Introductory Grass Identification Workshop University of Houston Coastal Center 23 September 2017

Total Page:16

File Type:pdf, Size:1020Kb

Introductory Grass Identification Workshop University of Houston Coastal Center 23 September 2017 Broadleaf Woodoats (Chasmanthium latifolia) Introductory Grass Identification Workshop University of Houston Coastal Center 23 September 2017 1 Introduction This 5 hour workshop is an introduction to the identification of grasses using hands- on dissection of diverse species found within the Texas middle Gulf Coast region (although most have a distribution well into the state and beyond). By the allotted time period the student should have acquired enough knowledge to identify most grass species in Texas to at least the genus level. For the sake of brevity grass physiology and reproduction will not be discussed. Materials provided: Dried specimens of grass species for each student to dissect Jewelry loupe 30x pocket glass magnifier Battery-powered, flexible USB light Dissecting tweezer and needle Rigid white paper background Handout: - Grass Plant Morphology - Types of Grass Inflorescences - Taxonomic description and habitat of each dissected species. - Key to all grass species of Texas - References - Glossary Itinerary (subject to change) 0900: Introduction and house keeping 0905: Structure of the course 0910: Identification and use of grass dissection tools 0915- 1145: Basic structure of the grass Identification terms Dissection of grass samples 1145 – 1230: Lunch 1230 - 1345: Field trip of area and collection by each student of one fresh grass species to identify back in the classroom. 1345 - 1400: Conclusion and discussion 2 Grass Structure spikelet pedicel inflorescence rachis culm collar internode ------ leaf blade leaf sheath node crown fibrous roots 3 Grass shoot. The above ground structure of the grass. Root. The below ground portion of the main axis of the grass, without leaves, nodes or internodes, and absorbing water and nutrients from the soil. Crown. The persistent base of a perennial grass. Culm (Stem). A major division of the plant body in contrast to root and leaf, distinguished from both by certain anatomical features and commonly also by general aspect; the main axis or axes of a plant; the portion of the plant axis bearing nodes, leaves, and buds and usually found above ground. - Rhizome. A horizontal, underground stem with modified leaves at the nodes. - Stolon. A horizontal, above-ground stem with modified leaves, nodes, internodes, and axillary buds. Node. The joint of a stem; the region of attachment of the leaves. Leaf sheath. The tubular basal portion of a leaf that encloses the stem. Generally there is a ligule at the inside (adaxial) junction of the leaf sheath and the leaf blade. The ligule is a very reliable vegetative characteristic for grass identification. In 4 some grasses an ear-shaped appendage called an auricle occurs in pairs laterally at the base of the leaf blade and laterally at the sheath apex in others. Its function is to hold the open sheath. ligule membranous ligule. ligule ligule Ligule with hairs. Ligule with sheath closed. Ligule with ciliated ligule membrane Auricle Leaf blade. The flattened, expanded portion of leaf above the sheath. Collar. The outer side of a grass leaf at the junction of the blade and sheath. Inflorescence. The flowering portion of a shoot; in grasses, the spikelets and the axis or branch system that supports them, the inflorescence being delimited at the base by the uppermost leafy node of the shoot. Grass inflorescences are delimited by the uppermost culm leaf or portion thereof. By 5 this definition, multiple inflorescences can occur on a single culm. The spike, spicate raceme, and raceme inflorescences do not have branches arising from the central axis (rachis). With these inflorescences the spikelets either are attached directly or individually pedicelled (or stalked) upon the central axis. A panicle inflorescence is anywhere the spikelets are not sessile or individually pediceled on the main axis. S CA Switch Grass CA – Central Axis S - Spikelet A spike inflorescences are those in which the spikelets are sessile on the centreal axis or rachis.A raceme inflorescence has pedicels supporting single spikelets, with the pedicel attached to the central axis. 6 Cheatgrass CA S A panicle of spicate primary unilateral branches is a common modification of the typical panicle inflorescence. Branches developing from the nodes at the central axis of the inflorescence are called primary branches. Spikelets on this inflorescence type are racemose (subsessile) or spicate (sessile) on the primary branch and make the branch appear spikelike, hence the term "spicate." The spikelets are attached along one side of the branch and give the branch a unilateral or one-sided appearance. Panicles with spicate primary unilateral branches may be described by the arrangement of the branches using modifiers such as alternate, digitate, subdigitate, or verticillate. PS CA S PS – Pedicelled Spikelet CA – Central Axis SS – Sessile Spikelet Little Bluestem 7 A spicate raceme has an unbranched central axis with sessile spikelets and short pedicellate spikelets (PS). PS S CA CA Wild Barley S CA Sideoats Gramma Panicle of alternate spicate primary unilateral branches 8 S CA Panicle of subdigitate spicate unilateral unilateral branches. S CA Panicle of verticillate spicate primary unilateral branches. Rachis or main axis of the inflorescence. The central stem or branch of the culm or inflorescence in which parts of the grass are arranged. Pedicel. The stalk of a single spikelet Spikelet. The basic unit of the grass inflorescence, usually consisting of short axis, the rachilla, bearing 2 empty bracts called the glumes, at the basal nodes and 1 or more florets above. - The rachilla. The main axis of a grass spikelet. 9 Floret. As applied to grasses, the lemma and palea with the enclosed flower; may be perfect, pistillate, staminate, or sterile. reduced (neuter) floret awn palea stigma rachilla anther floret lemma ovary lodicule second glume first glume pedicel Glumes. The pair of bracts usually present at the base of the grass spikelet. The first glume is lower. Both glumes are usually present, but occasionally the first may be reduced in size or completely absent or both partially fused. Lemma. Part of the second series of bracts of the spikelet. The lemma is probably the most reliable and frequently used character in grass in identification. It is always present and has a high degree of stability within a genus. Lemma texture, shape, 10 number of nerves, awn development, and surface features are used extensively in identification. - Nerve. A simple vein or slender rib of a leaf or bract (glumes, lemma, and/or palea). Palea. Part of the second series of bracts of the spikelet. Usually 2-nerved and 2- keeled and often enclosed by the lemma. - Keel. A prominent dorsal ridge, like the keel of a boat. Glumes and lemmas of laterally compressed spikelets are often sharply keeled. Ovary. Part of the pistil that contains the ovules. - Pistil. The female (seed-bearing) structures of the flower, ordinarily consisting of the ovary, stigma, and style. - Ovules. The structure that develops into the caryopsis (seed). - Caryopsis. The characteristic grass fruit (seed) Stigma. The part of the ovary or style that receives the pollen for effective fertilization. Anthers. The pollen-bearing part of a stamen. 11 Workshop Species Dissection Genera Group Key Group A Spikelets surrounded by a bur-like involucre of prickly spines or smooth scales. Plants monoecious; burlike structure (fascicle) composed of bristles or flattened spines fused for more than ½ their length; spines sharp enough to puncture flesh Coastal Sandbur (Cenchrus spiniflex) – Annual, mostly with tall, coarse, stiffly erect culms. Ligule a fringe of hairs. Spikelets enclosed in fascicles with more than 1 whorl of flattened inner bristles usually 1-3 mm wide at base, 8-43 bristles, disarticulating at maturity. Glumes thin, membranous, unequal. Lower glume 1 to 3-nerved, the upper 1-7 nerved. Lemma of the sterile floret thin, 1-7 nerved, equaling or exceeding the upper glume. Palea of the sterile floret about equaling the lemma. Lemma of the fertile floret thin, membranous, 5-7 nerved, tapering to a slender, usually acuminate tip, the margins not inrolled. spikelet palea lemma upper lower floret glume glume fascicle Fascicle cut opened to show seed. 12 Group B. Spikelets unisexual, staminate; pistillate spikelets usually conspicuously different. Plants monoecious, > 2m tall Gammagrass (Tripsachum dactyloides) – Large cespitose perennials with stout, thick-based culms and usually broad, flat blades. Inflorescence a spikelike raceme or series of 2 to few spikelike racemose branches bearing staminate spikelets above and pistillate spikelets below. Staminate spikelets 2-flowered, in pairs on one side of a continuous rachis. Pistillate spikelets below the staminate and on the same rachis, single, sessile, an partially embedded on the rachis. Glumes of the staminate spikelet flat, several-nerved, relatively thin. Glumes of the pistillate spikelet hard and boney, fused with the rachis and tightly enclosing the rest of the spikelet. Lemmas of the sterile and fertile florets thin and membranous, awnless, often reduced. Staminate portion of the rachis deciduous as a whole, the pistillate portion breaking up at the nodes into beadlike units. staminate spikelet pedicel pistillate staminate spikelet spikelet rame internode lower glume pistillate spikelet 13 Group C Spikelets in pairs of 1 sessile and 1 pediceled; lower glumes large and enclosing spikelet. 1. Spikelets all alike and fertile Big Bluestem (Andropogon gerardii). Cespitose perennials with usually stiffly erect culms, rounded or flattened and keeled sheaths, and flat or folded blades; ligules membranous. Flowering culm little-branched above the base. Each culm or branch terminated by an inflorescence of 2 to several racemose branches. Sessile spikelets with awn 8-25 mm long; rhizomes sometimes present, the internodes usually <2 cm long. Pediceled spikelet well developed. Disarticulation in the rachis, the sessile spikelets falling attached to the associated pedicel and section of the rachis. Glumes large, firm, awnless. Lemmas of the sterile and fertile florets membranous, lemma of the fertile floret awned. 14 1.
Recommended publications
  • Unmarked Plants Were Observed on Hike Within Boundary of De-Na-Zin Badlands Wilderness
    Plants of De-Na-Zin Badlands [San Juan Co(s), New Mexico] Observed on CONPS fieldtrip, 4/23/2007 to 4/23/2007 Leader(s): Arnold Clifford, AL Schneider; Recorder(s); Loraine Yeatts, Jan Turner, John Bregar, Travis Ward Scientific Name Synonym Common Name Agavaceae (formerly in Liliaceae) Agave 1. Yucca harrimaniae Harriman yucca Alliaceae (formerly in Liliaceae) Onion 2. Allium macropetalum San Juan onion 3. Androstephium breviflorum Wild hyacinth, funnel lily Apiaceae (Umbelliferae) Parsley 4. Cymopterus acaulis var. (C. fendleri, C. decipiens) Springparsley fendleri 5. Cymopterus bulbosus Onion spring-parsley Asteraceae (Compositae) Sunflower 6. Artemisia bigelovii Bigelow sagebrush / wormwood 7. Artemisia ludoviciana Praire sagewort 8. Chrysothamnus nauseosus ssp. Rubber rabbitbrush graveolens 9. Gutierrezia sarothrae (Xanthocephalum sarothrae) Broom snakeweed 10. Gutierrezia sarothrae (Xanthocephalum sarothrae) Broom snakeweed 11. Hymenopappus filifolius Fineleaf hymenopappus 12. Machaeranthera grindelioides Gumweed aster 13. Malacothrix sonchoides Sowthistle malacothrix 14. Packera multilobata (Senecio multilobatus) Uinta groundsel 15. Petradoria pumila (Solidago petradoria) Rock goldenrod 16. Picrothamnus desertorum (Artemisia spinescens) Budsage 17. Platyschkuhria integrifolia var. Desert bahia oblongifolia 18. Seriphidium tridentatum (Artemisia tridentata) Big sagebrush 19. Tetraneuris ivesiana (Hymenoxys acaulis var. ivesiana) Stemless woollybase 20. Townsendia annua Annual townsendia 21. Townsendia incana Silvery townsendia Boraginaceae
    [Show full text]
  • Types of American Grasses
    z LIBRARY OF Si AS-HITCHCOCK AND AGNES'CHASE 4: SMITHSONIAN INSTITUTION UNITED STATES NATIONAL MUSEUM oL TiiC. CONTRIBUTIONS FROM THE United States National Herbarium Volume XII, Part 3 TXE&3 OF AMERICAN GRASSES . / A STUDY OF THE AMERICAN SPECIES OF GRASSES DESCRIBED BY LINNAEUS, GRONOVIUS, SLOANE, SWARTZ, AND MICHAUX By A. S. HITCHCOCK z rit erV ^-C?^ 1 " WASHINGTON GOVERNMENT PRINTING OFFICE 1908 BULLETIN OF THE UNITED STATES NATIONAL MUSEUM Issued June 18, 1908 ii PREFACE The accompanying paper, by Prof. A. S. Hitchcock, Systematic Agrostologist of the United States Department of Agriculture, u entitled Types of American grasses: a study of the American species of grasses described by Linnaeus, Gronovius, Sloane, Swartz, and Michaux," is an important contribution to our knowledge of American grasses. It is regarded as of fundamental importance in the critical sys- tematic investigation of any group of plants that the identity of the species described by earlier authors be determined with certainty. Often this identification can be made only by examining the type specimen, the original description being inconclusive. Under the American code of botanical nomenclature, which has been followed by the author of this paper, "the nomenclatorial t}rpe of a species or subspecies is the specimen to which the describer originally applied the name in publication." The procedure indicated by the American code, namely, to appeal to the type specimen when the original description is insufficient to identify the species, has been much misunderstood by European botanists. It has been taken to mean, in the case of the Linnsean herbarium, for example, that a specimen in that herbarium bearing the same name as a species described by Linnaeus in his Species Plantarum must be taken as the type of that species regardless of all other considerations.
    [Show full text]
  • A Phylogeny of the Hubbardochloinae Including Tetrachaete (Poaceae: Chloridoideae: Cynodonteae)
    Peterson, P.M., K. Romaschenko, and Y. Herrera Arrieta. 2020. A phylogeny of the Hubbardochloinae including Tetrachaete (Poaceae: Chloridoideae: Cynodonteae). Phytoneuron 2020-81: 1–13. Published 18 November 2020. ISSN 2153 733 A PHYLOGENY OF THE HUBBARDOCHLOINAE INCLUDING TETRACHAETE (CYNODONTEAE: CHLORIDOIDEAE: POACEAE) PAUL M. PETERSON AND KONSTANTIN ROMASCHENKO Department of Botany National Museum of Natural History Smithsonian Institution Washington, D.C. 20013-7012 [email protected]; [email protected] YOLANDA HERRERA ARRIETA Instituto Politécnico Nacional CIIDIR Unidad Durango-COFAA Durango, C.P. 34220, México [email protected] ABSTRACT The phylogeny of subtribe Hubbardochloinae is revisited, here with the inclusion of the monotypic genus Tetrachaete, based on a molecular DNA analysis using ndhA intron, rpl32-trnL, rps16 intron, rps16- trnK, and ITS markers. Tetrachaete elionuroides is aligned within the Hubbardochloinae and is sister to Dignathia. The biogeography of the Hubbardochloinae is discussed, its origin likely in Africa or temperate Asia. In a previous molecular DNA phylogeny (Peterson et al. 2016), the subtribe Hubbardochloinae Auquier [Bewsia Gooss., Dignathia Stapf, Gymnopogon P. Beauv., Hubbardochloa Auquier, Leptocarydion Hochst. ex Stapf, Leptothrium Kunth, and Lophacme Stapf] was found in a clade with moderate support (BS = 75, PP = 1.00) sister to the Farragininae P.M. Peterson et al. In the present study, Tetrachaete elionuroides Chiov. is included in a phylogenetic analysis (using ndhA intron, rpl32- trnL, rps16 intron, rps16-trnK, and ITS DNA markers) in order to test its relationships within the Cynodonteae with heavy sampling of species in the supersubtribe Gouiniodinae P.M. Peterson & Romasch. Chiovenda (1903) described Tetrachaete Chiov. with a with single species, T.
    [Show full text]
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • Systematics and Evolution of Eleusine Coracana (Gramineae)1
    Amer. J. Bot. 71(4): 550-557. 1984. SYSTEMATICS AND EVOLUTION OF ELEUSINE CORACANA (GRAMINEAE)1 J. M. J. de W et,2 K. E. Prasada Rao,3 D. E. Brink,2 and M. H. Mengesha3 departm ent of Agronomy, University of Illinois, 1102 So. Goodwin, Urbana, Illinois 61801, and international Crops Research Institute for the Semi-arid Tropics, Patancheru, India ABSTRACT Finger millet (Eleusine coracana (L.) Gaertn. subsp. coracana) is cultivated in eastern and southern Africa and in southern Asia. The closest wild relative of finger millet is E. coracana subsp. africana (Kennedy-O’Byme) H ilu & de Wet. W ild finger m illet (subsp. africana) is native to Africa but was introduced as a weed to the warmer parts of Asia and America. Derivatives of hybrids between subsp. coracana and subsp. africana are companion weeds of the crop in Africa. Cultivated finger millets are divided into five races on the basis of inflorescence mor­ phology. Race coracana is widely distributed across the range of finger millet cultivation. It is present in the archaeological record o f early African agriculture that m ay date back 5,000 years. Racial evolution took place in Africa. Races vulgaris, elongata., plana, and compacta evolved from race coracana, and were introduced into India some 3,000 years ago. Little independent racial evolution took place in India. E l e u s i n e Gaertn. is predominantly an African tancheru in India, and studied morphologi­ genus. Six of its nine species are confined to cally. These include 698 accessions from the tropical and subtropical Africa (Phillips, 1972).
    [Show full text]
  • Pima County Plant List (2020) Common Name Exotic? Source
    Pima County Plant List (2020) Common Name Exotic? Source McLaughlin, S. (1992); Van Abies concolor var. concolor White fir Devender, T. R. (2005) McLaughlin, S. (1992); Van Abies lasiocarpa var. arizonica Corkbark fir Devender, T. R. (2005) Abronia villosa Hariy sand verbena McLaughlin, S. (1992) McLaughlin, S. (1992); Van Abutilon abutiloides Shrubby Indian mallow Devender, T. R. (2005) Abutilon berlandieri Berlandier Indian mallow McLaughlin, S. (1992) Abutilon incanum Indian mallow McLaughlin, S. (1992) McLaughlin, S. (1992); Van Abutilon malacum Yellow Indian mallow Devender, T. R. (2005) Abutilon mollicomum Sonoran Indian mallow McLaughlin, S. (1992) Abutilon palmeri Palmer Indian mallow McLaughlin, S. (1992) Abutilon parishii Pima Indian mallow McLaughlin, S. (1992) McLaughlin, S. (1992); UA Abutilon parvulum Dwarf Indian mallow Herbarium; ASU Vascular Plant Herbarium Abutilon pringlei McLaughlin, S. (1992) McLaughlin, S. (1992); UA Abutilon reventum Yellow flower Indian mallow Herbarium; ASU Vascular Plant Herbarium McLaughlin, S. (1992); Van Acacia angustissima Whiteball acacia Devender, T. R. (2005); DBGH McLaughlin, S. (1992); Van Acacia constricta Whitethorn acacia Devender, T. R. (2005) McLaughlin, S. (1992); Van Acacia greggii Catclaw acacia Devender, T. R. (2005) Acacia millefolia Santa Rita acacia McLaughlin, S. (1992) McLaughlin, S. (1992); Van Acacia neovernicosa Chihuahuan whitethorn acacia Devender, T. R. (2005) McLaughlin, S. (1992); UA Acalypha lindheimeri Shrubby copperleaf Herbarium Acalypha neomexicana New Mexico copperleaf McLaughlin, S. (1992); DBGH Acalypha ostryaefolia McLaughlin, S. (1992) Acalypha pringlei McLaughlin, S. (1992) Acamptopappus McLaughlin, S. (1992); UA Rayless goldenhead sphaerocephalus Herbarium Acer glabrum Douglas maple McLaughlin, S. (1992); DBGH Acer grandidentatum Sugar maple McLaughlin, S. (1992); DBGH Acer negundo Ashleaf maple McLaughlin, S.
    [Show full text]
  • Grass Genera in Townsville
    Grass Genera in Townsville Nanette B. Hooker Photographs by Chris Gardiner SCHOOL OF MARINE and TROPICAL BIOLOGY JAMES COOK UNIVERSITY TOWNSVILLE QUEENSLAND James Cook University 2012 GRASSES OF THE TOWNSVILLE AREA Welcome to the grasses of the Townsville area. The genera covered in this treatment are those found in the lowland areas around Townsville as far north as Bluewater, south to Alligator Creek and west to the base of Hervey’s Range. Most of these genera will also be found in neighbouring areas although some genera not included may occur in specific habitats. The aim of this book is to provide a description of the grass genera as well as a list of species. The grasses belong to a very widespread and large family called the Poaceae. The original family name Gramineae is used in some publications, in Australia the preferred family name is Poaceae. It is one of the largest flowering plant families of the world, comprising more than 700 genera, and more than 10,000 species. In Australia there are over 1300 species including non-native grasses. In the Townsville area there are more than 220 grass species. The grasses have highly modified flowers arranged in a variety of ways. Because they are highly modified and specialized, there are also many new terms used to describe the various features. Hence there is a lot of terminology that chiefly applies to grasses, but some terms are used also in the sedge family. The basic unit of the grass inflorescence (The flowering part) is the spikelet. The spikelet consists of 1-2 basal glumes (bracts at the base) that subtend 1-many florets or flowers.
    [Show full text]
  • Published Vestigations Together Study Existing Accept Arrangements
    Notes on the Nomenclature of some grasses II by Dr. J.Th. Henrard (Rijksherbarium, Leiden) (Issued September 10th, 1941). In a former article new combinations and critical observa- 1) many all the world. New in- tions were published on various grasses over vestigations in critical genera together with the study of the existing literature made it necessary to accept various other arrangements in this important family. The old system of Bentham, once the basis for a total is and modified and review, now more more many tribes are and limited. The have purified more exactly most recent system we at the moment, is Hubbard’s treatment of this family in the work of Hutchinson: The families of flowering plants. Vol. II. Monocotyle- dons. The grasses are divided there into 26 tribes. We have here the great advantage that aberrant which are into genera, not easy to place one of the formerly accepted tribes, are given as representatives of distinct new tribes. The curious tropical genus Streptochaeta f.i. con- stitutes the tribe of the Streptochaeteae. It is quite acceptable that tribes consist of but may one genus, especially when such a genus is a totally deviating one and cannot be inserted into one of the already existing ones. Such tribes are f.i. the Nardeae with the only northern genus Nardus, and the Mediterranean tribe of the Lygeeae with the only genus Lygeum, one of the Esparto grasses. It is therefore wonder no that Hubbard creates a new tribe, the Anomochloeae, for one of the most curious tropical grasses of the world.
    [Show full text]
  • (Gramineae) Background Concerned, It
    BLUMEA 31 (1986) 281-307 Generic delimitationof Rottboelliaand related genera (Gramineae) J.F. Veldkamp R. de Koning & M.S.M. Sosef Rijksherbarium,Leiden, The Netherlands Summary Generic delimitations within the Rottboelliastrae Stapf and Coelorachidastrae Clayton (for- mal name) are revised. Coelorachis Brongn., Hackelochloa O. Ktze, Heteropholis C.E. Hubb., in Ratzeburgia Kunth, and Rottboellia formosa R. Br, are to be included Mnesithea Kunth. Heteropholis cochinchinensis (Lour.) Clayton and its variety chenii (Hsu) Sosef & Koning are varieties of Mnesithea laevis (Retz.) Kunth. Robynsiochloa Jacq.-Félix is to be included in Rottboellia L.f. The necessary new combinations, a list of genera and representative species, and a key to the genera are given. In the Appendix a new species of Rottboellia, R. paradoxa Koning & Sosef, is described from the Philippines. The enigmatic species Rottboellia villosa Poir. is transferred to Schizachyrium villosum (Poir.) Veldk., comb. nov. Introduction Historical background The of the within the of taxa delimitation genera group represented by Rottboel- lia L. f. and its closest relatives, here taken in the sense of Clayton (1973), has always posed a considerable problem. former In times Rottboellia contained many species. It was divided up in various the of Hackel seemed most ways, but system 5 subgenera as proposed by (1889) authoritative: Coelorachis (Brongn.) Hack., Hemarthria (R. Br.) Hack., Peltophorus (Desv.) HackPhacelurus (Griseb.) Hack., and Thyrsostachys Hack. When at the end of the last century and in the beginning of the present one many large grass genera were split up, e.g. Andropogon, Panicum, Stapf (1917) raised Hackel's subgenera to generic rank, reviving some old names formerly treated as synonyms, and created several new of the of other unable finish his ones.
    [Show full text]
  • Plant Associations and Descriptions for American Memorial Park, Commonwealth of the Northern Mariana Islands, Saipan
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Vegetation Inventory Project American Memorial Park Natural Resource Report NPS/PACN/NRR—2013/744 ON THE COVER Coastal shoreline at American Memorial Park Photograph by: David Benitez Vegetation Inventory Project American Memorial Park Natural Resource Report NPS/PACN/NRR—2013/744 Dan Cogan1, Gwen Kittel2, Meagan Selvig3, Alison Ainsworth4, David Benitez5 1Cogan Technology, Inc. 21 Valley Road Galena, IL 61036 2NatureServe 2108 55th Street, Suite 220 Boulder, CO 80301 3Hawaii-Pacific Islands Cooperative Ecosystem Studies Unit (HPI-CESU) University of Hawaii at Hilo 200 W. Kawili St. Hilo, HI 96720 4National Park Service Pacific Island Network – Inventory and Monitoring PO Box 52 Hawaii National Park, HI 96718 5National Park Service Hawaii Volcanoes National Park – Resources Management PO Box 52 Hawaii National Park, HI 96718 December 2013 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.
    [Show full text]
  • A New Species of Bothriochloa (Poaceae, Andropogoneae) Endemic to Montane Grasslands of Santa Catarina, Brazil
    Phytotaxa 183 (1): 044–050 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2014 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.183.1.5 A new species of Bothriochloa (Poaceae, Andropogoneae) endemic to montane grasslands of Santa Catarina, Brazil 1 1 EMILAINE BIAVA DALMOLIM & ANA ZANIN 1 Programa de Pós-Graduação em Biologia de Fungos, Algas e Plantas, Departamento de Botânica, Universidade Federal de Santa Catarina, Campus Trindade, 88040-900, Florianópolis, Santa Catarina, Brazil. Email: [email protected] Abstract Bothriochloa catharinensis, a new species of Andropogoneae (Poaceae: Panicoideae, Andropogoneae) endemic to mon- tane grasslands associated with araucaria forest in the state of Santa Catarina, Southern Brazil, is described and illustrated. Morphological similarities between the new taxon and other species of Bothriochloa are discussed. Comments on habitat, morphology, distribution and conservation status are provided. Key words: araucaria forest, grasses, Panicoideae, SEM, taxonomy Resumo Bothriochloa catharinensis, uma nova espécie de Poaceae considerada endêmica de campos de altitude associados à Floresta Ombró- fila Mista (floresta com araucária) do Estado de Santa Catarina, Sul do Brasil, é aqui descrita e ilustrada. Similaridades morfológicas entre a nova espécie e outros táxons de Bothriochloa são discutidas. São fornecidos dados sobre hábitat, morfologia, distribuição e estado de conservação. Palavras chave: Floresta Ombrófila Mista, gramíneas, MEV, Panicoideae, taxonomia Introduction Bothriochloa Kuntze (1891: 762) comprises about 40 species distributed largely in warm-temperate areas of the world (Scrivanti et al. 2009). In the Americas, the genus is represented by about 27 species widely distributed in tropical, temperate and subtropical regions; four of these have been cultivated and naturalized (Vega 2000, Vega & Scrivanti 2012).
    [Show full text]
  • The Jepson Manual: Vascular Plants of California, Second Edition Supplement II December 2014
    The Jepson Manual: Vascular Plants of California, Second Edition Supplement II December 2014 In the pages that follow are treatments that have been revised since the publication of the Jepson eFlora, Revision 1 (July 2013). The information in these revisions is intended to supersede that in the second edition of The Jepson Manual (2012). The revised treatments, as well as errata and other small changes not noted here, are included in the Jepson eFlora (http://ucjeps.berkeley.edu/IJM.html). For a list of errata and small changes in treatments that are not included here, please see: http://ucjeps.berkeley.edu/JM12_errata.html Citation for the entire Jepson eFlora: Jepson Flora Project (eds.) [year] Jepson eFlora, http://ucjeps.berkeley.edu/IJM.html [accessed on month, day, year] Citation for an individual treatment in this supplement: [Author of taxon treatment] 2014. [Taxon name], Revision 2, in Jepson Flora Project (eds.) Jepson eFlora, [URL for treatment]. Accessed on [month, day, year]. Copyright © 2014 Regents of the University of California Supplement II, Page 1 Summary of changes made in Revision 2 of the Jepson eFlora, December 2014 PTERIDACEAE *Pteridaceae key to genera: All of the CA members of Cheilanthes transferred to Myriopteris *Cheilanthes: Cheilanthes clevelandii D. C. Eaton changed to Myriopteris clevelandii (D. C. Eaton) Grusz & Windham, as native Cheilanthes cooperae D. C. Eaton changed to Myriopteris cooperae (D. C. Eaton) Grusz & Windham, as native Cheilanthes covillei Maxon changed to Myriopteris covillei (Maxon) Á. Löve & D. Löve, as native Cheilanthes feei T. Moore changed to Myriopteris gracilis Fée, as native Cheilanthes gracillima D.
    [Show full text]