Mescalero Apache Ceremonial Timing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mathématiques Et Espace
Atelier disciplinaire AD 5 Mathématiques et Espace Anne-Cécile DHERS, Education Nationale (mathématiques) Peggy THILLET, Education Nationale (mathématiques) Yann BARSAMIAN, Education Nationale (mathématiques) Olivier BONNETON, Sciences - U (mathématiques) Cahier d'activités Activité 1 : L'HORIZON TERRESTRE ET SPATIAL Activité 2 : DENOMBREMENT D'ETOILES DANS LE CIEL ET L'UNIVERS Activité 3 : D'HIPPARCOS A BENFORD Activité 4 : OBSERVATION STATISTIQUE DES CRATERES LUNAIRES Activité 5 : DIAMETRE DES CRATERES D'IMPACT Activité 6 : LOI DE TITIUS-BODE Activité 7 : MODELISER UNE CONSTELLATION EN 3D Crédits photo : NASA / CNES L'HORIZON TERRESTRE ET SPATIAL (3 ème / 2 nde ) __________________________________________________ OBJECTIF : Détermination de la ligne d'horizon à une altitude donnée. COMPETENCES : ● Utilisation du théorème de Pythagore ● Utilisation de Google Earth pour évaluer des distances à vol d'oiseau ● Recherche personnelle de données REALISATION : Il s'agit ici de mettre en application le théorème de Pythagore mais avec une vision terrestre dans un premier temps suite à un questionnement de l'élève puis dans un second temps de réutiliser la même démarche dans le cadre spatial de la visibilité d'un satellite. Fiche élève ____________________________________________________________________________ 1. Victor Hugo a écrit dans Les Châtiments : "Les horizons aux horizons succèdent […] : on avance toujours, on n’arrive jamais ". Face à la mer, vous voyez l'horizon à perte de vue. Mais "est-ce loin, l'horizon ?". D'après toi, jusqu'à quelle distance peux-tu voir si le temps est clair ? Réponse 1 : " Sans instrument, je peux voir jusqu'à .................. km " Réponse 2 : " Avec une paire de jumelles, je peux voir jusqu'à ............... km " 2. Nous allons maintenant calculer à l'aide du théorème de Pythagore la ligne d'horizon pour une hauteur H donnée. -
The Very Long Mystery of Epsilon Aurigae
A Unique Eclipsing Variable TheThe VeryVery LongLong MMysteryystery ofof EpsilonEpsilon AAurigaeurigae robertrobert e. sstenceltencel one of the great scientifi c advances of the 20th A remarkable naked-eye star century was the theory of stellar evolution, as physicists worked out not just how stars shine, but how they origi- will soon start dimming for nate, live, change, and die. To test theory against reality, however, astronomers had to determine accurate masses the eighth time since 1821. for many diff erent kinds of stars — and this meant analyz- What’s going on is still ing the motions of binary pairs. Theorists also needed the stars’ exact diameters, and this meant analyzing the light not exactly clear. curves of eclipsing binaries in particular. A century ago, S&T ILLUSTRATION BY CASEY REED giants of early astrophysics worked intensely on the prob- lem of eclipsing-binary analysis. Henry Norris Russell’s paper “On the Determination of the Orbital Elements of Eclipsing Variable Stars,” published in 1912, set the stage for what followed. BIG WHITE STAR, BIGGER BLACK PARTNER Epsilon Aurigae, hotter than the Sun and larger than Earth’s entire orbit, pours forth some 130,000 times the Sun’s light — which is why it shines as brightly as 3rd magnitude even from 2,000 light-years away. According to the currently favored model, a long, dark object will start sliding across its middle this summer. The object seems to be an opaque warped disk 10 a.u. wide and appearing roughly 1 a.u. tall. Whatever lies at its center seems to be hidden — though there’s also evidence that we see right through the center. -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
Asset Detail Acct Base Currency Code : USD ALL KR2 and KR3 - KR2GALLKRS00 As of Date : 12/31/2013 Accounting Status : REVISED
Asset Detail Acct Base Currency Code : USD ALL KR2 AND KR3 - KR2GALLKRS00 As Of Date : 12/31/2013 Accounting Status : REVISED . Mellon Security ID Security Description Shares/Par Base Market Value Grand Total 36,179,254,463.894 15,610,214,163.19 ALTERNATIVE INVESTMENTS 15,450,499.520 15,450,499.52 MKP OPPORTUNITY OFFSHORE LTD 15,450,499.520 15,450,499.52 CASH & CASH EQUIVALENTS 877,174,023.720 877,959,915.42 BANC OF AM CORP REPO 0.010% 01/02/2014 DD 12/31/13 20,000,000.000 20,000,000.00 BANK OF AMERICA (BOA) 01/01/2049 DD 07/01/08 52,000.000 52,000.00 BARC CCP COLLATERAL VAR RT 01/01/2049 DD 07/01/08 28,000.000 28,000.00 BARCLAYS CASH COLLATERAL VAR RT 01/01/2049 DD 07/01/08 543,000.000 543,000.00 BARCLAYS CP REPO REPO 0.010% 01/02/2014 DD 12/31/13 12,000,000.000 12,000,000.00 BARCLAYS CP REPO REPO 0.040% 01/17/2014 DD 12/18/13 9,200,000.000 9,200,000.00 BNY MELLON CASH RESERVE 0.010% 12/31/2049 DD 06/26/97 1,184,749.080 1,184,749.08 CANTOR REPO A REPO 0.170% 01/02/2014 DD 12/19/13 67,000,000.000 67,000,000.00 CASH COLLATERAL HELD AT CITIGROUP 387,000.000 387,000.00 CASH HELD AS COLLATERAL AT DEUTSCHE 169,000.000 169,000.00 CITIGROUP CAT 2MM REPO 0.010% 01/02/2014 DD 12/31/13 8,300,000.000 8,300,000.00 CME CCP COLL HELD AT GSC 100,000.000 100,000.00 CREDIT SUISSE REPO 0.010% 01/02/2014 DD 12/31/13 16,300,000.000 16,300,000.00 CSFB CCP COLLATERAL 0.010% 01/01/2049 DD 07/01/08 1,553,000.000 1,553,000.00 DEUTSCHE BANK VAR RT 01/01/2049 DD 07/01/08 668,000.000 668,000.00 DEUTSCHE BK TD 0.180% 01/02/2014 DD 12/18/13 270,000,000.000 270,000,000.00 -
The Brightest Stars Seite 1 Von 9
The Brightest Stars Seite 1 von 9 The Brightest Stars This is a list of the 300 brightest stars made using data from the Hipparcos catalogue. The stellar distances are only fairly accurate for stars well within 1000 light years. 1 2 3 4 5 6 7 8 9 10 11 12 13 No. Star Names Equatorial Galactic Spectral Vis Abs Prllx Err Dist Coordinates Coordinates Type Mag Mag ly RA Dec l° b° 1. Alpha Canis Majoris Sirius 06 45 -16.7 227.2 -8.9 A1V -1.44 1.45 379.21 1.58 9 2. Alpha Carinae Canopus 06 24 -52.7 261.2 -25.3 F0Ib -0.62 -5.53 10.43 0.53 310 3. Alpha Centauri Rigil Kentaurus 14 40 -60.8 315.8 -0.7 G2V+K1V -0.27 4.08 742.12 1.40 4 4. Alpha Boötis Arcturus 14 16 +19.2 15.2 +69.0 K2III -0.05 -0.31 88.85 0.74 37 5. Alpha Lyrae Vega 18 37 +38.8 67.5 +19.2 A0V 0.03 0.58 128.93 0.55 25 6. Alpha Aurigae Capella 05 17 +46.0 162.6 +4.6 G5III+G0III 0.08 -0.48 77.29 0.89 42 7. Beta Orionis Rigel 05 15 -8.2 209.3 -25.1 B8Ia 0.18 -6.69 4.22 0.81 770 8. Alpha Canis Minoris Procyon 07 39 +5.2 213.7 +13.0 F5IV-V 0.40 2.68 285.93 0.88 11 9. Alpha Eridani Achernar 01 38 -57.2 290.7 -58.8 B3V 0.45 -2.77 22.68 0.57 144 10. -
El Remate Enero 2018:Maquetaciûn 1
Cubiertas Enero 2018 (178):Maquetación 1 18/12/17 9:45 Página www.elremate.es • email: [email protected] www.elremate.es (34) 91 447 14 04 • Fax: 59 41 Tel.: Exposición y Subasta: Modesto Lafuente, 12 • Madrid Subasta Jueves 18 de Enero 2018 Subastas El Remate • Libros y Manuscritos • Enero 2018 • Subasta 178 Subasta Jueves 18 Enero 2018 Cubiertas Enero 2018 (178):Maquetación 1 18/12/17 9:46 Página 2 194 126 222 156 268 96 361 458 El Remate Enero 2018:Maquetación 1 18/12/17 13:02 Página 1 LIBROS Y MANUSCRITOS SUBASTA JUEVES, 18 de Enero a las 18,00 horas en Modesto Lafuente, 12 EXPOSICIÓN Desde el 8 de Enero en Modesto Lafuente, 12 De 9,00 a 18,00 horas ininterrumpidamente Los días 13 y 18 de Enero sólo de 10 a 14 horas. (Día 13 de Enero sólo exposición) Admisión de ofertas por escrito, teléfono y correo electrónico hasta las 17,00 horas del día de la subasta PORTADA: LOTE 166 CONTRAPORTADA: LOTE 309 SUBASTAS EL REMATE MADRID, S.L. Modesto Lafuente, 12 • 28010 MADRID Tel.: (34) 91 447 14 04 • Fax: (34) 91 447 59 41 www.elremate.es • e-mail: [email protected] Transferencias a Banco Santander: IBAN-BIC: ES47 0049 4664 17 2316714774 El comprador deberá pagar y retirar los lotes en un plazo máximo de 15 días hábiles, pasados los cuales se devengarán gastos de almacenamiento de 6 € diarios EL PRECIO DEL REMATE SE INCREMENTARÁ EN UN 17,24% (MÁS I.V.A. VIGENTE) El Remate Enero 2018:Maquetación 1 18/12/17 13:02 Página 2 El Remate Enero 2018:Maquetación 1 18/12/17 13:02 Página 3 El Remate · Enero 2018 · Subasta 178 LIBROS Y MANUSCRITOS. -
Introduction the Constellations of the Winter
Introduction The winter sky is an excellent place to begin exploring the constellations that make up the night sky. Orion is the key, or signpost, for locating many of the other constellations in the winter sky. There are two convenient ways to locate all of the main constellations around Orion once Orion is located. Fortunately, Orion is easy to locate and well known to most people. The first way is to follow lines made by pairs of stars in Orion. The second way is to locate the great winter Orion is the key for hexagon of bright star around Orion. cracking the winter sky. The Constellations of the Winter Sky If you live in the northern latitudes and you scan the sky from the southern horizon to the region overhead, you should be able to see the following constellations on a clear winter night: Orion the Hunter, Canis Major the Great Dog, Canis Minor the Little Dog, Taurus the Bull, Auriga the Charioteer, Gemini the Twins and the Pleiades star cluster. (See the map on the next page). In Greek mythology, Orion was a great hunter who eventually offended the gods, especially Apollo. Apollo tricked Artemis, the Goddess of the hunt, into shooting Orion on a bet. When she discovered that she had shot Orion, she quickly lifted him to the heavens and made him immortal, where he now hunts eternally with his two dogs, Canis Major and Canis Minor. In front of him is his prey Taurus the Bull. The myths surrounding Auriga the Charioteer vary, but it is an ancient constellation dating back to at least to the Ancient Greeks. -
M31 Andromeda Galaxy Aq
Constellation, Star, and Deep Sky Object Names Andromeda : M31 Andromeda Galaxy Lyra : Vega & M57 Ring Nebula Aquila : Altair Ophiuchus : Bernard’s Star Auriga : Capella Orion : Betelgeuse , Rigel & M42 Orion Nebula Bootes : Arcturus Perseus : Algol Cancer : M44 Beehive Cluster Sagittarius: Sagittarius A* Canes Venatici: M51 Whirlpool Galaxy Taurus : Aldebaran , Hyades Star Cluster , M1 Crab Nebula & Canis Major : Sirius M45 Pleiades Canis Minor : Procyon Tucana : Small Magellanic Cloud (SMC) Cassiopeia : Cassiopeia A & Tycho’s “Star” Ursa Minor : Polaris Centaurus : Proxima Centauri Virgo : Spica Dorado/Mensa : Large Magellanic Cloud (LMC) Milky Way Galaxy Gemini : Castor & Pollux Hercules : M13 Globular Cluster Characteristics of Stars (Compared with Sun) Class Color Temp. ( 1000 K) Absolute Magnitude Solar Luminosity Solar Mass Solar Diameter O Blue 60 -30 -7 1,000,000 50 100 to 1000 B Blue -White 30 -10 -3 10,000 10 10 to 100 A White 10 -7.5 +2 100 2 2 to 10 F White -Yellow 7.5 -6.5 +4 10 1.5 1 to 2 G Yellow 6.5 -4.5 +4.6 1 1 1 K Orange 4.5 -3.5 +11 1/100 0.5 0.5 M Red 3.5 -2.8 +15 1/100,000 0.08 0.1 Magnitude Magnitude scales: The smaller the magnitude number, the brighter the star Every 5 magnitudes = 100 times the brightness of object Every magnitude = 2.512 times the brightness of object Apparent magnitude = the brightness of object as seen from the viewer’s viewpoint (Earth) Absolute magnitude = “true brightness” – brightness as seen from 10 parsecs (32.6 light years) away Distance Measurement 1 astronomical unit = distance between Earth and Sun = 150 million kilometres or 93 million miles 1 light year ≈ 6 trillion miles / 9.5 trillion km Parsec = parallax second of arc – distance that a star “jumps” one second of a degree of arc in the sky as a result of the earth’s revolution around the sun. -
Binocular Universe: Aurigan Treasures
Binocular Universe: Aurigan Treasures February 2012 Phil Harrington ead outside this evening and take a look high overhead. If you live in midnorthern latitudes, you will find a lone beacon cresting near the zenith as Hthe sky darkens. That's Capella, the Alpha (α) star of the constellation Auriga the Charioteer. Tracing back to ancient Rome, the name Capella translates as "She-Goat," a reference to the position it holds in the picture of the Charioteer. He is often portrayed as holding a goat and two kids in his arms. Above: Winter star map from Star Watch by Phil Harrington. Finder chart for this month's Binocular Universe, adapted from TUBA, www.philharrington.net/tuba.htm Today, we know that Capella is actually a binary star system lying some 42 light years away. Each of Capella's suns is classified as a type-G yellow star, like our Sun. That means that all three have roughly the same surface temperature, although our yellow dwarf Sun is only about one-tenth as large as either of the Capella giants. There is little hope of spotting the two Capella component stars through even the largest telescopes, since they are only separated by about 60 million miles, less than the distance from the Sun to Venus. The Charioteer’s pentagonal body highlights a wonderful area of the winter sky to scan with binoculars. There, you will find three of the season’s brightest open star clusters as well as an array of lesser known targets. M38, one of Auriga's three Messier open clusters, is centrally positioned within Auriga’s pentagonal body. -
The “Aurigae” Field
Comm. in Asteroseismology Vol. 152, 2008 Stellar Activity with BRITE: the “Aurigae” field K. G. Strassmeier Astrophysical Institute Potsdam (AIP) An der Sternwarte 16, D-14482 Potsdam, Germany Abstract Photometric time series of active stars can pin down some of the ingredients that govern the stellar magnetic field, itself being the driver of all non-thermal stellar emissions. Among the most important – and least understood – as- trophysical ingredients is stellar rotation and its subtle latitudinal dependence called differential rotation. Rotation switches on and maintains the internal dynamo, itself a phenomenon from the interaction of turbulent plasma mo- tions and large-scale shearing forces in the deep stellar interior. I propose to observe the active binary Capella, made up of two giants in exposed locations in the HR-diagram. Along with Capella (α Aur), another eight stars brighter than 4th magnitude would be in the field-of-view of BRITE, among them such benchmark variables as ζ Aur or θ Aur. Motivation The interaction of a stellar magnetic field with its surrounding plasma appears to be the source of a large variety of atmospheric phenomena that can be used to better understand a star and its evolution itself as well as study its environ- ment. Such magnetic-field related phenomena were collectively coined “stellar activity”. Our magnetic Sun and the many non-thermal energetic phenomena from its interaction with the outer heliosphere, also known as “space weather”, play even a central role for our own planet. Therefore, stellar-activity stud- ies continuously moved central stage after the discovery of extra-solar planets back in the mid nineties. -
Planetarium Handbook
Portable Planetarium Handbook Susan Reynolds Button, Editor July 2002 Table of Contents Section I. Table of Contents .................................................................................... 1 Section II. Introduction ............................................................................................. 1 Section III. Contributors............................................................................................. 1 Section IV. Practical Applications of Portable Planetariums...................................1 A. Introduction: “Why are Portable Planetariums so Special?” .......................2 1. “Twenty Years on the Road: The Portable Planetarium’s Development and Contributions to the Teaching of Astronomy” ......................................................................................3 2. “Outreach: The Long Arm of STARLAB”.......................................18 3. “Professionalism and Survival Tactics” ..........................................20 B. Outreach with a Planetarium Specialist ....................................................22 1. “Reach Out and Teach Someone” ................................................ 23 2. “Student Intern/Mentor Program Proposal”................................... 26 3. “Student-Directed Planetarium Lessons and Other Creative Uses For STARLAB”..................................................................... 27 C. Outreach-Lending/Rental Programs and Teacher Training ..................... 30 1. “Unmanned Satellite” ................................................................... -
Glaucoma : Science and Practice
www.dbeBooks.com - An Ebook Library MRSNFM-i-xiv 8/30/02 9:40 AM Page i Glaucoma Science and Practice MRSNFM-i-xiv 8/30/02 9:40 AM Page ii This page intentionally left blank MRSNFM-i-xiv 8/30/02 9:40 AM Page iii Glaucoma Science and Practice Edited by John C. Morrison, M.D. Irvin P. Pollack, M.D. Professor of Ophthalmology Professor of Ophthalmology Oregon Health and Science University The Johns Hopkins University And And Director of the Glaucoma Service Emeritus The Fred P. Thompson Glaucoma Clinic Ophthalmologist-In-Chief and and Casey Eye Institute Director Krieger Eye Institute Portland, Oregon Sinai Hospital of Baltimore Baltimore Maryland Thieme New York • Stuttgart MRSNFM-i-xiv 8/30/02 9:40 AM Page iv Consulting Editor: Esther Gumpert Editorial Assistant: Owen Zurhellen Director, Production and Manufacturing: Anne Vinnicombe Production Editor: Becky Dille Marketing Director: Phyllis Gold Sales Manager: Ross Lumpkin Chief Financial Officer: Peter van Woerden President: Brian D. Scanlan Compositor: Emilcomp\Prepare Ltd. Printer: Four Colour Imports, Ltd. Library of Congress Cataloging-in-Publication Data Glaucoma : a clinical guide / [edited by] John C. Morrison, Irvin P. Pollack p. ; cm. Includes bibliograpical references. ISBN 0-86577-915-5 (TMP : alk. paper) -- ISBN 3131246715 (GTV : alk. paper) 1. Glaucoma. I. Morrison, John C., 1951 - II. Pollack, Irvin P. [DNLM: 1. Glaucoma. WW 290 G54935 2003] RE871 .G5437 2003 617.7'41--dc21 2002075001 Copyright © 2003 by Thieme Medical Publishers, Inc. This book, including all parts thereof, is legally protected by copyright. Any use, exploitation or commercialization outside the narrow limits set by copyright legislation, without the publisher’s consent, is illegal and liable to prosecution.