Evolution and Development of Inflorescence Architectures Przemyslaw Prusinkiewicz, Yvette Erasmus, Brendan Lane, Lawrence D

Total Page:16

File Type:pdf, Size:1020Kb

Evolution and Development of Inflorescence Architectures Przemyslaw Prusinkiewicz, Yvette Erasmus, Brendan Lane, Lawrence D RESEARCH ARTICLES These observations raise two related questions. First, what determines the extent of morphospace occupied by inflorescences in nature: Why do we Evolution and Development of find these three main architectural types and not more or fewer? Second, what constrains evolution within the occupied morphospace, imposing a Inflorescence Architectures local barrier between racemes and cymes? A unifying inflorescence model. Previously, Przemyslaw Prusinkiewicz,1 Yvette Erasmus,2* Brendan Lane,1 distinct developmental models have been postu- Lawrence D. Harder,3 Enrico Coen2† lated for different inflorescence types (12, 13), leading to a fractured view of phenotypic space. To understand the constraints on biological diversity, we analyzed how selection and development From an evolutionary perspective, however, in- interact to control the evolution of inflorescences, the branching structures that bear flowers. We florescence types should be related to each other show that a single developmental model accounts for the restricted range of inflorescence types through genetic changes. A developmental mod- observed in nature and that this model is supported by molecular genetic studies. The model el that encompasses different architectural types predicts associations between inflorescence architecture, climate, and life history, which we within a single parameter space is thus needed. validated empirically. Paths, or evolutionary wormholes, link different architectures in a To construct it, we considered meristems giving multidimensional fitness space, but the rate of evolution along these paths is constrained by rise to shoots or flowers as two extremes of a genetic and environmental factors, which explains why some evolutionary transitions are rare continuum. The variable that characterizes this between closely related plant taxa. continuum is called vegetativeness (veg), with high levels of veg corresponding to shoot meri- Downloaded from rganisms display great diversity in shape oretically possible structures increases rapidly stem identity and low levels to flower meristem and architecture, but the range of ob- (8). However, only a small subset of these struc- identity. The veg level may be related to many Oserved forms represents only a small tures corresponds to inflorescences observed in factors such as plant age, meristem position, in- fraction of what is theoretically possible (1, 2). nature (Fig. 1). They are grouped into three broad ternal state of a meristem, and the environment For example, when patterns of shell coiling are architectural types: (i) panicles, which com- (14–17). For simplicity, we identify the factors considered within a mathematically defined prise a branching series of axes that terminate in influencing veg as plant age t, measured from the http://science.sciencemag.org/ space of possible forms (morphospace), the ob- flowers; (ii) racemes, which comprise axes beginning of inflorescence development, and/or served forms are restricted to only a subregion bearing flowers in lateral positions or lateral the internal state of the meristem. of this space (3). One explanation for such re- axes that reiterate this pattern; and (iii) cymes, If veg is high and does not change with time, strictions is selection (4). However, it is likely which comprise axes that terminate in flowers an indeterminate vegetative branching structure that developmental and genetic mechanisms also and lateral axes that reiterate this pattern (9–11) is generated (Fig. 2A). For the plant to produce play a role. For example, the absence of ver- (Fig. 1, D to I). The appearance of each flowers, veg mustdeclineinsomeorallmeri- tebrates with more than four limbs is thought to inflorescence type varies according to the stems during growth. The simplest assumption reflect an interplay between both developmental arrangement of lateral meristems around the is that veg decreases in all meristems equally. and selective constraints (5, 6). Developmental stem (phyllotaxy), the pattern of internode The resulting architecture is a panicle of flowers, mechanisms restrict the range of genetic and lengths, and additional variations on the three which form at time T when low levels of veg phenotypic variation available for selection, architectural themes. Although panicles, race- are reached (Fig. 2B). on May 8, 2018 whereas selection influences the evolution of mes, and cymes are all found among flowering To generate further architectural types, we developmental processes. Such two-way inter- plants, a restricted range of types is evident at assume that meristems can be in one of two actions can be unravelled using morphospaces local taxonomic levels: Genera seldom include internal states, A and B, such that meristems in based on developmental genetic mechanisms. species with both racemes and cymes. these states attain low levels of veg at different We take this approach for the evolution of in- florescences, which has a history of both theo- retical and molecular genetic analysis. The arrangement of flowers on a plant reflects an iterative pattern of developmental decisions at the growing tips, or meristems. Each iteration occurs over a time interval known as a plasto- chron (7), during which a meristem may either switch to floral identity or continue to produce further meristems and, hence, branches. As the number of iterations rises, the number of the- 1Department of Computer Science, University of Calgary, 2500 University Drive N.W. Calgary, Alberta T2N 1N4, Ca- nada. 2Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK. 3Department of Biological Sciences, University of Calgary, 2500 University Drive N.W. Calgary, Alberta T2N 1N4, Canada. Fig. 1. Hypothetical and observed inflorescence structures. Arrows, meristems; circles, flowers. (A *Present address: Institute of Molecular Plant Science, Daniel to C) Inflorescence structures not observed in nature. (D to F) Three main classes of inflorescence Rutherford Building, Kings Buildings, Mayfield Road, Edin- burgh, EH9 3JR, UK. architectures: panicle (D), raceme (E), and cyme (F). (G to I) Species illustrating inflorescence types: †To whom correspondence should be addressed. Email: (G) fruiting panicle of Sorbus aucuparia, (H) flowering raceme of Antirrhinum majus, (I) flowering [email protected] cyme of Myosotis arvensis. 1452 8 JUNE 2007 VOL 316 SCIENCE www.sciencemag.org RESEARCH ARTICLES times, TA and TB. Suppose that the apical result is inconsistent with the structure of lateral rationale for this reversion is that a newly created meristem of the main axis is in state A, whereas branches of compound racemes, which typically meristem (state B) changes its identity once it all lateral meristems are in state B. If TB < TA, do not terminate in flowers (Fig. 1E). becomes the terminal meristem of the next-order lateral meristems will attain floral identity more To resolve this discrepancy, we postulate that branch (state A). Biologically, state B represents quickly than does the apical meristem, yielding a state B is transient. All lateral meristems are the stage when a meristem is newly formed (im- raceme in the upper part of the plant (red path in formed in state B, but they have two possible mature), whereas state A represents a more ad- Fig. 2C). However, lateral apices in the lower fates afterwards. If veg is sufficiently low, the vanced stage of meristem development (mature). part of the inflorescence will also rapidly pro- meristem becomes a flower (red path, Fig. 2D). We call the resulting model the transient model. gress toward floral identity, producing a graded Otherwise, the meristem reverts to state A and A key feature of the transient model is that it series of panicles (orange path in Fig. 2C). This produces a branch (orange path, Fig. 2D). The can generate cymes as well as racemes and panicles, thus accounting for these inflorescence types within a single framework. In cymes, lateral meristems repetitively create meristems in two different states: a terminal meristem giving rise to a flower, and a lateral meristem giving rise to a branch (Fig. 1F). This can be captured with the transient model by setting TA < TB. Immature lateral meristems then take longer to attain floral identity than do mature meristems, creating the reverse of the situation for racemes (Fig. 2E). The region of morphospace generated by the transient model is illustrated in Fig. 3. The main Downloaded from diagonal (TA = TB) corresponds to panicles, flanked by racemes on one side (TA > TB)and cymes on the other (TA < TB). This planar region represents only a slice of the entire morphospace. For example, the hypothetical forms shown in Fig. 1, A to C, do not lie in this region and could http://science.sciencemag.org/ only be generated with more complex mecha- nisms. The transient mechanism may therefore account for the restriction of observed inflores- Fig. 2. Architectures and time course of veg decline for various inflorescence models. Small filled cence types to a small region of morphospace. circles, meristems; white circles, flowers. Colors highlight paths of representative meristems: main Potentially adaptive architectures may not be at- meristem, blue; lowest lateral meristem, orange; third lateral meristem from bottom, red. Plots tained in nature because they cannot be produced show the time course of veg decline in selected meristems after their initiation. (A) Level of veg by developmental processes captured by the tran- does not change with
Recommended publications
  • Inflorescences
    Inflorescences - Floral Displays Inflorescences - Floral Displays A shift from widely The vast majority of flowering plants spaced single flowers to an inflorescence required possess flowers in clusters called an condensation of shoots inflorescence. and the loss of the intervening leaves. These clusters facilitate pollination via a prominent visual display and more The simplest efficient pollen uptake and deposition. inflorescence type would thus be indeterminate with the oldest flowers at the base and the younger flowers progressively closer to the apical meristem of the shoot. = a raceme Raceme (Prunus or cherry) One modification of the basic raceme is to make it compound The panicle is essentially compound a series of attached racemes with the oldest racemes at the base and the youngest at the apex of the inflorescence. Panicle (Zigadenus or white camass) Raceme Panicle 1 A second modification of the basic raceme is to lose its pedicels The spike is usually associated with congested reduced flowers and often, but not always, with wind Pedicel loss pollination. wind pollinated Spike (Plantago or plantain) Raceme Spike A third modification of the basic raceme is to lose its internodes The spike is usually associated with congested reduced flowers and often, animal pollinated but not always, with wind Internode loss pollination. Umbel Spike (Combretum - Brent’s plants) Raceme 2 The umbel characterizes specific families (carrot and The umbel is found scattered in many other families ginseng families for example). as well. These families typically show a compound umbel - smaller umbellets on a larger umbel. Umbel Umbel (Cicuta or water hemlock) (Zizia or golden alexander) (Eriogonum or false buckwheat - family Polygonaceae) - Ben’s plants A fourth modification of the basic raceme is for the stem axis to form a head The head or capitulum characterizes specific families - most notably the Compositae or Asteraceae.
    [Show full text]
  • Pollination of Cultivated Plants in the Tropics 111 Rrun.-Co Lcfcnow!Cdgmencle
    ISSN 1010-1365 0 AGRICULTURAL Pollination of SERVICES cultivated plants BUL IN in the tropics 118 Food and Agriculture Organization of the United Nations FAO 6-lina AGRICULTUTZ4U. ionof SERNES cultivated plans in tetropics Edited by David W. Roubik Smithsonian Tropical Research Institute Balboa, Panama Food and Agriculture Organization of the United Nations F'Ø Rome, 1995 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-11 ISBN 92-5-103659-4 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. FAO 1995 PlELi. uion are ted PlauAr David W. Roubilli (edita Footli-anal ISgt-iieulture Organization of the Untled Nations Contributors Marco Accorti Makhdzir Mardan Istituto Sperimentale per la Zoologia Agraria Universiti Pertanian Malaysia Cascine del Ricci° Malaysian Bee Research Development Team 50125 Firenze, Italy 43400 Serdang, Selangor, Malaysia Stephen L. Buchmann John K. S. Mbaya United States Department of Agriculture National Beekeeping Station Carl Hayden Bee Research Center P.
    [Show full text]
  • Introductory Grass Identification Workshop University of Houston Coastal Center 23 September 2017
    Broadleaf Woodoats (Chasmanthium latifolia) Introductory Grass Identification Workshop University of Houston Coastal Center 23 September 2017 1 Introduction This 5 hour workshop is an introduction to the identification of grasses using hands- on dissection of diverse species found within the Texas middle Gulf Coast region (although most have a distribution well into the state and beyond). By the allotted time period the student should have acquired enough knowledge to identify most grass species in Texas to at least the genus level. For the sake of brevity grass physiology and reproduction will not be discussed. Materials provided: Dried specimens of grass species for each student to dissect Jewelry loupe 30x pocket glass magnifier Battery-powered, flexible USB light Dissecting tweezer and needle Rigid white paper background Handout: - Grass Plant Morphology - Types of Grass Inflorescences - Taxonomic description and habitat of each dissected species. - Key to all grass species of Texas - References - Glossary Itinerary (subject to change) 0900: Introduction and house keeping 0905: Structure of the course 0910: Identification and use of grass dissection tools 0915- 1145: Basic structure of the grass Identification terms Dissection of grass samples 1145 – 1230: Lunch 1230 - 1345: Field trip of area and collection by each student of one fresh grass species to identify back in the classroom. 1345 - 1400: Conclusion and discussion 2 Grass Structure spikelet pedicel inflorescence rachis culm collar internode ------ leaf blade leaf sheath node crown fibrous roots 3 Grass shoot. The above ground structure of the grass. Root. The below ground portion of the main axis of the grass, without leaves, nodes or internodes, and absorbing water and nutrients from the soil.
    [Show full text]
  • Ornamental Garden Plants of the Guianas Pt. 2
    Surinam (Pulle, 1906). 8. Gliricidia Kunth & Endlicher Unarmed, deciduous trees and shrubs. Leaves alternate, petiolate, odd-pinnate, 1- pinnate. Inflorescence an axillary, many-flowered raceme. Flowers papilionaceous; sepals united in a cupuliform, weakly 5-toothed tube; standard petal reflexed; keel incurved, the petals united. Stamens 10; 9 united by the filaments in a tube, 1 free. Fruit dehiscent, flat, narrow; seeds numerous. 1. Gliricidia sepium (Jacquin) Kunth ex Grisebach, Abhandlungen der Akademie der Wissenschaften, Gottingen 7: 52 (1857). MADRE DE CACAO (Surinam); ACACIA DES ANTILLES (French Guiana). Tree to 9 m; branches hairy when young; poisonous. Leaves with 4-8 pairs of leaflets; leaflets elliptical, acuminate, often dark-spotted or -blotched beneath, to 7 x 3 (-4) cm. Inflorescence to 15 cm. Petals pale purplish-pink, c.1.2 cm; standard petal marked with yellow from middle to base. Fruit narrowly oblong, somewhat woody, to 15 x 1.2 cm; seeds up to 11 per fruit. Range: Mexico to South America. Grown as an ornamental in the Botanic Gardens, Georgetown, Guyana (Index Seminum, 1982) and in French Guiana (de Granville, 1985). Grown as a shade tree in Surinam (Ostendorf, 1962). In tropical America this species is often interplanted with coffee and cacao trees to shade them; it is recommended for intensified utilization as a fuelwood for the humid tropics (National Academy of Sciences, 1980; Little, 1983). 9. Pterocarpus Jacquin Unarmed, nearly evergreen trees, sometimes lianas. Leaves alternate, petiolate, odd- pinnate, 1-pinnate; leaflets alternate. Inflorescence an axillary or terminal panicle or raceme. Flowers papilionaceous; sepals united in an unequally 5-toothed tube; standard and wing petals crisped (wavy); keel petals free or nearly so.
    [Show full text]
  • Medicago Sativa L.)
    ACTA BIOLOGICA CRACOVIENSIA Series Botanica 53/1: 96–101, 2011 DOI: 10.2478/v10182-011-0013-4 CYTOEMBRYOLOGICAL ANALYSIS OF CAUSES FOR POOR SEED SET IN ALFALFA (MEDICAGO SATIVA L.) RAFAŁ MÓL1, DOROTA WEIGT2*, AND ZBIGNIEW BRODA2 1Department of General Botany, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland 2Department of Genetics and Plant Breeding, Poznan University of Life Sciences, Wojska Polskiego 71 C, 61-625 Poznań, Poland Received February 3, 2011; revision accepted April 21, 2011 Poor seed set is a limiting factor in alfalfa breeding, as it slows the selection response. One strategy used to over- come this problem is to search for mutations of inflorescence morphology. Long-peduncle (lp), branched-raceme (br) and top-flowering (tf) inflorescence mutations increase the number of flowers per inflorescence, but they do not improve seed set per flower. Here we assessed pollen tube growth in styles of those inflorescence mutants and we observed embryo and endosperm development in seeds 1 to 16 days after pollination (DAP). The num- ber of pollen tubes penetrating the style and the ovary was similar in all tested mutants and in the reference cul- tivar Radius. At 2 DAP, fertilized ovules were 2.7–3.9 times less numerous in certain inflorescence mutants than in the short-raceme cv. Radius. Ovule degeneration progressed at 2–4 DAP in all analyzed plants. Most ovules were not properly developed in the control cultivar (62%), nor in the forms with mutated inflorescence mor- phology (69–86%). The number of seeds per pod was lowest in the tf form despite its having the highest num- ber of ovules per ovary.
    [Show full text]
  • Tucson Cactus and Succulent Society Guide to Common Cactus and Succulents of Tucson
    Tucson Cactus and Succulent Society Guide to Common Cactus and Succulents of Tucson http://www.tucsoncactus.org/c-s_database/index.html Item ID: 1 Item ID: 2 Family: Cactaceae Family: Cactaceae Genus: Ferocactus Genus: Echinocactus Species: wislizenii Species: grusonii Common Name: Fishhook Barrel Common Name: Golden Barrel Habitat: Various soil types from 1,000 Cactus to 6,000 feet elevation from grasslands Habitat: Located on rolling hills to rocky mountainous areas. and cliffs. Range: Arizona, southwestern New Range: Limited to small areas in Mexico, limited extremes of western Queretaro, Mexico. The popula- Texas, Sonora, northwest Chihuahua tion had become very low in num- and northern Sinaloa, Mexico bers over the years but is just Care: An extremely easy plant to grow now beginning to increase due to in and around the Tucson area. It re- protective laws and the fact that Photo Courtesy of Vonn Watkins quires little attention or special care as this plant is now in mass cultiva- ©1999 it is perfectly at home in almost any tion all over the world. garden setting. It is very tolerant of ex- Photo Courtesy of American Desert Care: The Golden Barrel has slow- Description treme heat as well as cold. Cold hardi- Plants ly become one of the most pur- This popular barrel cactus is noted ness tolerance is at around 10 degrees chased plants for home landscape for the beautiful golden yellow farenheit. Description in Tucson. It is an easy plant to spines that thickly surround the Propagation: Propagation of this cac- This plant is most recognized by the grow and takes no special care.
    [Show full text]
  • Inflorescence Architecture and Floral Morphology of Aratitiyopea Lopezii (Xyridaceae) Lisa M
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 23 | Issue 1 Article 17 2007 Inflorescence Architecture and Floral Morphology of Aratitiyopea lopezii (Xyridaceae) Lisa M. Campbell New York Botanical Garden, Bronx Dennis Wm. Stevenson New York Botanical Garden, Bronx Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Campbell, Lisa M. and Stevenson, Dennis Wm. (2007) "Inflorescence Architecture and Floral Morphology of Aratitiyopea lopezii (Xyridaceae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 23: Iss. 1, Article 17. Available at: http://scholarship.claremont.edu/aliso/vol23/iss1/17 Aliso 23, pp. 227–233 ᭧ 2007, Rancho Santa Ana Botanic Garden INFLORESCENCE ARCHITECTURE AND FLORAL MORPHOLOGY OF ARATITIYOPEA LOPEZII (XYRIDACEAE) LISA M. CAMPBELL1, 2 AND DENNIS WM.STEVENSON1 1The New York Botanical Garden, Bronx, New York 10458, USA 2Corresponding author ([email protected]) ABSTRACT Aratitiyopea lopezii is a robust perennial species of Xyridaceae from seasonally saturated, mid- to high-elevation, sandstone and granite sites in northern South America. The species lacks the scapose inflorescence characteristic of Xyridaceae and, having the gestalt of a rhizomatous bromeliad, it is seemingly aberrant in the family. However, closer examination confirms features consistent with the family and the previously noted morphological similarities to Orectanthe. Details of inflorescence structure and floral morphology are presented and compared to other genera of Xyridaceae. Key words: Aratitiyopea, Bromeliaceae, gynoecium appendage, inflorescence, Navia, nectary, Orec- tanthe, osmophore, pollen, Xyridaceae. INTRODUCTION florescence, and the few exceptions to this growth form (i.e., some Abolboda species, Achlyphila, and Aratitiyopea) have Aratitiyopea (Xyridaceae) is a monospecific genus of her- not been critically evaluated.
    [Show full text]
  • Evolution of Flowers and Inflorescences
    Development 1994 Supplement, 107-116 (1994) 107 Printed in Great Britain @ The Company of Biologists Limited 1994 Evolution of flowers and inflorescences Enrico S. Coen* and Jacqueline M. Nugent John lnnes Centre, Colney, Norwich NR4 7UH, UK *Author for correspondence SUMMARY Plant development depends on the activity of meristems of flowers. Theflo and cen genes play a key role in the posi- which continually reiterate a common plan. Permutations tioning of flowers, and variation in the site and timing of around this plan can give rise to a wide range of mor- expression of these genes, may account for many of the phologies. To understand the mechanisms underlying this different inflorescence types. The evolution of inflorescence variation, the effects of parallel mutations in key develop- stiucture may also have influenced the evolution of floral mental genes are being studied in different species. In asymmetry, as illustrated by the cen mutation which Antirrhinum, three of these key genes are: (l)floricaula ffio) changes both inflorescence type and the symmetry of some a gene required for the production of flowers (2) centror&- flowers. Conflicting theories about the origins of irregular dialis (cen), a gene controlling flower position (3) cycloidea flowers and how they have coevolved with inflorescence (cyc), a gene controlling flower symmetry. Several plant architecture can be directly assessed by examining the role species, exhibiting a range of inflorescence types and floral of cyc- and cen-like genes in species displaying various symmetries are being analysed in detail. Comparative floral symmetries and inflorescence types. genetic and molecular analysis shows that inflorescence architecture depends on two underlying parameters: a basic inflorescence branching pattern and the positioning Key words: Antirrhinum, Arabidopsis, symmetry INTRODUCTION important insights into how diverse plant forms have evolved.
    [Show full text]
  • Native Plants North Georgia
    Native Plants of North Georgia A photo guide for plant enthusiasts Mickey P. Cummings · The University of Georgia® · College of Agricultural and Environmental Sciences · Cooperative Extension CONTENTS Plants in this guide are arranged by bloom time, and are listed alphabetically within each bloom period. Introduction ................................................................................3 Blood Root .........................................................................5 Common Cinquefoil ...........................................................5 Robin’s-Plantain ..................................................................6 Spring Beauty .....................................................................6 Star Chickweed ..................................................................7 Toothwort ..........................................................................7 Early AprilEarly Trout Lily .............................................................................8 Blue Cohosh .......................................................................9 Carolina Silverbell ...............................................................9 Common Blue Violet .........................................................10 Doll’s Eye, White Baneberry ...............................................10 Dutchman’s Breeches ........................................................11 Dwarf Crested Iris .............................................................11 False Solomon’s Seal .........................................................12
    [Show full text]
  • Inflorescence • the Complete Flower Head of a Plant Including Stems, Stalks, Bracts, and Flowers
    Inflorescence • the complete flower head of a plant including stems, stalks, bracts, and flowers. • the arrangement of the flowers on a plant. Racemose or Indefinite or Indeterminate Type of Inflorescence: • The arrangement in which the youngest flower is present near the apex and older towards the base, i.e., in acropetal succession • the growing point does not stop the growth and forms continuously the lateral flowers. • Raceme: • When peduncle bears many pedicellate flowers in an acropetal manner, e.g., Delphinium ajacis, Veronica, etc. • Spike: • A raceme with sessile flowers, e.g., Adhatoda vasica, Callistemon, etc. • Spikelet: • Small spikes arranged in a spike, raceme or panicle manner. Each flower consists of an awned bract, three stamens and an ovary with two feathery stigmas, e.g., Triticum. • Panicle: • Branched raceme, e.g., Delonix regia. • Catkin: • Pendant spike with unisexual flowers, e.g., Morus alba, Salix, etc. • Spadix • Spike with a fleshy axis, enclosed by one or more large bracts called spathes, e.g., Musa, Pistia, etc. • Corymb: • Raceme, in which all the flowers reach the same level due to more elongation of the pedicel of older flowers, e.g., Iberis amara. • 8. Umbel: • When pedicellate flowers arise from a common point as in members of Umbelliferae or Apiaceae. • Capitulum or Head: • When numerous, small, sessile flowers are aggregated to form a dense inflorescence as in members of Compositae or Asteraceae. • Cymose or Definite or Determinate Type of Inflorescence: • When the apical growth of the floral axis is checked by the formation of a flower, it is called cymose inflorescence. Flowers are arranged in basipetalous manner, i.e., the terminal flower is oldest and young flowers are present on lower side.
    [Show full text]
  • PLANT MORPHOLOGY: Vegetative & Reproductive
    PLANT MORPHOLOGY: Vegetative & Reproductive Study of form, shape or structure of a plant and its parts Vegetative vs. reproductive morphology http://commons.wikimedia.org/wiki/File:Peanut_plant_NSRW.jpg Vegetative morphology http://faculty.baruch.cuny.edu/jwahlert/bio1003/images/anthophyta/peanut_cotyledon.jpg Seed = starting point of plant after fertilization; a young plant in which development is arrested and the plant is dormant. Monocotyledon vs. dicotyledon cotyledon = leaf developed at 1st node of embryo (seed leaf). “Textbook” plant http://bio1903.nicerweb.com/Locked/media/ch35/35_02AngiospermStructure.jpg Stem variation Stem variation http://www2.mcdaniel.edu/Biology/botf99/stems&leaves/barrel.jpg http://www.puc.edu/Faculty/Gilbert_Muth/art0042.jpg http://www2.mcdaniel.edu/Biology/botf99/stems&leaves/xstawb.gif http://biology.uwsp.edu/courses/botlab/images/1854$.jpg Vegetative morphology Leaf variation Leaf variation Leaf variation Vegetative morphology If the primary root persists, it is called a “true root” and may take the following forms: taproot = single main root (descends vertically) with small lateral roots. fibrous roots = many divided roots of +/- equal size & thickness. http://oregonstate.edu/dept/nursery-weeds/weedspeciespage/OXALIS/oxalis_taproot.jpg adventitious roots = roots that originate from stem (or leaf tissue) rather than from the true root. All roots on monocots are adventitious. (e.g., corn and other grasses). http://plant-disease.ippc.orst.edu/plant_images/StrawberryRootLesion.JPG Root variation http://bio1903.nicerweb.com/Locked/media/ch35/35_04RootDiversity.jpg Flower variation http://130.54.82.4/members/Okuyama/yudai_e.htm Reproductive morphology: flower Yuan Yaowu Flower parts pedicel receptacle sepals petals Yuan Yaowu Flower parts Pedicel = (Latin: ped “foot”) stalk of a flower.
    [Show full text]
  • Harvard Papers in Botany Volume 22, Number 1 June 2017
    Harvard Papers in Botany Volume 22, Number 1 June 2017 A Publication of the Harvard University Herbaria Including The Journal of the Arnold Arboretum Arnold Arboretum Botanical Museum Farlow Herbarium Gray Herbarium Oakes Ames Orchid Herbarium ISSN: 1938-2944 Harvard Papers in Botany Initiated in 1989 Harvard Papers in Botany is a refereed journal that welcomes longer monographic and floristic accounts of plants and fungi, as well as papers concerning economic botany, systematic botany, molecular phylogenetics, the history of botany, and relevant and significant bibliographies, as well as book reviews. Harvard Papers in Botany is open to all who wish to contribute. Instructions for Authors http://huh.harvard.edu/pages/manuscript-preparation Manuscript Submission Manuscripts, including tables and figures, should be submitted via email to [email protected]. The text should be in a major word-processing program in either Microsoft Windows, Apple Macintosh, or a compatible format. Authors should include a submission checklist available at http://huh.harvard.edu/files/herbaria/files/submission-checklist.pdf Availability of Current and Back Issues Harvard Papers in Botany publishes two numbers per year, in June and December. The two numbers of volume 18, 2013 comprised the last issue distributed in printed form. Starting with volume 19, 2014, Harvard Papers in Botany became an electronic serial. It is available by subscription from volume 10, 2005 to the present via BioOne (http://www.bioone. org/). The content of the current issue is freely available at the Harvard University Herbaria & Libraries website (http://huh. harvard.edu/pdf-downloads). The content of back issues is also available from JSTOR (http://www.jstor.org/) volume 1, 1989 through volume 12, 2007 with a five-year moving wall.
    [Show full text]