Population Density and Genetic Structure of the Giant Clams Tridacna Crocea and T
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PSA Marine (Pte) Ltd GENERAL OPERATING CONDITIONS
PSA MARINE (PTE) LTD GENERAL OPERATING CONDITIONS Updated on 16 August 2018 PSA Marine (Pte) Ltd GENERAL OPERATING CONDITIONS CONTENTS A. GENERAL TERMS B. UK STANDARD CONDITIONS FOR TOWAGE AND OTHER SERVICES (Revised 1986) C. TERMS AND CONDITIONS FOR PILOTAGE SERVICES D. PRICE LIST E. TERMS AND CONDITIONS OF CREDIT ACCOUNT Updated on 16 August 2018 PSA Marine (Pte) Ltd GENERAL OPERATING CONDITIONS A. GENERAL TERMS 1 DEFINITION 1.1. In the General Operating Conditions (as defined herein below), the following expressions, except where the context otherwise requires or where it is otherwise stated, shall have the following meaning: (a) “Company” means PSA Marine (Pte) Ltd, its subsidiaries, successors in title and/or assigns; (b) “General Operating Conditions” means the General Operating Conditions, comprising:- (i) Section A. General Terms; (ii) Section B. UK Standard Terms and Conditions for Towage and Other Services (Revised 1986); (iii) Section C. Terms and Conditions for Pilotage Services; (iv) Section D. Price List; and (v) Section E. Terms and Conditions of Credit Account. (c) “Contract” means any agreement between the Hirer and the Company in connection with the provision of Services; (d) “Hirer” means any Person who has requested and/or any Person on whose behalf a request is made for the Company to provide Services; (e) “Person” includes any individual, person(s) or any body or bodies corporate; (f) “Price List” means the document titled as such and setting out the charges payable to the Company (as may be amended from time to -
NPARKS ANNUAL REPORT 2015/16 3 Green Matters
green matters Annual Report 2015/16 2 GREEN MATTERS NPARKS ANNUAL REPORT 2015/16 3 green matters Access to greenery is integral to Singapore’s efforts to improve the quality of life for her residents. Singapore’s green infrastructure has grown with more parks, green spaces and Nature Ways. Ecological resilience has been strengthened through sustained conservation efforts and the establishment of Nature Parks and reserves. Significant efforts have also been made to ensure that all residents can gain access to our parks and gardens. The greening of Singapore is important in creating a quality living environment, but it is not a task that NParks can undertake alone. It is a constant work in progress that involves people from all walks of life, coming together with a shared vision – and conviction that green matters – to continue shaping Singapore into a City in a Garden. 04 GREEN MATTERS NPARKS ANNUAL REPORT 2015/16 05 CHAIRMAN’S MESSAGE “We have taken to heart the role of greenery as a social equaliser, moving beyond convenience and proximity of our green spaces to ensure accessibility for all. ” As a nation, our challenge for Beyond SG50 is to improve as a social equaliser, moving beyond convenience and liveability for all Singaporeans. At the National Parks proximity of our green spaces to ensure accessibility for Board (NParks), our role in this mission is clear – to all. We opened an inclusive playground at Bishan-Ang develop our City in a Garden in a sustainable and Mo Kio Park last year, enabling children with special inclusive manner. Be it streetscapes or parks and needs to develop age-appropriate social, communication, gardens, our green spaces are a national asset that motor and cognitive skills while playing with their peers. -
Chapter Two Marine Organisms
THE SINGAPORE BLUE PLAN 2018 EDITORS ZEEHAN JAAFAR DANWEI HUANG JANI THUAIBAH ISA TANZIL YAN XIANG OW NICHOLAS YAP PUBLISHED BY THE SINGAPORE INSTITUTE OF BIOLOGY OCTOBER 2018 THE SINGAPORE BLUE PLAN 2018 PUBLISHER THE SINGAPORE INSTITUTE OF BIOLOGY C/O NSSE NATIONAL INSTITUTE OF EDUCATION 1 NANYANG WALK SINGAPORE 637616 CONTACT: [email protected] ISBN: 978-981-11-9018-6 COPYRIGHT © TEXT THE SINGAPORE INSTITUTE OF BIOLOGY COPYRIGHT © PHOTOGRAPHS AND FIGURES BY ORINGAL CONTRIBUTORS AS CREDITED DATE OF PUBLICATION: OCTOBER 2018 EDITED BY: Z. JAAFAR, D. HUANG, J.T.I. TANZIL, Y.X. OW, AND N. YAP COVER DESIGN BY: ABIGAYLE NG THE SINGAPORE BLUE PLAN 2018 ACKNOWLEDGEMENTS The editorial team owes a deep gratitude to all contributors of The Singapore Blue Plan 2018 who have tirelessly volunteered their expertise and effort into this document. We are fortunate to receive the guidance and mentorship of Professor Leo Tan, Professor Chou Loke Ming, Professor Peter Ng, and Mr Francis Lim throughout the planning and preparation stages of The Blue Plan 2018. We are indebted to Dr. Serena Teo, Ms Ria Tan and Dr Neo Mei Lin who have made edits that improved the earlier drafts of this document. We are grateful to contributors of photographs: Heng Pei Yan, the Comprehensive Marine Biodiversity Survey photography team, Ria Tan, Sudhanshi Jain, Randolph Quek, Theresa Su, Oh Ren Min, Neo Mei Lin, Abraham Matthew, Rene Ong, van Heurn FC, Lim Swee Cheng, Tran Anh Duc, and Zarina Zainul. We thank The Singapore Institute of Biology for publishing and printing the The Singapore Blue Plan 2018. -
Review of Selected Species Subject to Long- Standing Import Suspensions
UNEP-WCMC technical report Review of selected species subject to long- standing import suspensions Part II: Asia and Oceania (Version edited for public release) Review of selected species subject to long-standing import suspensions. Part II: Asia and Oceania Prepared for The European Commission, Directorate General Environment, Directorate E - Global & Regional Challenges, LIFE ENV.E.2. – Global Sustainability, Trade & Multilateral Agreements, Brussels, Belgium Prepared February 2016 Copyright European Commission 2016 Citation UNEP-WCMC. 2016. Review of selected species subject to long-standing import suspensions. Part II: Asia and Oceania. UNEP-WCMC, Cambridge. The UNEP World Conservation Monitoring Centre (UNEP-WCMC) is the specialist biodiversity assessment of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organization. The Centre has been in operation for over 30 years, combining scientific research with policy advice and the development of decision tools. We are able to provide objective, scientifically rigorous products and services to help decision- makers recognize the value of biodiversity and apply this knowledge to all that they do. To do this, we collate and verify data on biodiversity and ecosystem services that we analyze and interpret in comprehensive assessments, making the results available in appropriate forms for national and international level decision-makers and businesses. To ensure that our work is both sustainable and equitable we seek to build the capacity of partners -
Light Exposure Enhances Urea Absorption in the Fluted Giant Clam
© 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb176313. doi:10.1242/jeb.176313 RESEARCH ARTICLE Light exposure enhances urea absorption in the fluted giant clam, Tridacna squamosa, and up-regulates the protein abundance of a light-dependent urea active transporter, DUR3-like, in its ctenidium Christabel Y. L. Chan1, Kum C. Hiong1, Mel V. Boo1, Celine Y. L. Choo1, Wai P. Wong1, Shit F. Chew2 and Yuen K. Ip1,3,* ABSTRACT Symbiodinium, which are also known as zooxanthellae (Trench, Giant clams live in nutrient-poor reef waters of the Indo-Pacific and rely 1987). Giant clams (Phylum: Mollusca, Family: Cardiidae, on symbiotic dinoflagellates (Symbiodinium spp., also known as Subfamily: Tridacninae, Genus: Tridacna or Hippopus)are zooxanthellae) for nutrients. As the symbionts are nitrogen deficient, common inhabitants of coral reefs in the tropical Indo-Pacific. the host clam has to absorb exogenous nitrogen and supply it to them. The host clam harbors symbiotic zooxanthellae (Symbiodinium This study aimed to demonstrate light-enhanced urea absorption in the clade A, C and D; LaJuenesse et al., 2004; Takabayashi et al., 2004; fluted giant clam, Tridacna squamosa, and to clone and characterize Hernawan, 2008; Lee et al., 2015) which live extracellularly in a the urea active transporter DUR3-like from its ctenidium (gill). The branched tubular system surrounded by hemolymph (Norton et al., results indicate that T. squamosa absorbs exogenous urea, and the 1992). Zooxanthellae reside mainly inside the tiny tertiary tubules rate of urea uptake in the light was significantly higher than that in located below the surface of the fleshy and colorful outer mantle darkness. -
ENCORE: the Eаect of Nutrient Enrichment on Coral Reefs
Marine Pollution Bulletin Vol. 42, No. 2, pp. 91±120, 2001 Ó 2001 Published by Elsevier Science Ltd. Printed in Great Britain PII: S0025-326X$00)00181-8 0025-326X/01 $ - see front matter ENCORE: The Eect of Nutrient Enrichment on Coral Reefs. Synthesis of Results and Conclusions K. KOOP *,1, D. BOOTHà, A. BROADBENT§,2, J. BRODIE , D. BUCHERàà, D. CAPONE ,3, J. COLL§§,4, W. DENNISON , M. ERDMANNààà, P. HARRISONàà, O. HOEGH-GULDBERG ,5, P. HUTCHINGS§§§, G. B. JONES§, A. W. D. LARKUM , J. O'NEIL ,5, A. STEVEN ,6, E. TENTORI§§, S. WARDàà,5, J. WILLIAMSON ,7 and D. YELLOWLEESàààà School of Biological Sciences, The University of Sydney, Sydney NSW 2006, Australia àDepartment Environmental Sciences, University of Technology, Sydney NSW 2065 Australia §Department of Chemistry, James Cook University, Townsville, Qld 4810, Australia Great Barrier Reef Marine Park Authority, P.O. Box 1379, Townsville, Qld 4810, Australia ààCentre for Coastal Management, Southern Cross University, P.O. Box 157, Lismore NSW 2480, Australia §§Department of Biology, Central Queensland University, Rockhampton, Qld 4702, Australia Department of Botany, University of Queensland, Brisbane, Qld 4072, Australia àààP.O. Box 1020, Manado, Sulawesi, Indonesia §§§The Australian Museum, 6, College Street, Sydney, NSW 2010, Australia Chesapeake Biological Laboratory, University of Maryland, Box 38, Solomons, MA 20688-0038, USA ààààBiochemistry and Molecular Biology, James Cook University, Townsville, Qld 4811 Australia Coral reef degradation resulting from nutrient enrichment assessed a variety of factors focusing on nutrient dynamics of coastal waters is of increasing global concern. Although and biotic responses. A controlled and replicated experi- eects of nutrients on coral reef organisms have been ment was conducted over two years using twelve small demonstrated in the laboratory,there is little direct evi- patch reefs ponded at low tide by a coral rim. -
A General Ecological Survey of Some Shores in Northern Moçambique
A GENERAL ECOLOGICAL SURVEY OF SOME SHORES IN NORTHERN MOÇAMBIQUE by MARGARET KALK (University of ?he Wilwciersrand, Johannesburg) /Hm*iW August, Ji, iQfS) CONTENTS h Introduction............................................................................................. 1 Li. General physical conditions in northern Mozambique . » . 2 iii. The fauna on the shores of Mozambique Island .... 3 iv. Strong wave action on the Isle of Goa mui at Chakos . « 8 v. Sheltered shores in northern Mozambique . • • 9 vi. Ecological patterns on shores of southern Mozambique . ■ IO vii, Discussion............................................................................................. in v iii. Acknowledgments * . * . *............................... 10 Appendix — A list of animals collected in northern Mozambique 11 References ............. 211 i. INTRODUCTION The shores of northern Moçambique are well within the tropics, reaching latitude IO0 S at the northern limit. Collections ol shore animals have been made from time to time and authors of taxonomic studies have frequently pointed out affinities of the fauna with that of the west Pacific. The coast is considered part of tile Indo-west-pacific province of Ekman. Tropical features such as confluent corai reefs, fields of Cymodocea on intertidal flats and zoned mangrove swamps persist as far south as Inhaca Island (latitude 26° S) in Southern Moçambique (Kalk, 1954 and 1958, Macxae and Kalk, 1958), aâ a result of the influence of the warm equatorial waters of the southward flowing Moçambique current. A number of tropical species intrude even into Natal in South Africa for the same reason (Stephexson 1944 and 1947, Smitii 1952 and 1959). But in Natal and to a lesser extent at Inhaca the gross facies of the upper levels of the rocky shores are not unlike wami temperate South African shores and might be termed sub-tropical in character. -
Do Singapore's Seawalls Host Non-Native Marine Molluscs?
Aquatic Invasions (2018) Volume 13, Issue 3: 365–378 DOI: https://doi.org/10.3391/ai.2018.13.3.05 Open Access © 2018 The Author(s). Journal compilation © 2018 REABIC Research Article Do Singapore’s seawalls host non-native marine molluscs? Wen Ting Tan1, Lynette H.L. Loke1, Darren C.J. Yeo2, Siong Kiat Tan3 and Peter A. Todd1,* 1Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Block S3, #02-05, Singapore 117543 2Freshwater & Invasion Biology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Block S3, #02-05, Singapore 117543 3Lee Kong Chian Natural History Museum, Faculty of Science, National University of Singapore, 2 Conservatory Drive, Singapore 117377 *Corresponding author E-mail: [email protected] Received: 9 March 2018 / Accepted: 8 August 2018 / Published online: 17 September 2018 Handling editor: Cynthia McKenzie Abstract Marine urbanization and the construction of artificial coastal structures such as seawalls have been implicated in the spread of non-native marine species for a variety of reasons, the most common being that seawalls provide unoccupied niches for alien colonisation. If urbanisation is accompanied by a concomitant increase in shipping then this may also be a factor, i.e. increased propagule pressure of non-native species due to translocation beyond their native range via the hulls of ships and/or in ballast water. Singapore is potentially highly vulnerable to invasion by non-native marine species as its coastline comprises over 60% seawall and it is one of the world’s busiest ports. The aim of this study is to investigate the native, non-native, and cryptogenic molluscs found on Singapore’s seawalls. -
Tridacna Maxima (Reding), and Hippopus Hippopus (Linnaeus)!
Pacific Science (1976), Vol. 30, No.3, p. 219-233 Printed in Great Britain Early Life History of the Giant Clams Tridacna crocea Lamarck, Tridacna maxima (Reding), and Hippopus hippopus (Linnaeus)! STEPHEN C. JAMESON2 ABST RACT: Giant clams may be stimulated to spawn by the addition of macer ated gonads to the water.Individuals of Tridacna maxima collected at Anae Island, Guam, spawned from N ovember to March. On Palau, Hippopus hippopus spawned in June and Tridacna crocea, in July. Tridacna crocea, T. maxima, and H. hippopus displayed a stereotype d develop ment pattern in morphogenesis and rate of development . Fertilized eggs of T. crocea, T . maxima, and H. hippopus had mean diameters of 93.1, 104.5, and 130.0 psx», respectively . The day-2 straight-hinge veligers of T . crocea, T . maxima, and H. hippopus had mean shell lengths of 155.0, 168.0, and 174.4 pm, respec tively. Settlement occurred 12, 11, and 9 days after fertili zation at a mean shell length of 168.0, 195.0, and 202.0 pm for T . crocea,T . max ima, and H. bippopss, respectively. Metamorphosis was basically complete about 1 day after settlement. Juveniles of T . crocea, T. max ima, and H. hippopus first acqui re zooxanthellae after 19, 21, and 25 days, respectively. Growth rates increase sharply after the acquisition of zoo xanthellae. Juvenile shells show first signs of becoming opaque after 47 days for T . maxima and after 50 days for H. hippopus. G rANT CLAMS are protandric fun ctional herma formation, and initial organogenesis. The larval phrodites (Wada 1942, 1952). -
Genetic Variability in the Indonesian Giant Clam (Tridacna Crocea and Tridacna Maxima) Populations: Implication for Mariculture and Restocking Program
Genetic Variability in the Indonesian Giant Clam (Tridacna crocea and Tridacna maxima) Populations: Implication for Mariculture and Restocking Program Agus Nuryanto1, Dedy Duryadi2, Dedi Soedharma3, Dietmar Blohm4 1 Faculty of Biology, Jenderal Soedirman University, Purwokerto 2 Department of Biology, Faculty of Mathematics and Life Sciences, Bogor Agriculture University 3 Faculty of Fisheries and Marine Sciences, Bogor Agriculture University 4 Department of Biotechnology and Molecular Genetics, FB2-UFT, University of Bremen Abstract Tridacna crocea and T. maxima are relatively abundant in the Indonesian coral reef. These two species are, however, under high presure due to exploitation for food, industry, and aquarium trade. It is, therefore, necessary to understand their biology, such as genetic variability within and between populations, before utilizing them for strain improvement and restocking, prior to the extinction of the populations of T. crocea and T. maxima. Here we amplified a length of 456 bp of the mitochondrial DNA cytochrome c oxidase I gene from Tridacna crocea and of 484 bp from T. maxima to asses the genetic variability within and between populations of both species. The results showed that both species have high genetic diversity and polymorphism within each local population. This provides a sufficient basis for selection of improved strain of T. crocea and T. maxima for mariculture. However, if the genetic variation led to genetic differentiation among populations due to the result of evolutionary adaptation, mixing genetically different populations may result in the break up of co-adaptation gene complexes. This might result in the loss of the physiological capacities of the parental populations. Key words: genetic variability, cytochrome c oxidase I gene, Tridacna crocea, Tridacna maxima Introduction The family of tridacnidae, also known as giant clam, is conspicuous bivalve that inhabits coral reef across the Indo-Pacific region (Lucas, 1988). -
Biblioasia Jan-Mar 2021.Pdf
Vol. 16 Issue 04 2021 JAN–MAR 10 / The Mystery of Madras Chunam 24 / Remembering Robinsons 30 / Stories From the Stacks 36 / Let There Be Light 42 / A Convict Made Good 48 / The Young Ones A Labour OF Love The Origins of Kueh Lapis p. 4 I think we can all agree that 2020 was a challenging year. Like many people, I’m looking Director’s forward to a much better year ahead. And for those of us with a sweet tooth, what better way to start 2021 than to tuck into PRESERVING THE SOUNDS OF SINGAPORE buttery rich kueh lapis? Christopher Tan’s essay on the origins of this mouth-watering layered Note cake from Indonesia – made of eggs, butter, flour and spices – is a feast for the senses, and very timely too, given the upcoming Lunar New Year. The clacking of a typewriter, the beeping of a pager and the Still on the subject of eggs, you should read Yeo Kang Shua’s examination of Madraschunam , the plaster made from, among other things, egg white and sugar. It is widely believed to have shrill ringing of an analogue telephone – have you heard these been used on the interior walls of St Andrew’s Cathedral. Kang Shua sets the record straight. sounds before? Sounds can paint images in the mind and evoke Given the current predilection for toppling statues of contentious historical figures, poet and playwright Ng Yi-Sheng argues that Raffles has already been knocked off his pedestal – shared memories. figuratively speaking that is. From a familiar historical figure, we turn to a relatively unknown personality – Kunnuck Mistree, a former Indian convict who remade himself into a successful and respectable member of society. -
S.E.A. Aquarium Educator Resources
S.E.A. AQUARIUM EDUCATOR RESOURCES SECONDARY SCHOOL Create a Marine Organism RWS Restricted A new marine habitat has been discovered on earth! There are no living organisms in this habitat yet so we are looking at introducing some. RWS Restricted Invitation for Project: Create a Marine Organism M <[email protected]> YOU ARE INVITED! YOUR MISSION: Create a marine organism best adapted to the habitat REQUIREMENT: 1. Marine organism created must adapt to the habitat and any potential environmental changes. 2. Creation needs to pass a series of tests before submission. Be creative and think out of the box! Accept invitation RWS Restricted INVESTIGATE PHYSICAL FACTORS OF A MARINE HABITAT DESCRIBE THESE PHYSICAL FACTORS IN THE FOLLOWING HABITATS . Temperature . Light availability . Water clarity . Oxygen availability . Other features that may affect survival (e.g. environment colours, vegetation cover) RWS Restricted CORAL REEFS Describe the physical factors in coral reefs. Hard corals habitat (S.E.A. Aquarium) RWS Restricted PHYSICAL FACTORS OF CORAL REEFS Light availability: Water temperature: Sufficient light for Water clarity: Relatively warm photosynthesis Relatively (23 to 27°C) clear water Other features: Environment Coral and rock colours: structures of various Variety of shapes and sizes colours RWS Restricted ANIMALS IN CORAL REEFS How do these animals adapt to the physical factors in coral reefs? RWS Restricted ANIMALS IN CORAL REEFS Vibrantly-coloured body camouflage amongst corals Surgeonfish Butterflyfish Layer of protective mucus on skin Spines to anchor in crevices Triggerfish Moray Eel RWS Restricted OPEN OCEAN Describe the physical factors in the open ocean. Open Ocean Habitat (S.E.A.