleozoic And Mesozoic Sedimentary Section ................ 2.2.1 Fountain Formation (PennsylvanianPermian) ............ 7 2.2.2 Lyons Sandstone Formation (Permian) ................ 7 2.2.3 Lykins Formation (PermianrTriassic) ................. 10 2.2.4 Ralston Creek Formation (Jiurassic) .................. 10 2.2.5 Momson Formation (Jurassic) ...................... 10 2.2.6 Dakota Group (Lower Cretaceous) ................... 10 2.2.7 Benton Shale Formation (Lower/Upper Cretaceous) ....... 11 2.2.8 Niobrara Formation (Upper Cretaceous) ............... 11 2.2.9 Pierre Shale Formation (Upper Cretaceous) ............. 11 2.2.10 Fox Hills Sandstone Formation (Upper Cretaceous) ....... 12 2.2.1 1 Laramie Formation (Upper Cretaceous) ............... 12 2.2.12
    [Show full text]