Geology and Market-Dependent Significance of Rare Earth Element Resources
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Use of Phosphate Solubilizing Bacteria to Leach Rare Earth Elements from Monazite-Bearing Ore
Minerals 2015, 5, 189-202; doi:10.3390/min5020189 OPEN ACCESS minerals ISSN 2075-163X www.mdpi.com/journal/minerals Article Use of Phosphate Solubilizing Bacteria to Leach Rare Earth Elements from Monazite-Bearing Ore Doyun Shin 1,2,*, Jiwoong Kim 1, Byung-su Kim 1,2, Jinki Jeong 1,2 and Jae-chun Lee 1,2 1 Mineral Resources Resource Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Gwahangno 124, Yuseong-gu, Daejeon 305-350, Korea; E-Mails: [email protected] (J.K.); [email protected] (B.K.); [email protected] (J.J.); [email protected] (J.L.) 2 Department of Resource Recycling Engineering, Korea University of Science and Technology, Gajeongno 217, Yuseong-gu, Daejeon 305-350, Korea * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +82-42-868-3616. Academic Editor: Anna H. Kaksonen Received: 8 January 2015 / Accepted: 27 March 2015 / Published: 2 April 2015 Abstract: In the present study, the feasibility to use phosphate solubilizing bacteria (PSB) to develop a biological leaching process of rare earth elements (REE) from monazite-bearing ore was determined. To predict the REE leaching capacity of bacteria, the phosphate solubilizing abilities of 10 species of PSB were determined by halo zone formation on Reyes minimal agar media supplemented with bromo cresol green together with a phosphate solubilization test in Reyes minimal liquid media as the screening studies. Calcium phosphate was used as a model mineral phosphate. Among the test PSB strains, Pseudomonas fluorescens, P. putida, P. rhizosphaerae, Mesorhizobium ciceri, Bacillus megaterium, and Acetobacter aceti formed halo zones, with the zone of A. -
Washington State Minerals Checklist
Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
COLUMBIUM - and RARE-EARTH ELEMENT-BEARING DEPOSITS at BOKAN MOUNTAIN, SOUTHEAST ALASKA by J
COLUMBIUM - AND RARE-EARTH ELEMENT-BEARING DEPOSITS AT BOKAN MOUNTAIN, SOUTHEAST ALASKA By J. Dean Warner and James C. Barker Alaska Field Operations Center * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * OFR - 33-89 UNITED STATES DEPARTMENT OF THE INTERIOR Manuel Lujan, Jr., Secretary BUREAU OF MINES T.S. Ary, Director TABLE OF CONTENTS Page Abstract ........................................................ 1 Introduction ....................... 2 Acknowledgments ................................................. 4 Location, access, and physiography .............................. 5 History and production ............. 5 Geologic setting .................................. 9 Trace element analyses of the peralkaline granite .............. 11 Nature of Bureau investigations ................................. 13 Sampling methods and analytical techniques .................... 13 Analytical interference, limitations, and self-shielding ...... 13 Resource estimation methods ................................... 15 Prospect evaluations .......................................... 16 Shear zones and fracture-controlled deposits .................... 18 Ross Adams mine ................. 18 Sunday Lake prospect.......................................... 21 I and L No. 1 and Wennie prospects ............................ 27 Other Occurrences ............................................. 31 Altered peralkaline granite ................................. 31 Dotson shear zone ........................................... 35 Resources .................................................. -
(12) Patent Application Publication (10) Pub. No.: US 2014/0166788 A1 Pearse Et Al
US 2014O166788A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0166788 A1 Pearse et al. (43) Pub. Date: Jun. 19, 2014 (54) METHOD AND SYSTEM FOR MAGNETIC (52) U.S. Cl. SEPARATION OF RARE EARTHIS CPC. B03C I/02 (2013.01); B02C 23/08 (2013.01); B02C23/20 (2013.01) (76) Inventors: Gary Pearse, Ottawa (CA); Jonathan USPC .......... 241/20: 209/212: 209/214; 241/24.14; Borduas, Montreal (CA); Thomas 241/21 Gervais, Montreal (CA); David Menard, Laval (CA); Djamel Seddaoui, Repentigny (CA); Bora Ung, Quebec (CA) (57) ABSTRACT (21) Appl. No.: 13/822,363 A system and a method for separating rare earth element (22) PCT Filed: Aug. 15, 2012 compounds from a slurry of mixed rare earth element com pounds, comprising flowing the slurry of mixed rare earth (86). PCT No.: PCT/CA12/50.552 element compounds through at least a first channel rigged S371 (c)(1), with at least a first magnet along a length thereof and con (2), (4) Date: May 17, 2013 nected to at least a first output channel at the position of the Publication Classification magnet, and retrieving individual rare earth element com pounds and/or groups of rare earth element compounds, sepa (51) Int. Cl. rated from the slurry as they are selectively attracted by the BO3C I/02 (2006.01) magnet and directed in the corresponding output channel B2C 23/20 (2006.01) according to their respective ratio of magnetic Susceptibility B2C 23/08 (2006.01) (AX) to specific density (Ap). Ferromagnetic particles are dia?pararnegnetic particles Submitted to a magnetic torque remain relatively unaffected by the torque As a result they roll left \\ Carried right by the slow rotating drum Patent Application Publication Jun. -
Alphab Etical Index
ALPHAB ETICAL INDEX Names of authors are printed in SMALLCAPITALS, subjects in lower-case roman, and localities in italics; book reviews are placed at the end. ABDUL-SAMAD, F. A., THOMAS, J. H., WILLIAMS, P. A., BLASI, A., tetrahedral A1 in alkali feldspar, 465 and SYMES, R. F., lanarkite, 499 BORTNIKOV, N. S., see BRESKOVSKA, V. V., 357 AEGEAN SEA, Santorini I., iron oxide mineralogy, 89 Boulangerite, 360 Aegirine, Scotland, in trachyte, 399 BRAITHWAITE, R. S. W., and COOPER, B. V., childrenite, /~kKERBLOM, G. V., see WILSON, M. R., 233 119 ALDERTON, D. H. M., see RANKIN, A. H., 179 Braunite, mineralogy and genesis, 506 Allanite, Scotland, 445 BRESKOVSKA, V. V., MOZGOVA, N. N., BORTNIKOV, N. S., Aluminosilicate-sodalites, X-ray study, 459 GORSHKOV, A. I., and TSEPIN, A. I., ardaite, 357 Amphibole, microstructures and phase transformations, BROOKS, R. R., see WATTERS, W. A., 510 395; Greenland, 283 BULGARIA, Madjarovo deposit, ardaite, 357 Andradite, in banded iron-formation assemblage, 127 ANGUS, N. S., AND KANARIS-SOTIRIOU, R., autometa- Calcite, atomic arrangement on twin boundaries, 265 somatic gneisses, 411 CANADA, SASKATCHEWAN, uranium occurrences in Cree Anthophyllite, asbestiform, morphology and alteration, Lake Zone, 163 77 CANTERFORD, J. H., see HILL, R. J., 453 Aragonite, atomic arrangements on twin boundaries, Carbonatite, evolution and nomenclature, 13 265 CARPENTER, M. A., amphibole microstructures, 395 Ardaite, Bulgaria, new mineral, 357 Cassiterite, SW England, U content, 211 Arfvedsonite, Scotland, in trachyte, 399 Cebollite, in kimberlite, correction, 274 ARVlN, M., pumpellyite in basic igneous rocks, 427 CHANNEL ISLANDS, Guernsey, meladiorite layers, 301; ASCENSION ISLAND, RE-rich eudialyte, 421 Jersey, wollastonite and epistilbite, 504; mineralization A TKINS, F. -
WO 2011/156817 Al
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date Χ t it o n 1 15 December 2011 (15.12.2011) WO 2011/156817 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C02F1/58 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/US20 11/040214 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 13 June 201 1 (13.06.201 1) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/354,031 11 June 2010 ( 11.06.2010) (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): MOLY- GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, CORP MINERALS LLC [US/US]; 561 Denver Tech ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, Center Pkwy, Suite 1000, Greenwood Village, CO 801 11 TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (US). -
Petrology of Nepheline Syenite Pegmatites in the Oslo Rift, Norway: Zr and Ti Mineral Assemblages in Miaskitic and Agpaitic Pegmatites in the Larvik Plutonic Complex
MINERALOGIA, 44, No 3-4: 61-98, (2013) DOI: 10.2478/mipo-2013-0007 www.Mineralogia.pl MINERALOGICAL SOCIETY OF POLAND POLSKIE TOWARZYSTWO MINERALOGICZNE __________________________________________________________________________________________________________________________ Original paper Petrology of nepheline syenite pegmatites in the Oslo Rift, Norway: Zr and Ti mineral assemblages in miaskitic and agpaitic pegmatites in the Larvik Plutonic Complex Tom ANDERSEN1*, Muriel ERAMBERT1, Alf Olav LARSEN2, Rune S. SELBEKK3 1 Department of Geosciences, University of Oslo, PO Box 1047 Blindern, N-0316 Oslo Norway; e-mail: [email protected] 2 Statoil ASA, Hydroveien 67, N-3908 Porsgrunn, Norway 3 Natural History Museum, University of Oslo, Sars gate 1, N-0562 Oslo, Norway * Corresponding author Received: December, 2010 Received in revised form: May 15, 2012 Accepted: June 1, 2012 Available online: November 5, 2012 Abstract. Agpaitic nepheline syenites have complex, Na-Ca-Zr-Ti minerals as the main hosts for zirconium and titanium, rather than zircon and titanite, which are characteristic for miaskitic rocks. The transition from a miaskitic to an agpaitic crystallization regime in silica-undersaturated magma has traditionally been related to increasing peralkalinity of the magma, but halogen and water contents are also important parameters. The Larvik Plutonic Complex (LPC) in the Permian Oslo Rift, Norway consists of intrusions of hypersolvus monzonite (larvikite), nepheline monzonite (lardalite) and nepheline syenite. Pegmatites ranging in composition from miaskitic syenite with or without nepheline to mildly agpaitic nepheline syenite are the latest products of magmatic differentiation in the complex. The pegmatites can be grouped in (at least) four distinct suites from their magmatic Ti and Zr silicate mineral assemblages. -
Tin, Tungsten, and Tantalum Deposits of South Dakota
TIN, TUNGSTEN, AND TANTALUM DEPOSITS OF SOUTH DAKOTA. By FRANK L. HESS. INTRODUCTION. Many articles have been written 011 the tin deposits of the Black Hills, and an excellent paper by J. D. Irving a on the tungsten deposits at Lead was published in 1901. Nothing is known to have been pub lished on the tungsten deposits of the southern Black Hills, but several articles have been written on the deposits of tantalum. Nearly all the papers on these different deposits, however, are a num ber of years old, and later developments have given several of the deposits an aspect somewhat different from their appearance at the time they were described. It therefore seems well to give a brief account of observations made by the writer during a short reconnais sance trip in September, 1908, together with such reviews of the his tory and the literature of the region as may seem advisable. All the known deposits of tin, tungsten, and tantalum in South Dakota occur in the Black Hills, in Lawrence and Pennington coun ties, in the southwestern part of the State. Although designated as "hills," these elevations reach a height of 7,216 feet in Harney Peak, 500 feet above the highest of the Appalachians (Mount Mitchell, 6,711 feet) and almost a thousand feet above the highest of the White Mountains (Mount Washington, 6,279 feet). They are about 60 to 75 miles long by 50 miles wide, the longer axis lying nearly north and south. There is a considerable diversity of topography in the different parts of the area to be considered. -
Chemical Composition and Petrogenetic Implications of Eudialyte-Group Mineral in the Peralkaline Lovozero Complex, Kola Peninsula, Russia
minerals Article Chemical Composition and Petrogenetic Implications of Eudialyte-Group Mineral in the Peralkaline Lovozero Complex, Kola Peninsula, Russia Lia Kogarko 1,* and Troels F. D. Nielsen 2 1 Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia 2 Geological Survey of Denmark and Greenland, 1350 Copenhagen, Denmark; [email protected] * Correspondence: [email protected] Received: 23 September 2020; Accepted: 16 November 2020; Published: 20 November 2020 Abstract: Lovozero complex, the world’s largest layered peralkaline intrusive complex hosts gigantic deposits of Zr-, Hf-, Nb-, LREE-, and HREE-rich Eudialyte Group of Mineral (EGM). The petrographic relations of EGM change with time and advancing crystallization up from Phase II (differentiated complex) to Phase III (eudialyte complex). EGM is anhedral interstitial in all of Phase II which indicates that EGM nucleated late relative to the main rock-forming and liquidus minerals of Phase II. Saturation in remaining bulk melt with components needed for nucleation of EGM was reached after the crystallization about 85 vol. % of the intrusion. Early euhedral and idiomorphic EGM of Phase III crystalized in a large convective volume of melt together with other liquidus minerals and was affected by layering processes and formation of EGM ore. Consequently, a prerequisite for the formation of the ore deposit is saturation of the alkaline bulk magma with EGM. It follows that the potential for EGM ores in Lovozero is restricted to the parts of the complex that hosts cumulus EGM. Phase II with only anhedral and interstitial EGM is not promising for this type of ore. -
Geology of the South Pass Area, Fremont County, Wyoming
Geology of the South Pass Area, Fremont County, Wyoming By RICHARD W. BAYLEY, PAUL DEAN PROCTOR,· and KENT C. CONDIE GEOLOGICAL SURVEY PROFESSIONAL PAPER 793 Describes the stratigraphy) structure) and metamorphism of the South Pass area) and the iron and gold deposits UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1973 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 73-600101 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402- Price $1.10 (paper cover) Stock Number 240l-02398 CONTENTS Page Page Abstract 1 Intrusive igneous rocks-Continued Introduction ------------------------------------- 1 Louis Lake batholith ------------------------ 17 Geography -----------------------·----------- 1 Diabasic gabbro dikes ------------------------ 24 Human his,tory ------------------------------ 2 Structure --------------------------------------- 24 Previous investigations ----·------------------ 3 Metamorphism ----------------------------------- 26 Recent investigations ------------------------ 4 Geochronology ---------------------------------- 28 Acknowledgments ---------------------------- 4 Economic geology -------------------------------- 2~ Geologic setting -------------------------------- 4 Gold ----------·------------------------------ 28 Stratigraphy ------------------------------~---- 6 Quartz veins ---------------------------..:. 29 Goldman Meadows Formation ---------------- 6 -
Critical Rare Earths, National Security, and US-China Interactions
CHILDREN AND FAMILIES The RAND Corporation is a nonprofit institution that helps improve policy and EDUCATION AND THE ARTS decisionmaking through research and analysis. ENERGY AND ENVIRONMENT HEALTH AND HEALTH CARE This electronic document was made available from www.rand.org as a public service INFRASTRUCTURE AND of the RAND Corporation. TRANSPORTATION INTERNATIONAL AFFAIRS LAW AND BUSINESS Skip all front matter: Jump to Page 16 NATIONAL SECURITY POPULATION AND AGING PUBLIC SAFETY Support RAND SCIENCE AND TECHNOLOGY Browse Reports & Bookstore TERRORISM AND Make a charitable contribution HOMELAND SECURITY For More Information Visit RAND at www.rand.org Explore the Pardee RAND Graduate School View document details Limited Electronic Distribution Rights This document and trademark(s) contained herein are protected by law as indicated in a notice appearing later in this work. This electronic representation of RAND intellectual property is provided for non- commercial use only. Unauthorized posting of RAND electronic documents to a non-RAND website is prohibited. RAND electronic documents are protected under copyright law. Permission is required from RAND to reproduce, or reuse in another form, any of our research documents for commercial use. For information on reprint and linking permissions, please see RAND Permissions. This product is part of the Pardee RAND Graduate School (PRGS) dissertation series. PRGS dissertations are produced by graduate fellows of the Pardee RAND Graduate School, the world’s leading producer of Ph.D.’s in policy analysis. The dissertation has been supervised, reviewed, and approved by the graduate fellow’s faculty committee. Dissertation Critical Rare Earths, National Security, and U.S.-China Interactions A Portfolio Approach to Dysprosium Policy Design David L.