Geologic Characterization 111 Date 7/31/91 List of Appendices

Total Page:16

File Type:pdf, Size:1020Kb

Geologic Characterization 111 Date 7/31/91 List of Appendices Characterization GEOLOGIC Prepared by ? TABLE OF CONTENTS Section Page 1.0 INTRODUCTION ....................................... 1 1.1 Purpose ........................................... 1 1.2 Scope of Characterization .............................. 1 1.2.1 Literature Search .... ........................... 1 1.2.2 Core Processing and Description ..................... 2 1.2.3 Reprocessing of Seismic Data ........................ 2 1.2.4 Grain Size Analysis .............................. 2 1.2.5 Geologic Report ................................ 3 1.3 Location and General Setting ...., ........................ 3 1.4 Previous Studies ...................................... 5 2.0 STRATIGRAPHY ....................................... 7 Precambrian ......................................... 2.1 7 2.2 Paleozoic And Mesozoic Sedimentary Section ................ 2.2.1 Fountain Formation (PennsylvanianPermian) ............ 7 2.2.2 Lyons Sandstone Formation (Permian) ................ 7 2.2.3 Lykins Formation (PermianrTriassic) ................. 10 2.2.4 Ralston Creek Formation (Jiurassic) .................. 10 2.2.5 Momson Formation (Jurassic) ...................... 10 2.2.6 Dakota Group (Lower Cretaceous) ................... 10 2.2.7 Benton Shale Formation (Lower/Upper Cretaceous) ....... 11 2.2.8 Niobrara Formation (Upper Cretaceous) ............... 11 2.2.9 Pierre Shale Formation (Upper Cretaceous) ............. 11 2.2.10 Fox Hills Sandstone Formation (Upper Cretaceous) ....... 12 2.2.1 1 Laramie Formation (Upper Cretaceous) ............... 12 2.2.12 Arapahoe Formation (Upper Cretaceous) .............. 12 2.3 Mesozoic and Cenozoic Sedimentary Section .Latest Cretaceousflertiary ................................... 13 2.3.1 Denver Formation (Latest Cretaceous/Paleocene) .......... 13 2.3.2 Dawson Arkose (Latest Cretixeous/Eocene) ............. 12 2.3.3 Green Mountain Conglomeraite (Paleocene) ............. 12 2.4 Quaternary Alluviums ................................. 13 2.4.1 Pediment Alluviums (Quatennary) .................... 13 ROCKY FLATS PLANT REVISXQFk 0 GEOLOGIC CHARACI'ERUATION i DATE. 7131191 TABLE OF CONTENTS - Continued Section Page 2.4.2 Valley Alluviums (Quaternary) ...................... 14 2.4.3 RecentDeposits ................................ 16 3.0 STRUCTURAL GEOLOGY ................................ 17 3.1 Tectonics.. ........................................ 17 3.1.1 Re-Laramide Tectonics ........................... 17 3.1.2 Laramide Tectonics .............................. 19 3.1.3 Post-Larmide Tectonics .......................... 21 3.2 Faulting. .......................................... 21 3.2.1 Golden Fault ................................... 21 3.2.2 Eggleston Fault ................................. 23 3.2.3 Reprocessed Colorado School of Mines Seismic Data ...... 23 4.0 GEOLOGIC MODEL ..................................... 26 4.1 Stratigraphy ........................................ 26 4.1.1 Laramie Formation .............................. 26 4.1.2 Arapahoe Formation ............................. 30 4.1.2.1 Depositional Model ....................... 32 4.1.3 Re-Wisconsin Pediment (Pleistocene) ................. 35 4.1.4 Rocky Flats Alluvium ............................ 40 4.2 Structure .......................................... 40 4.3 Fractures .......................................... 41 4.4 Geomorphologic Effects ............................... 41 4.5 Caliche Mineralization ................................ 42 5.0 HYDROGEOLOGY ...................................... 44 5.1 Introduction ........................................ 44 5.2 Aquifers .......................................... 44 5.3 Uppermost Hydrostratigraphic Unit ........................ 46 6.0 SUMMARY AND CONCLUSIONS ........................... 48 6.1 Reprocessed Colorado School of Mines Seismic Data ........... 48 6.2 Geologic Model ..................................... 48 48 6.2.1 Laramie Formation .............................. ROCKY FLATS PLANT .. REVISION: 0 GEOLOGIC CHARACTERIZAnON 11 DATE: 7/31/91 TABLE OF CONTENTS .Continued Section Page 6.2.2 Arapahoe Formation ............................. 48 6.2.3 he-Wisconsin Pediment ........................... 49 6.2.4 Rocky Flats Alluvium ............................ 49 6.3 Structure .......................................... 50 6.4 Fractures ......................................... 50 6.5 Geomorphologic Effects ............................... 50 6.6 Caliche Mineralization ................................ 51 6.7 Hydrogeology ...................................... 51 7.0 RECOMMENDATIONS ................................... 52 7.1 Drilling Recommendations .............................. 52 7.2 Seismic Recommendations .............................. 52 7.3 Surface Mapping Recommendation ........................ 53 8.0 REFERENCES .......................................... 54 ROCKY FLATS PLANT ... REVISION. 0 GEOLOGIC CHARACTERIZATION 111 DATE 7/31/91 LIST OF APPENDICES Appendix A Rocky Flats Geologic Data Appendix B Map 1: Regional Base Map: Topography, Wells, Cross-Sections, Plant, Roads - Scale: 1" = 500' Map 1A: Base Map Central Plant Area: Topography, Wells, Cross- Sections, Plant, Roads - Scale: 1" = 300' Maps 2 and 2A: Isopach Overlay - Arapahoe Sandstone No. 1: Interpretation 1 - Scales: 1" = 500' and 1" = 300' Maps 3 and 3A: Isopach Overlay - Arapahoe Sandstone No. 1: Interpretation 2 - Scales: 1" = 500' and 1" = 300' Map 4: Channel Trend Overlay - Arapahoe Sandstones 3 and 4 Maps - Scale: 1" = 500' Map 5: Top of Bedrock Elevation Map Overlay Map 6: Alluvium Isopach Map - Scale: 1" = 500' Map 7: Occurrence of Caliche Map Overlay Scale - 1" = 500' Maps 8 and 8A: Water Level Overlay - Scales: 1" = 500' and 1" = 300' Regional West to East Cross-Section Cross-Section A-A' and Site-Specific Cross-Section A-A' Cross-Section B-B' and Site-Specific Cross-Section B-B' Cross-Section C-C' Cross-Section D-D' 0- ROCKY FLATS PLANT REVISION 0 GEOLOGIC CHARA(JTERIZATI0N iv DATE 71331191 LIST OF APPENDICES - Continued Cross-SectionE-E' Cross-section F-F' Cross-section G-G' and Site-Specific Cross-Section G-G' C!ross-Jection H-H' Appendix C Amotated Bibliography on the Geology of the Rocky Flats Plant and Vicinity Appendix D Graphs of Grain Size Analyses Appendix E "Seismic Data Reprocessing," Ebasco Services, Inc. Appendix F "Visual Geologic Logging Protocol for the Geologic Characterization of the Rocky Flats Plant" Fleld Copies of the 1986 and 1987 AS1 Core Descriptions e and Descriptions of Selected 1989 Core Logged by AS1 Appendix G Clomputer Logs of 1986 and 1987 Cores ROCKYFLATSPLANT REVISION: 0 GEOLOGIC CHARAmmON V DATE: 7131191 LIST OF FIGURES Figure Number Title Page 1 Vicinity Map. .............................. 4 2 Generalized Stratigraphic Section, Golden-Momson Area ........................ 8 3 Rocky Flats Plant Site-Specific Stratigraphic Section ................................... 9 4 Erosional Surfaces and Alluvial Deposits East of the Front Range, Colorado ................15 5 Structure Map of the Denver Basin ............... 18 6 Stratigraphic Correlations during the Laranide along the Front Range .................20 7 Location of Faults between Golden and Marshall, Colorado .................................. 22 8 1975-76 CSM Seismic Project Line Location ........25 9 Paleogeography of Western Interior, U.S., during Late Fox Hills Deposition ...................... 27 10 Delta Sedimentation Model Relating Formations to Facies and to Environments of Deposition .......... 28 11 Idealized Deltaic Model for the Laramie, Fox Hills, and Pierre Formations ........................ 29 12 Idealized Fluvial System: Model for the Arapahoe Formation ................................. 33 - ROCKY FLATS PLANT REVISION: 0 GEOLOGIC CIIARACI'ERIZATION vi DATE 7/31/91 LIST OF FIGURES - Continued Figure Number Title Page 13 Sequence of Events: Late Laramie Deposition through Arapahoe Deposition ...................34 14 Generalized Isopach Map of Arapahoe Sandstone No. 1 -- Interpretation 1 .......................... 36 15 Generalized Isopach Map of Arapahoe Sandstone No. 1 .. Interpretation 2 ....................... 37 ? ROCKY FLATS PLANT REVISION: 0 e GEOLOGIC CIIARACERIZATION vii DATE: 7/31/91 LIST OF TABLES Table Number Title Page 1 Arapahoe Sandstones Giving Thickness and Distance between Sandstones ............... 31 2 Presence or Absence of Arapahoe No. 1 Sandstone in Top of Bedrock ............................ 39 3 Comparison of Hydraulic Properties .............. 48 REVISION 0 viii DATE 1/31/91 LIST OF PLATES Plate 1A: Resistivity and Newton Porosity Log with Natural Gamma Ray for B304289 (37-89BR) Plate 1B: Density Porosity Log with Caliper for B304289 (37- 89BR) e ROCKY FLATS PLANT REVISION 0 GEOLOGIC CHARACEIUZATION ix DATE 7131191 ROCKY FLATS PLANT GEOLOGIC CHARACTERIZATION 1.0 INTRODUCTION 1.1 Purpose The goal of the Rocky Flats Plant (RFP) Geologic Characterization effort is to develop a comprehensive geologic framework which can be used to define the direction, rate, and volume of ground water flow; delineate contaminant migration pathways; and characterize potential seismic risks. As a means of furthering these efforts, past geologic processes and events have been evaluated in light of current stratigraphic, structural, geophysical, and hydrogeologic data. This geologic characterization is intended to be used to formulate hydrogeologic models, design and implement ground water monitoring programs, and plan remedial activities. 1.2 Scope of Characterization This multi-faceted investigation involved conducting
Recommended publications
  • Post-Carboniferous Stratigraphy, Northeastern Alaska by R
    Post-Carboniferous Stratigraphy, Northeastern Alaska By R. L. DETTERMAN, H. N. REISER, W. P. BROSGE,and]. T. DUTRO,JR. GEOLOGICAL SURVEY PROFESSIONAL PAPER 886 Sedirnentary rocks of Permian to Quaternary age are named, described, and correlated with standard stratigraphic sequences UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1975 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Detterman, Robert L. Post-Carboniferous stratigraphy, northeastern Alaska. (Geological Survey Professional Paper 886) Bibliography: p. 45-46. Supt. of Docs. No.: I 19.16:886 1. Geology-Alaska. I. Detterman, Robert L. II. Series: United States. Geological Survey. Professional Paper 886. QE84.N74P67 551.7'6'09798 74-28084 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-02687-2 CONTENTS Page Page Abstract __ _ _ _ _ __ __ _ _ _ _ _ _ _ _ _ _ _ _ __ __ _ _ _ _ _ _ __ __ _ _ __ __ __ _ _ _ _ __ 1 Stratigraphy__:_Continued Introduction __________ ----------____ ----------------____ __ 1 Kingak Shale ---------------------------------------- 18 Purpose and scope ----------------------~------------- 1 Ignek Formation (abandoned) -------------------------- 20 Geographic setting ------------------------------------ 1 Okpikruak Formation (geographically restricted) ________ 21 Previous work and acknowledgments ------------------ 1 Kongakut Formation ----------------------------------
    [Show full text]
  • Understanding and Mapping Variability of the Niobrara Formation
    UNDERSTANDING AND MAPPING VARIABILITY OF THE NIOBRARA FORMATION ACROSS WATTENBERG FIELD, DENVER BASIN by Nicholas Matthies A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Geology). Golden, Colorado Date________________ Signed:____________________________________ Nicholas Matthies Signed:____________________________________ Dr. Stephen A. Sonnenberg Thesis Advisor Golden, Colorado Date:_______________ Signed:____________________________________ Dr. Paul Santi Professor and Head Department of Geology and Geological Engineering ii ABSTRACT Wattenberg Field has been a prolific producer of oil and gas since the 1970s, and a resurgence of activity in recent years in the Niobrara Formation has created the need for a detailed study of this area. This study focuses on mapping regional trends in stratigraphy, structure, and well log properties using digital well logs, 3D seismic data, and core X-ray diffraction data. Across Wattenberg, the Niobrara is divided into the Smoky Hill Member (made up of A Chalk, A Marl, B Chalk, B Marl, C Chalk, C Marl, and Basal Chalk/Marl) and the Fort Hays Limestone Member. Directly beneath the Niobrara, the Codell Sandstone is the uppermost part of the Carlile Formation. Stratigraphic trends in these units are primarily due to differential compaction and compensational sedimentation. The largest structural trend is a paleo-high that runs east-west to northeast-southwest across the middle of the field. It has a relief of about 100 ft, and is 20 mi wide. The A Chalk and A Marl show evidence of submarine erosion over this area. Faults mapped from 3D seismic data are consistent with previously published data on a proposed polygonal fault system in the Denver Basin.
    [Show full text]
  • Cyclicity, Dune Migration, and Wind Velocity in Lower Permian Eolian Strata, Manitou Springs, CO
    Cyclicity, Dune Migration, and Wind Velocity in Lower Permian Eolian Strata, Manitou Springs, CO by James Daniel Pike, B.S. A Thesis In Geology Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCES Approved Dustin E. Sweet Chair of Committee Tom M. Lehman Jeffery A. Lee Mark Sheridan Dean of the Graduate School August, 2017 Copyright 2017, James D. Pike Texas Tech University, James Daniel Pike, August 2017 ACKNOWLEDGMENTS I would like to extend my greatest thanks to my advisor Dr. Dustin Sweet, who was an excellent advisor during this research. Dr. Sweet was vital throughout the whole process, be it answering questions, giving feedback on figures, and imparting his extensive knowledge of the ancestral Rocky Mountains on me; for this I am extremely grateful. Dr. Sweet allowed me to conduct my own research without looking over my shoulder, but was always available when needed. When I needed a push, Dr. Sweet provided it. I would like to thank my committee memebers, Dr. Lee and Dr. Lehman for providing feedback and for their unique perspectives. I would like to thank Jenna Hessert, Trent Jackson, and Khaled Chowdhury for acting as my field assistants. Their help in taking measurements, collecting samples, recording GPS coordinates, and providing unique perspectives was invaluable. Thank you to Melanie Barnes for allowing me to use her lab, and putting up with the mess I made. This research was made possible by a grant provided by the Colorado Scientific Society, and a scholarship provided by East Texas Geological Society.
    [Show full text]
  • GEOLOGIC MAP of the GREATER DENVER AREA, FRONT RANGE URBAN CORRIDOR, COLORADO by Donald E
    U.S DEPARTMENT OF THE INTERIOR MISCELLANEOUS INVESTIGATIONS SERIES I–856–H U.S. GEOLOGICAL SURVEY Version 1.1 105°22'30" 105°15' 105°7'30" 105°0' 104°52'30" 104°45' 104°37'30" 40¡0’ 40°0' Qs Qv Ql Qes DESCRIPTION OF MAP UNITS Qco Qp Qlo Kp Qp Kp Kl Kl Qb TKda Ysp Qes Kf Qb Qp Qco Qv Xbc Kp Qb Qes Qp POST-PINEY CREEK AND PINEY CREEK ALLUVIUM (UPPER HOLOCENE) Kl Qes Qes Qco Qlo Qs Qlo Kp Kl Qb Qrf Qls Kf Ql Ysp TKd Qs Qco COLLUVIUM (UPPER HOLOCENE) Xbc Qp Qv Ysp Qp Qb Kl Qv Qes PPf Qp Qco Qco Qrf Kp Qs Qls Qs LANDSLIDE DEPOSITS (HOLOCENE TO MIDDLE? PLEISTOCENE) Qs Qv Kl Qb Qp JPml Kl Qrf Qco Qs Qco Qv Qp Qes WINDBLOWN SAND (LOWER HOLOCENE TO UPPER PLEISTOCENE) Qv Ql TKd Ql Qes Kd Qv Kp Kl Qes Qco River Qco Qp Kf Ql TKda YXp TKda Kl TKda TKd Qs Xbc Qrf Qv Qp Qb Qb BROADWAY ALLUVIUM (UPPER PLEISTOCENE) Qp Qco Qs Qco Qlo Qco Ql Qp Qes Kf Ql Qco Qp Qv Qs Qrf Ql LOESS (UPPER PLEISTOCENE) Qrf Qs Qlo Kf Qs Qco Qco Qp Qes Qp Qco Qp TKd Qb Qco Qlo Qes LOUVIERS ALLUVIUM (UPPER PLEISTOCENE) Xbc Kf Kp Ql Qs Qrf Marshall Qv Qb Ql Kl TKda Qes Qs Kl Lake Qv Qs SLOCUM ALLUVIUM (PLEISTOCENE) Qv Ql Qco JPml Ql Qco PPf Qv Qs Kl Qs Qco Qv Qco Kn Qv Qs Qs Kp Qrf Qb Qb Barr Lake Kcgg Qv VERDOS ALLUVIUM (PLEISTOCENE) Qs Qrf Qco Ql TKda Qlo Qp Qs TKda Qp Ql TKda Xqm Qlo Qrf Qs Qs Qs ROCKY FLATS ALLUVIUM (PLEISTOCENE) Qp Xq Kd Kf Qco Qp Qco Qb Kl Kp Qco Platte Qlo Qb Qrf Qs Qn Qls Qco NUSSBAUM ALLUVIUM (PLEISTOCENE) Kp Qco Qp Xbc TKd Qrf Qrf Qv Qco Tg Qv Qv HIGH-LEVEL GRAVEL DEPOSITS (PLIOCENE TO OLIGOCENE) Xbc Qp PPf Qb TKd Qb Qv TKda JPml Qv Ql Tcr CASTLE ROCK
    [Show full text]
  • GROUNDWATER LEVELS in the DENVER BASIN BEDROCK AQUIFERS 2017
    GROUNDWATER LEVELS in the DENVER BASIN BEDROCK AQUIFERS 2017 by Andrew D. Flor John W. Hickenlooper Robert W. Randall Governor Executive Director, DNR Kevin G. Rein Matthew A. Sares State Engineer Manager, Hydrogeology Section GROUNDWATER LEVELS IN THE DENVER BASIN BEDROCK AQUIFERS 2017 This report updates basic data concerning the depth to and elevation of groundwater in the four main Denver Basin bedrock aquifers collected during the spring and summer of 2017. The report is organized first by aquifer, then by well name. Well completion information is provided, where available. Wells that may be completed in more than one aquifer are listed according to the uppermost aquifer. Approximately 95 water-level measurements in this year’s report were obtained by Division of Water Resources (Division) personnel. A total of six wells have been instrumented with data loggers to collect daily water-level data. These include the following: - four wells in the Castle Rock area that monitor all four Denver Basin aquifers; CO3_LTDW (DB-204), CO3_TKD (DB-205), CO6_KA (DB-206) and CO3_KLF (DB-203); and - two wells near Golden in the Pleasant View Metropolitan District are completed in the Arapahoe (DB-201) and Laramie-Fox Hills (DB-200) aquifers. Water-level data from 126 cooperator wells are also included in this report. Personnel from cooperating water districts and municipalities graciously provided these data upon request. The Division appreciates the cooperation of the many entities that provide water-level information. Recent Legislation has directed the Division of Water Resources, in consultation with the Colorado Water Conservation Board, to encourage qualified parties to submit water level data for inclusion in the statewide water level database.
    [Show full text]
  • CRETACEOUS-TERTIARY BOUNDARY Ijst the ROCKY MOUNTAIN REGION1
    BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA V o l..¿5, pp. 325-340 September 15, 1914 PROCEEDINGS OF THE PALEONTOLOGICAL SOCIETY CRETACEOUS-TERTIARY BOUNDARY IjST THE ROCKY MOUNTAIN REGION1 BY P. H . KNOWLTON (Presented before the Paleontological Society December 31, 1913) CONTENTS Page Introduction........................................................................................................... 325 Stratigraphic evidence........................................................................................ 325 Paleobotanical evidence...................................................................................... 331 Diastrophic evidence........................................................................................... 334 The European time scale.................................................................................. 335 Vertebrate evidence............................................................................................ 337 Invertebrate evidence.......................................................................................... 339 Conclusions............................................................................................................ 340 I ntroduction The thesis of this paper is as follows: It is proposed to show that the dinosaur-bearing beds known as “Ceratops beds,” “Lance Creek bieds,” Lance formation, “Hell Creek beds,” “Somber beds,” “Lower Fort Union,”- Laramie of many writers, “Upper Laramie,” Arapahoe, Denver, Dawson, and their equivalents, are above a major
    [Show full text]
  • PALEONTOLOGICAL TECHNICAL REPORT: 6Th AVENUE and WADSWORTH BOULEVARD INTERCHANGE PHASE II ENVIRONMENTAL ASSESSMENT, CITY of LAKEWOOD, JEFFERSON COUNTY, COLORADO
    PALEONTOLOGICAL TECHNICAL REPORT: 6th AVENUE AND WADSWORTH BOULEVARD INTERCHANGE PHASE II ENVIRONMENTAL ASSESSMENT, CITY OF LAKEWOOD, JEFFERSON COUNTY, COLORADO Prepared for: TEC Inc. 1746 Cole Boulevard, Suite 265 Golden, CO 80401 Prepared by: Paul C. Murphey, Ph.D. and David Daitch M.S. Rocky Mountain Paleontology 4614 Lonespur Court Oceanside, CA 92056 303-514-1095; 760-758-4019 www.rockymountainpaleontology.com Prepared under State of Colorado Paleontological Permit 2007-33 January, 2007 TABLE OF CONTENTS 1.0 SUMMARY............................................................................................................................. 3 2.0 INTRODUCTION ................................................................................................................... 4 2.1 DEFINITION AND SIGNIFICANCE OF PALEONTOLOGICAL RESOURCES........... 4 3.0 METHODS .............................................................................................................................. 6 4.0. LAWS, ORDINANCES, REGULATIONS AND STANDARDS......................................... 7 4.1. Federal................................................................................................................................. 7 4.2. State..................................................................................................................................... 8 4.3. County................................................................................................................................. 8 4.4. City.....................................................................................................................................
    [Show full text]
  • Stratigraphy of the Upper Cretaceous Fox Hills Sandstone and Adjacent
    Stratigraphy of the Upper Cretaceous Fox Hills Sandstone and AdJa(-erit Parts of the Lewis Sliale and Lance Formation, East Flank of the Rock Springs Uplift, Southwest lo U.S. OEOLOGI AL SURVEY PROFESSIONAL PAPER 1532 Stratigraphy of the Upper Cretaceous Fox Hills Sandstone and Adjacent Parts of the Lewis Shale and Lance Formation, East Flank of the Rock Springs Uplift, Southwest Wyoming By HENRYW. ROEHLER U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1532 Description of three of/lapping barrier shorelines along the western margins of the interior seaway of North America UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1993 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Library of Congress Cataloging-in-Publication Data Roehler, Henry W. Stratigraphy of the Upper Cretaceous Fox Hills sandstone and adjacent parts of the Lewis shale and Lance formation, east flank of the Rock Springs Uplift, southwest Wyoming / by Henry W. Roehler. p. cm. (U.S. Geological Survey professional paper ; 1532) Includes bibliographical references. Supt.ofDocs.no.: I19.16:P1532 1. Geology, Stratigraphic Cretaceous. 2. Geology Wyoming. 3. Fox Hills Formation. I. Geological Survey (U.S.). II. Title. III. Series. QE688.R64 1993 551.7T09787 dc20 92-36645 CIP For sale by USGS Map Distribution Box 25286, Building 810 Denver Federal Center Denver, CO 80225 CONTENTS Page Page Abstract......................................................................................... 1 Stratigraphy Continued Introduction................................................................................... 1 Formations exposed on the east flank of the Rock Springs Description and accessibility of the study area ................
    [Show full text]
  • The Geology of New Mexico As Understood in 1912: an Essay for the Centennial of New Mexico Statehood Part 2 Barry S
    Celebrating New Mexico's Centennial The geology of New Mexico as understood in 1912: an essay for the centennial of New Mexico statehood Part 2 Barry S. Kues, Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico, [email protected] Introduction he first part of this contribution, presented in the February Here I first discuss contemporary ideas on two fundamental areas 2012 issue of New Mexico Geology, laid the groundwork for an of geologic thought—the accurate dating of rocks and the move- exploration of what geologists knew or surmised about the ment of continents through time—that were at the beginning of Tgeology of New Mexico as the territory transitioned into statehood paradigm shifts around 1912. Then I explore research trends and in 1912. Part 1 included an overview of the demographic, economic, the developing state of knowledge in stratigraphy and paleontol- social, cultural, and technological attributes of New Mexico and its ogy, two disciplines of geology that were essential in understand- people a century ago, and a discussion of important individuals, ing New Mexico’s rock record (some 84% of New Mexico’s surface institutions, and areas and methods of research—the geologic envi- area is covered by sediments or sedimentary rocks) and which were ronment, so to speak—that existed in the new state at that time. advancing rapidly through the first decade of the 20th century. The geologic time scale and age of rocks The geologic time scale familiar to geologists working in New The USGS did not adopt the Paleocene as the earliest epoch of the Mexico in 1912 was not greatly different from that used by modern Cenozoic until 1939.
    [Show full text]
  • SPIDER in the RIVER: a COMPARATIVE ENVIRONMENTAL HISTORY of the IMPACT of the CACHE LA POUDRE WATERSHED on CHEYENNES and EURO- AMERICANS, 1830-1880 John J
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations, Theses, & Student Research, History, Department of Department of History Spring 4-21-2015 SPIDER IN THE RIVER: A COMPARATIVE ENVIRONMENTAL HISTORY OF THE IMPACT OF THE CACHE LA POUDRE WATERSHED ON CHEYENNES AND EURO- AMERICANS, 1830-1880 John J. Buchkoski University of Nebraska-Lincoln Follow this and additional works at: http://digitalcommons.unl.edu/historydiss Part of the Cultural History Commons, and the United States History Commons Buchkoski, John J., "SPIDER IN THE RIVER: A COMPARATIVE ENVIRONMENTAL HISTORY OF THE IMPACT OF THE CACHE LA POUDRE WATERSHED ON CHEYENNES AND EURO-AMERICANS, 1830-1880" (2015). Dissertations, Theses, & Student Research, Department of History. 83. http://digitalcommons.unl.edu/historydiss/83 This Article is brought to you for free and open access by the History, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations, Theses, & Student Research, Department of History by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. SPIDER IN THE RIVER: A COMPARATIVE ENVIRONMENTAL HISTORY OF THE IMPACT OF THE CACHE LA POUDRE WATERSHED ON CHEYENNES AND EURO-AMERICANS, 1830-1880 By John J. Buchkoski A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Arts Major: History Under the Supervision of Professor Katrina L. Jagodinsky Lincoln, Nebraska April, 2015 SPIDER IN THE RIVER: A COMPARATIVE ENVIRONMENTAL HISTORY OF THE IMPACT OF THE CACHE LA POUDRE WATERSHED ON CHEYENNES AND EURO-AMERICANS, 1830-1880 John Buchkoski, M.A.
    [Show full text]
  • Analysis and Correlation of Growth
    ANALYSIS AND CORRELATION OF GROWTH STRATA OF THE CRETACEOUS TO PALEOCENE LOWER DAWSON FORMATION: INSIGHT INTO THE TECTONO-STRATIGRAPHIC EVOLUTION OF THE COLORADO FRONT RANGE by Korey Tae Harvey A thesis submitted to the Faculty and Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Geology). Golden, Colorado Date __________________________ Signed: ________________________ Korey Harvey Signed: ________________________ Dr. Jennifer Aschoff Thesis Advisor Golden, Colorado Date ___________________________ Signed: _________________________ Dr. Paul Santi Professor and Head Department of Geology and Geological Engineering ii ABSTRACT Despite numerous studies of Laramide-style (i.e., basement-cored) structures, their 4-dimensional structural evolution and relationship to adjacent sedimentary basins are not well understood. Analysis and correlation of growth strata along the eastern Colorado Front Range (CFR) help decipher the along-strike linkage of thrust structures and their affect on sediment dispersal. Growth strata, and the syntectonic unconformities within them, record the relative roles of uplift and deposition through time; when mapped along-strike, they provide insight into the location and geometry of structures through time. This paper presents an integrated structural- stratigraphic analysis and correlation of three growth-strata assemblages within the fluvial and fluvial megafan deposits of the lowermost Cretaceous to Paleocene Dawson Formation on the eastern CFR between Colorado Springs, CO and Sedalia, CO. Structural attitudes from 12 stratigraphic profiles at the three locales record dip discordances that highlight syntectonic unconformities within the growth strata packages. Eight traditional-type syntectonic unconformities were correlated along-strike of the eastern CFR distinguish six phases of uplift in the central portion of the CFR.
    [Show full text]
  • To Download Elementary School Geology Packet
    Garden of the Gods Park Contact: Bowen Gillings City of Colorado Springs Parks, Recreation & Cultural Services Email: [email protected] P: (719) 219-0108 Program updates can be found at: https://gardenofgods.com/educational/edu- 1/school-field-trips Land Use Acknowledgement: We gratefully acknowledge the native peoples on whose ancestral homeland we gather, as well as the diverse and vibrant Native communities of Colorado today. Geology of the Park Program Welcome! We look forward to sharing the geological story of Garden of the Gods with your students. We align with current Colorado Academic Standards for K-5 Earth and Space Science. Goals: Students recognize the exceptional geological wonder of the Garden of the Gods. Students gain a broad understanding of the geological events that shaped the Pikes Peak region Students gain a broad understanding of and appreciation for the science of geology. Students identify the three rock types and the three geological processes. Students recognize the geological formations in the Park, their ages, and composition. 1 Teacher Reference Guide: Basic Geology of Garden of the Gods The Pike’s Peak region has been shaped by millions of years of mountain building and erosion. There have been three different mountain building events in the geological history of this area: 1. The Ancestral Rockies (320-310 million years ago). The erosion of these first Rocky Mountains formed the sedimentary Fountain Formation and the Lyons Sandstone layers. 2. The Laramide Orogeny (70-65 million years ago). This process uplifted the Front Range. The layers seen in the Garden were forced upright as the land broke along the Rampart Range Fault.
    [Show full text]