Calculating the Contribution of Zooxanthellae to Giant Clams Respiration Energy Requirements

Total Page:16

File Type:pdf, Size:1020Kb

Calculating the Contribution of Zooxanthellae to Giant Clams Respiration Energy Requirements Journal of Coastal Development ISSN: 1410-5217 Volume 5, Number 3, June 2002 : 101-110 Accredited: 69/Dikti/Kep/2000 Review CALCULATING THE CONTRIBUTION OF ZOOXANTHELLAE TO GIANT CLAMS RESPIRATION ENERGY REQUIREMENTS Ambariyanto*) Marine Science Department, Faculty of Fisheries and Marine Sciences, Diponegoro University, Semarang Indonesia. Email: [email protected] Received: April 24, 2002 ; Accepted: May 27, 2002 ABSTRACT Giant clams (Tridacnidae) are known to live in association with photosynthetic single cell dinoflagellate algae commonly called zooxanthellae. These algae which can be found in the mantle of the clams are capable of transferring part of their photosynthates which become an important source of energy to the host ( apart from filter feeding activity). In order to understand the basic biological processes of the giant clams , the contribution of zooxanthellae to the clam’s energy requirement need to be determined. This review describes how to calculate the contribution of zooxanthellae to the giant clam’s energy requirement for the respiration process. Key words: Giant clams, tridacnidae, zooxanthellae CZAR *) Correspondence: Tel. 024-7474698, Fax. 024-7474698, Email: [email protected] INTRODUCTION One of the important aspects of the biology of giant clams is the existence Giant clams (Family: Tridacnidae) are of zooxanthellae which occupy the mantle large bivalves that are commonly found in of the clams as endosymbiotic coral reef habitats especially in the Indo- dinoflagellate algae (Lucas, 1988). These Pacific region. This family consists of two zooxanthellae have a significant role, genera (Tridacna and Hippopus) and eight especially in the energy requirements of species: Tridacna gigas, T. derasa, T. giant clams, since they are capable of squamosa, T. maxima, T. crocea, T. translocating part of their photosynthetic tevoroa, Hippopus hippopus, and H. products to their host. This is why as a porcellanus (Braley, 1992). As well as member of bivalves giant clams do not being prominent members of healthy coral only supply their energy demand from reef ecosystems they are important to the filter feeding process, but also from the people of South East Asia and the Pacific energy translocation from zooxanthellae region as a source of food (meat) and (Klumpps et al., 1992). building material (shells). These clams This review aims to describe how have recently become an important export to calculate the contribution of commodity in several countries in this zooxanthellae to the daily respiration region (Tacconi and Tisdell, 1992; Tisdell energy requirements of giant clams. et al., 1994). 101 Journal of Coastal Development ISSN: 1410-5217 Volume 5, Number 3, June 2002 : 101-110 Accredited: 69/Dikti/Kep/2000 predominates in symbiosis, whilst in Zooxanthellae-Giant Clams Association culture there is alternation between the motile and non-motile (coccoid) stage Zooxanthellae are 'yellow-brown' dino- (Muscatine, 1980; Domotor and D'Elia, flagellate algae (Pyrrophyta) which live as 1986). Motile stages are reported to be endosymbionts in many marine phototactic and occur only for a short invertebrate species (Brandt, 1881). Taylor period of approximately 0.5 hour (Taylor, (1974) listed four different species of 1969a; Domotor and D'Elia, 1986). Fitt et zooxanthellae: (1) Gymnodinium (Symbio- al. (1981) demonstrated different motility dinium) microadriaticum (Freudenthal, patterns of zooxanthellae collected from 1962) which lives in protozoans, jellyfish (C. xamachana, C. frondosa), sea coelenterates, molluscs; (2) Amphidinium anemones (Aiptasia tagetes, A. pallida) chattonii in some coelenterates; and (3) A. and a giant clam (T. gigas) cultured in klebsii in platyhelminthes and (4) identical conditions. Amphidinium sp. in some protozoans. Schoenberg and Trench (1980a,b) Symbiodinium microadriaticum reported differences in isoenzyme patterns, was originally isolated from the jellyfish soluble protein, size, and the structure of Cassiopeia sp (Freudenthal, 1962). Later the cell wall of zooxanthellae collected Taylor (1971) proposed that zooxanthellae from different hosts. Using be placed in the genus Gymnodinium electrophoresis, Schoenberg and Trench because the free-living stage had great (1980a) investigated 40 cultures from 17 affinities to this genus. Loeblich and host species representing 12 strains and Sherley (1979) later suggested the use of found a unique combination of four Zooxanthella microadriatica when they isoenzyme patterns in each strain. Later found that the zooxanthellae isolated from Chang et al. (1983) found differences in Cassiopea xamachana differed slightly the photoadaptive mechanisms of three from Zooxanthella nutricula from the strains of zooxanthellae collected from a order Zooxanthellales (Brandt, 1881). clam (T. maxima), an anemone (A. Schoenberg and Trench (1980b), however, pulchella) and a coral (Montipora argued that the latter name was verrucosa). Similarly, Blank and Trench inappropriate, because the pyrenoids of the (1985a,b) showed several differences in algae described by Brandt (1881) are the number of chromosomes, chloroplasts, traversed by chloroplast thylakoids pyrenoid stalks, mitochondria, (Hollande and Carre, 1974), which is not chromosome volumes, nuclear volumes the case in S. microadriaticum from and thylakoid arrangements of Cassiopeia sp. zooxanthellae isolated from jellyfish Further work revealed that (Cassiopeia xamachana and C. frondosa), Symbiodinium microadriaticum are not anemone (Heteractis lucida) and coral (M. monospecific. Morphological, physio- verrucosa). These zooxanthellae were logical, biochemical and genetic reported to maintain their differences differences among S. microadriaticum when cultured in similar conditions. collected from different hosts are now The existence of these variations more the norm than the converse among zooxanthellae collected from (Schoenberg and Trench, 1980a,b; Blank different hosts suggests that zooxanthellae and Trench, 1985 a,b). There are represent dozens, perhaps even hundreds differences in the life cycle of of species. By investigating the zooxanthellae in symbiosis and in culture biochemical, physiological, conditions. The coccoid, non-motile stage morphological, and behavioural 102 Journal of Coastal Development ISSN: 1410-5217 Volume 5, Number 3, June 2002 : 101-110 Accredited: 69/Dikti/Kep/2000 differences, Trench and Blank (1987) existence of a tubular system associated introduced three new species into the with zooxanthellae within giant clams, genus Symbiodinium. These are S. goreauii previously reported by Mansour (1946). , S. kawagutii and S. pilosum isolated Norton et al. (1992) concluded that from the Caribbean sea anemone Ragactis zooxanthellae in clams are located in a lucida, stony coral Montipora verrucosa branched tubular structure, with a single and the Caribbean zoanthid Zoanthus layer of thin cells separating zooxanthellae sociatus respectively. Rowan and Powers and haemolymph (Rees et al., 1993). (1991, 1992) found 6 distinct differences There are two mechanisms by in small subunit RNA (ssRNA) genes of which zooxanthellae appear in the next zooxanthellae collected from 16 cnidarians generation of their symbiotic host. using the polymerase chain reaction (PCR) Zooxanthellae can be acquired by direct method. They could not distinguish any parental transmission via their egg, or by differences in the symbionts from direct acquisition from the environment. In individual corals of the same species, but giant clams, however, zooxanthellae are they found that different species of corals not being passed to the larvae (LaBarbera, have algae with unique sRNA sequences. 1975; Jameson, 1976; Fitt et al., 1984; However, multiple populations of 1986). This is proved by the fact that zooxanthellae have been reported from zooxanthellae are not found in the individual coral, Montrastea annularis, M. trochophore stage (Fitt and Trench, 1981). faveolata, and M. Franksi (Rowan and Giant clams larvae acquire zooxanthellae Knowlton 1995). de novo from the environment, soon after In more recent papers Baker and metamorphosis (Jameson, 1976; Fitt et al., Rowan (1997) reported genetic differences 1984). In the hatchery, zooxanthellae among zooxanthellae isolated from various isolated from adult clams are introduced to corals species collected from the veliger stages in order to promote a rapid Caribbean and Eastern Pacific. They found transition to the new stage (Gwyther and three different clades among those Munro, 1981; Fitt et al., 1984; Trinidad- zooxanthellae which were then termed as Roa, 1988). clade A, B, and C. All strains of Symbiodinium sp. are ingested by clams. Only a specific Zooxanthellae-Giant Clam Relationship strain, however, will eventually dominate a particular host (Fitt and Trench, 1981; Fitt, Giant clams are known to live in 1985b; Fitt et al., 1986). Strain selection association with symbiotic zooxanthellae by the clams entirely depends on how a (the term symbiosis being used throughout particular strain can grow, survive and this paper is to describe the mutualistic compete with other strains within the host interaction between zooxanthellae and the tissue (Fitt et al., 1986). host). In giant clams these zooxanthellae are extracellular, unlike hermatypic corals Contribution of Zooxan-Thellae to where zooxanthellae are located Giant Clams Respiration intracellularly. Initially it was agreed that zooxanthellae in giant clams are located Zooxanthellae have been found in the freely in the
Recommended publications
  • Microbiomes of Gall-Inducing Copepod Crustaceans from the Corals Stylophora Pistillata (Scleractinia) and Gorgonia Ventalina
    www.nature.com/scientificreports OPEN Microbiomes of gall-inducing copepod crustaceans from the corals Stylophora pistillata Received: 26 February 2018 Accepted: 18 July 2018 (Scleractinia) and Gorgonia Published: xx xx xxxx ventalina (Alcyonacea) Pavel V. Shelyakin1,2, Sofya K. Garushyants1,3, Mikhail A. Nikitin4, Sofya V. Mudrova5, Michael Berumen 5, Arjen G. C. L. Speksnijder6, Bert W. Hoeksema6, Diego Fontaneto7, Mikhail S. Gelfand1,3,4,8 & Viatcheslav N. Ivanenko 6,9 Corals harbor complex and diverse microbial communities that strongly impact host ftness and resistance to diseases, but these microbes themselves can be infuenced by stresses, like those caused by the presence of macroscopic symbionts. In addition to directly infuencing the host, symbionts may transmit pathogenic microbial communities. We analyzed two coral gall-forming copepod systems by using 16S rRNA gene metagenomic sequencing: (1) the sea fan Gorgonia ventalina with copepods of the genus Sphaerippe from the Caribbean and (2) the scleractinian coral Stylophora pistillata with copepods of the genus Spaniomolgus from the Saudi Arabian part of the Red Sea. We show that bacterial communities in these two systems were substantially diferent with Actinobacteria, Alphaproteobacteria, and Betaproteobacteria more prevalent in samples from Gorgonia ventalina, and Gammaproteobacteria in Stylophora pistillata. In Stylophora pistillata, normal coral microbiomes were enriched with the common coral symbiont Endozoicomonas and some unclassifed bacteria, while copepod and gall-tissue microbiomes were highly enriched with the family ME2 (Oceanospirillales) or Rhodobacteraceae. In Gorgonia ventalina, no bacterial group had signifcantly diferent prevalence in the normal coral tissues, copepods, and injured tissues. The total microbiome composition of polyps injured by copepods was diferent.
    [Show full text]
  • Review of Selected Species Subject to Long- Standing Import Suspensions
    UNEP-WCMC technical report Review of selected species subject to long- standing import suspensions Part II: Asia and Oceania (Version edited for public release) Review of selected species subject to long-standing import suspensions. Part II: Asia and Oceania Prepared for The European Commission, Directorate General Environment, Directorate E - Global & Regional Challenges, LIFE ENV.E.2. – Global Sustainability, Trade & Multilateral Agreements, Brussels, Belgium Prepared February 2016 Copyright European Commission 2016 Citation UNEP-WCMC. 2016. Review of selected species subject to long-standing import suspensions. Part II: Asia and Oceania. UNEP-WCMC, Cambridge. The UNEP World Conservation Monitoring Centre (UNEP-WCMC) is the specialist biodiversity assessment of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organization. The Centre has been in operation for over 30 years, combining scientific research with policy advice and the development of decision tools. We are able to provide objective, scientifically rigorous products and services to help decision- makers recognize the value of biodiversity and apply this knowledge to all that they do. To do this, we collate and verify data on biodiversity and ecosystem services that we analyze and interpret in comprehensive assessments, making the results available in appropriate forms for national and international level decision-makers and businesses. To ensure that our work is both sustainable and equitable we seek to build the capacity of partners
    [Show full text]
  • Exploring Traits of Engineered Coral Entities to Be Employed in Reef Restoration
    Journal of Marine Science and Engineering Article Exploring Traits of Engineered Coral Entities to be Employed in Reef Restoration Dor Shefy 1,2,3,*, Nadav Shashar 2 and Baruch Rinkevich 1 1 Israel Oceanography and Limnological Research, National Institute of Oceanography, Tel-Shikmona, P.O. Box 8030, Haifa 31080, Israel; [email protected] 2 Marine Biology and Biotechnology Program, Department of Life Sciences, Ben-Gurion University of the Negev Eilat Campus, Beer-Sheva 84105, Israel; [email protected] 3 The Interuniversity Institute for Marine Science, Eilat 88000, Israel * Correspondence: [email protected] Received: 18 November 2020; Accepted: 13 December 2020; Published: 21 December 2020 Abstract: Aggregated settlement of coral larvae results in a complex array of compatible (chimerism) and incompatible (rejection) allogenic responses. Each chimeric assemblage is considered as a distinct biological entity, subjected to selection, however, the literature lacks the evolutionary and ecological functions assigned to these units of selection. Here, we examined the effects of creating chimera/rejecting partners in terms of growth and survival under prolonged field conditions. Bi/multichimeras, bi/multi-rejecting entities, and genetically homogenous colonies (GHC) of the coral Stylophora pistillata were monitored under prolonged field conditions in a mid-water floating nursery in the northern Red Sea. Results revealed an increased aerial size and aeroxial ecological volume for rejected and chimeric entities compared to GHCs. At age 18 months, there were no significant differences in these parameters among the entities and traits, and rejecting partners did not differ from GHC. However, survival probabilities were significantly higher for chimeras that further revealed disparate initiation of up-growing branches and high diversity of chimeric phenotypes.
    [Show full text]
  • The Reproduction of the Red Sea Coral Stylophora Pistillata
    MARINE ECOLOGY PROGRESS SERIES Vol. 1, 133-144, 1979 - Published September 30 Mar. Ecol. Prog. Ser. The Reproduction of the Red Sea Coral Stylophora pistillata. I. Gonads and Planulae B. Rinkevich and Y.Loya Department of Zoology. The George S. Wise Center for Life Sciences, Tel Aviv University. Tel Aviv. Israel ABSTRACT: The reproduction of Stylophora pistillata, one of the most abundant coral species in the Gulf of Eilat, Red Sea, was studied over more than two years. Gonads were regularly examined using histological sections and the planula-larvae were collected in situ with plankton nets. S. pistillata is an hermaphroditic species. Ovaries and testes are situated in the same polyp, scattered between and beneath the septa and attached to them by stalks. Egg development starts in July preceding the spermaria, which start to develop only in October. A description is given on the male and female gonads, their structure and developmental processes. During oogenesis most of the oocytes are absorbed and usually only one oocyte remains in each gonad. S. pistillata broods its eggs to the planula stage. Planulae are shed after sunset and during the night. After spawning, the planula swims actively and changes its shape frequently. A mature planula larva of S. pistillata has 6 pairs of complete mesenteries (Halcampoides stage). However, a wide variability in developmental stages exists in newly shed planulae. The oral pole of the planula shows green fluorescence. Unique organs ('filaments' and 'nodules') are found on the surface of the planula;
    [Show full text]
  • ENCORE: the Eаect of Nutrient Enrichment on Coral Reefs
    Marine Pollution Bulletin Vol. 42, No. 2, pp. 91±120, 2001 Ó 2001 Published by Elsevier Science Ltd. Printed in Great Britain PII: S0025-326X$00)00181-8 0025-326X/01 $ - see front matter ENCORE: The Eect of Nutrient Enrichment on Coral Reefs. Synthesis of Results and Conclusions K. KOOP *,1, D. BOOTHà, A. BROADBENT§,2, J. BRODIE , D. BUCHERàà, D. CAPONE ,3, J. COLL§§,4, W. DENNISON , M. ERDMANNààà, P. HARRISONàà, O. HOEGH-GULDBERG ,5, P. HUTCHINGS§§§, G. B. JONES§, A. W. D. LARKUM , J. O'NEIL ,5, A. STEVEN ,6, E. TENTORI§§, S. WARDàà,5, J. WILLIAMSON ,7 and D. YELLOWLEESàààà School of Biological Sciences, The University of Sydney, Sydney NSW 2006, Australia àDepartment Environmental Sciences, University of Technology, Sydney NSW 2065 Australia §Department of Chemistry, James Cook University, Townsville, Qld 4810, Australia Great Barrier Reef Marine Park Authority, P.O. Box 1379, Townsville, Qld 4810, Australia ààCentre for Coastal Management, Southern Cross University, P.O. Box 157, Lismore NSW 2480, Australia §§Department of Biology, Central Queensland University, Rockhampton, Qld 4702, Australia Department of Botany, University of Queensland, Brisbane, Qld 4072, Australia àààP.O. Box 1020, Manado, Sulawesi, Indonesia §§§The Australian Museum, 6, College Street, Sydney, NSW 2010, Australia Chesapeake Biological Laboratory, University of Maryland, Box 38, Solomons, MA 20688-0038, USA ààààBiochemistry and Molecular Biology, James Cook University, Townsville, Qld 4811 Australia Coral reef degradation resulting from nutrient enrichment assessed a variety of factors focusing on nutrient dynamics of coastal waters is of increasing global concern. Although and biotic responses. A controlled and replicated experi- eects of nutrients on coral reef organisms have been ment was conducted over two years using twelve small demonstrated in the laboratory,there is little direct evi- patch reefs ponded at low tide by a coral rim.
    [Show full text]
  • Molecular Diversity, Phylogeny, and Biogeographic Patterns of Crustacean Copepods Associated with Scleractinian Corals of the Indo-Pacific
    Molecular Diversity, Phylogeny, and Biogeographic Patterns of Crustacean Copepods Associated with Scleractinian Corals of the Indo-Pacific Dissertation by Sofya Mudrova In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy of Science King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia November, 2018 2 EXAMINATION COMMITTEE PAGE The dissertation of Sofya Mudrova is approved by the examination committee. Committee Chairperson: Dr. Michael Lee Berumen Committee Co-Chair: Dr. Viatcheslav Ivanenko Committee Members: Dr. James Davis Reimer, Dr. Takashi Gojobori, Dr. Manuel Aranda Lastra 3 COPYRIGHT PAGE © November, 2018 Sofya Mudrova All rights reserved 4 ABSTRACT Molecular diversity, phylogeny and biogeographic patterns of crustacean copepods associated with scleractinian corals of the Indo-Pacific Sofya Mudrova Biodiversity of coral reefs is higher than in any other marine ecosystem, and significant research has focused on studying coral taxonomy, physiology, ecology, and coral-associated fauna. Yet little is known about symbiotic copepods, abundant and numerous microscopic crustaceans inhabiting almost every living coral colony. In this thesis, I investigate the genetic diversity of different groups of copepods associated with reef-building corals in distinct parts of the Indo-Pacific; determine species boundaries; and reveal patterns of biogeography, endemism, and host-specificity in these symbiotic systems. A non-destructive method of DNA extraction allowed me to use an integrated approach to conduct a diversity assessment of different groups of copepods and to determine species boundaries using molecular and taxonomical methods. Overall, for this thesis, I processed and analyzed 1850 copepod specimens, representing 269 MOTUs collected from 125 colonies of 43 species of scleractinian corals from 11 locations in the Indo-Pacific.
    [Show full text]
  • Tridacna Maxima (Reding), and Hippopus Hippopus (Linnaeus)!
    Pacific Science (1976), Vol. 30, No.3, p. 219-233 Printed in Great Britain Early Life History of the Giant Clams Tridacna crocea Lamarck, Tridacna maxima (Reding), and Hippopus hippopus (Linnaeus)! STEPHEN C. JAMESON2 ABST RACT: Giant clams may be stimulated to spawn by the addition of macer­ ated gonads to the water.Individuals of Tridacna maxima collected at Anae Island, Guam, spawned from N ovember to March. On Palau, Hippopus hippopus spawned in June and Tridacna crocea, in July. Tridacna crocea, T. maxima, and H. hippopus displayed a stereotype d develop ment pattern in morphogenesis and rate of development . Fertilized eggs of T. crocea, T . maxima, and H. hippopus had mean diameters of 93.1, 104.5, and 130.0 psx», respectively . The day-2 straight-hinge veligers of T . crocea, T . maxima, and H. hippopus had mean shell lengths of 155.0, 168.0, and 174.4 pm, respec tively. Settlement occurred 12, 11, and 9 days after fertili zation at a mean shell length of 168.0, 195.0, and 202.0 pm for T . crocea,T . max ima, and H. bippopss, respectively. Metamorphosis was basically complete about 1 day after settlement. Juveniles of T . crocea, T. max ima, and H. hippopus first acqui re zooxanthellae after 19, 21, and 25 days, respectively. Growth rates increase sharply after the acquisition of zoo ­ xanthellae. Juvenile shells show first signs of becoming opaque after 47 days for T . maxima and after 50 days for H. hippopus. G rANT CLAMS are protandric fun ctional herma­ formation, and initial organogenesis. The larval phrodites (Wada 1942, 1952).
    [Show full text]
  • Genetic Variability in the Indonesian Giant Clam (Tridacna Crocea and Tridacna Maxima) Populations: Implication for Mariculture and Restocking Program
    Genetic Variability in the Indonesian Giant Clam (Tridacna crocea and Tridacna maxima) Populations: Implication for Mariculture and Restocking Program Agus Nuryanto1, Dedy Duryadi2, Dedi Soedharma3, Dietmar Blohm4 1 Faculty of Biology, Jenderal Soedirman University, Purwokerto 2 Department of Biology, Faculty of Mathematics and Life Sciences, Bogor Agriculture University 3 Faculty of Fisheries and Marine Sciences, Bogor Agriculture University 4 Department of Biotechnology and Molecular Genetics, FB2-UFT, University of Bremen Abstract Tridacna crocea and T. maxima are relatively abundant in the Indonesian coral reef. These two species are, however, under high presure due to exploitation for food, industry, and aquarium trade. It is, therefore, necessary to understand their biology, such as genetic variability within and between populations, before utilizing them for strain improvement and restocking, prior to the extinction of the populations of T. crocea and T. maxima. Here we amplified a length of 456 bp of the mitochondrial DNA cytochrome c oxidase I gene from Tridacna crocea and of 484 bp from T. maxima to asses the genetic variability within and between populations of both species. The results showed that both species have high genetic diversity and polymorphism within each local population. This provides a sufficient basis for selection of improved strain of T. crocea and T. maxima for mariculture. However, if the genetic variation led to genetic differentiation among populations due to the result of evolutionary adaptation, mixing genetically different populations may result in the break up of co-adaptation gene complexes. This might result in the loss of the physiological capacities of the parental populations. Key words: genetic variability, cytochrome c oxidase I gene, Tridacna crocea, Tridacna maxima Introduction The family of tridacnidae, also known as giant clam, is conspicuous bivalve that inhabits coral reef across the Indo-Pacific region (Lucas, 1988).
    [Show full text]
  • Farming the Giant Clam
    Farming the giant clam Item Type article Authors Surtida, Marilyn B.; Buendia, Romeo Y. Download date 24/09/2021 10:40:27 Link to Item http://hdl.handle.net/1834/35020 Farming the giant clam By MB Surtida and RY Buendia Aquaculture and enhancing stock density along reef coasts: hitting two birds with one stone. That’s what the culture of giant clam promises. The Philippines is home to seven giant clam spe- cies (Tridacna gigas, T. derasa, T. squamosa, T. croces, T. maxima, Hippopus hippopus and H. porcellanus). In 1983, T. gigas and T. derasa were included in the list of endangered species during the convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) to regulate its commercial trade. In 1985, all the other species of giant clams were included in the list (the so-called Apppendix II) to eliminate problems in identifying giant clam deriva- tives of the different species. As signatory to the con- vention, the Philippines has banned the exportation of all giant clams. The Fisheries Statistics of the Philippines has re- ported harvests of giant clams to be 243 tons in 1976, 11,930 tons in 1980, 7 tons in 1983, and 68 tons in The breeding tank at Silliman University (SU) contains breeders of two species. Drs. Hilconida Calumpong, Director, and Janet 1984. This decline has been attested to by Dr. Hilconida Estacion, Assistant Director of the SU Marine Laboratory with Calumpong, Director of the Silliman University Marine Labora- Ms. Agnes Apao and Mrs. Jacinta Lucanas, both study leaders, tory (SUML) in Dumaguete City when she said that when she explain the breeding habits of the giant clams being studied was in Cuyo Island in 1978, she could walk on wide areas of giant clams in the intertidal areas.
    [Show full text]
  • The Ecological Significance of Giant Clams in Coral Reef Ecosystems
    Biological Conservation 181 (2015) 111–123 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Review The ecological significance of giant clams in coral reef ecosystems ⇑ Mei Lin Neo a,b, William Eckman a, Kareen Vicentuan a,b, Serena L.-M. Teo b, Peter A. Todd a, a Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore b Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore article info abstract Article history: Giant clams (Hippopus and Tridacna species) are thought to play various ecological roles in coral reef Received 14 May 2014 ecosystems, but most of these have not previously been quantified. Using data from the literature and Received in revised form 29 October 2014 our own studies we elucidate the ecological functions of giant clams. We show how their tissues are food Accepted 2 November 2014 for a wide array of predators and scavengers, while their discharges of live zooxanthellae, faeces, and Available online 5 December 2014 gametes are eaten by opportunistic feeders. The shells of giant clams provide substrate for colonization by epibionts, while commensal and ectoparasitic organisms live within their mantle cavities. Giant clams Keywords: increase the topographic heterogeneity of the reef, act as reservoirs of zooxanthellae (Symbiodinium spp.), Carbonate budgets and also potentially counteract eutrophication via water filtering. Finally, dense populations of giant Conservation Epibiota clams produce large quantities of calcium carbonate shell material that are eventually incorporated into Eutrophication the reef framework. Unfortunately, giant clams are under great pressure from overfishing and extirpa- Giant clams tions are likely to be detrimental to coral reefs.
    [Show full text]
  • Taxonomy of Indonesian Giant Clams (Cardiidae, Tridacninae)
    BIODIVERSITAS ISSN: 1412-033X Volume 13, Number 3, July 2012 E-ISSN: 2085-4722 Pages: 118-123 DOI: 10.13057/biodiv/d130303 Taxonomy of Indonesian giant clams (Cardiidae, Tridacninae) UDHI EKO HERNAWAN♥ Biotic Conservation Area of Tual Sea, Research Center for Oceanography, Indonesian Institute of Sciences. Jl. Merdeka, Katdek Tual, Southeast Maluku 97611. Tel. +92-916-23839, Fax. +62-916-23873, ♥email: [email protected] Manuscript received: 20 December 2010. Revision accepted: 20 June 2011. ABSTRACT Hernawan E. 2012. Taxonomy of Indonesian giant clams (Cardiidae, Tridacninae). Biodiversitas 13: 118-123. A taxonomic study was conducted on the giant clam’s specimens deposited in Museum Zoologicum Bogoriense (MZB), Cibinong Indonesia. Taxonomic overviews of the examined specimens are given with diagnostic characters, remarks, habitat and distribution. Discussion is focused on specific characters distinguishing each species. From seven species known to distribute in Indonesian waters, there are six species, Tridacna squamosa Lamarck, 1819; T. gigas Linnaeus, 1758; T. derasa Roding, 1798; T. crocea Lamarck, 1819; T. maxima Roding,1798; and Hippopus hippopus Linnaeus, 1758. This study suggests the need for collecting specimen of H. porcellanus Rosewater, 1982. Important characters to distinguish species among Tridacninae are interlocking teeth on byssal orifice, life habits, presence of scales and inhalant siphon tentacles. Key words: Tridacninae, taxonomy, Museum Zoologicum Bogoriense INTRODUCTION family (Tridacnidae) or revised to be subfamily Tridacninae, included in family Cardiidae. Recently, based Giant clams, the largest bivalve in the world, occur on sperm ultrastructure and molecular phylogenetic studies, naturally in association with coral reefs throughout the the clams are belonging to family Cardiidae, subfamily tropical and subtropical waters of the Indo-Pacific region.
    [Show full text]
  • Giant Clams (Bivalvia : Cardiidae : Tridacninae)
    Oceanography and Marine Biology: An Annual Review, 2017, 55, 87-388 © S. J. Hawkins, D. J. Hughes, I. P. Smith, A. C. Dale, L. B. Firth, and A. J. Evans, Editors Taylor & Francis GIANT CLAMS (BIVALVIA: CARDIIDAE: TRIDACNINAE): A COMPREHENSIVE UPDATE OF SPECIES AND THEIR DISTRIBUTION, CURRENT THREATS AND CONSERVATION STATUS MEI LIN NEO1,11*, COLETTE C.C. WABNITZ2,3, RICHARD D. BRALEY4, GERALD A. HESLINGA5, CÉCILE FAUVELOT6, SIMON VAN WYNSBERGE7, SERGE ANDRÉFOUËT6, CHARLES WATERS8, AILEEN SHAU-HWAI TAN9, EDGARDO D. GOMEZ10, MARK J. COSTELLO8 & PETER A. TODD11* 1St. John’s Island National Marine Laboratory, c/o Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore 2The Pacific Community (SPC), BPD5, 98800 Noumea, New Caledonia 3Changing Ocean Research Unit, Institute for the Oceans and Fisheries, The University of British Columbia, AERL, 2202 Main Mall, Vancouver, BC, Canada 4Aquasearch, 6–10 Elena Street, Nelly Bay, Magnetic Island, Queensland 4819, Australia 5Indo-Pacific Sea Farms, P.O. Box 1206, Kailua-Kona, HI 96745, Hawaii, USA 6UMR ENTROPIE Institut de Recherche pour le développement, Université de La Réunion, CNRS; Centre IRD de Noumea, BPA5, 98848 Noumea Cedex, New Caledonia 7UMR ENTROPIE Institut de Recherche pour le développement, Université de La Réunion, CNRS; Centre IRD de Tahiti, BP529, 98713 Papeete, Tahiti, French Polynesia 8Institute of Marine Science, University of Auckland, P. Bag 92019, Auckland 1142, New Zealand 9School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia 10Marine Science Institute, University of the Philippines, Diliman, Velasquez Street, Quezon City 1101, Philippines 11Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore *Corresponding authors: Mei Lin Neo e-mail: [email protected] Peter A.
    [Show full text]