Observations on Seeds Fremont Cottonwood

Total Page:16

File Type:pdf, Size:1020Kb

Observations on Seeds Fremont Cottonwood Observations on Seeds and Seedlings of Fremont Cottonwood Item Type Article Authors Fenner, Pattie; Brady, Ward W.; Patton, David R. Publisher University of Arizona (Tucson, AZ) Journal Desert Plants Rights Copyright © Arizona Board of Regents. The University of Arizona. Download date 29/09/2021 03:42:35 Link to Item http://hdl.handle.net/10150/552248 Fenner, Brady and Patton Fremont Cottonwood 55 where moisture is more constantly available than near the ObservationsonSeeds surface. Keywords: cottonwood, riparian, seed germination. The collection of data on natural river /floodplain ecosystems in the Southwest is of immediate concern because they are and Seedlings of rapidly being modified by construction of dams, wells and irrigation projects, channel alteration, phreatophyte control Fremont Cottonwood projects, and by clearing for agriculture. Additional information is needed on how these activities modify the environment and the subsequent effect on germination and establishment of Fremont Cottonwood. Pattie Fenner Both the importance and the diminished extent of riparian areas of the southwest have been acknowledged (Johnson and Arizona State University Jones, 1977). This has led to increased emphasis on under- standing ecological characteristics of major riparian species. Ward W. Bradyl This paper describes some characteristics of one riparian Arizona State University species, Fremont Cottonwood (Populus fremontii Wats). The characteristics are: seed viability under various storage condi- tions, effects of moisture stress on germination, and rates of and David R. Patton2 seedling root growth. Knowledge of these characteristics is Rocky Mountain Forest and Range Experiment Station important for understanding seedling ecology of the species, USDA Forest Service which, in turn, increases understanding of the dynamics of the riparian community as a whole. Little work has been done on Fremont Cottonwood seed viability. Horton and Campbell (1974) collected and stored cottonwood seed at laboratory temperatures of 24 -27° C and found seeds to be viable for a maximum of 7 weeks. Seeds of Eastern Cottonwood (Populus deltoides Bartr.), which occurs in similar habitat in the midwestern United States, have been more extensively studied. McComb and Lovestead ( 1954 ) investigated viability of eastern cottonwood seed under various storage temperatures and humidities (-12 °, 0 °, 5° C and room temperatures; 5 %, 10 %, and 25% relative humidity). They found viability was best retained at -12° C and 25% relative humidity. Farmer and Bonner ( 1967 )created various environmental conditions in germinators, using d- mannitol solutions to mimic soil moisture stress. They found chances for successful germination and good early growth to be optimum at 27 -32° C and at moistures of less than five atmospheres tension. Study Area Three study sites were chosen. The first was a cottonwood gallery forest in an overflow channel of the Salt River, near Phoenix, Arizona, approximately 3 km upstream from Granite Abstract Reef Dam. The age class distribution of cottonwoods at this The seeds of Fremont Cottonwood (Populus fremontii) lose location was bimodal. When the study was started, large, viability within 1 to 5 weeks after dispersal. Moisture stress decadent trees dominated the population. But during the 2 induced by osmotic solutions stronger than six atmospheres years of the study, numerous seedlings became established. both delayed and reduced total germination. Root growth rates Associated species included Willow (Salix gooddingii Ball), of young seedlings average 6 mm per day. Because of the Mesquite (Prosopis juliflora Swartz DC), and a thick carpet of limited time of seed viability, a suitable substrate for germina- annual grasses in the spring. tion must occur at or soon after seed dispersal. Also, moist The second study was near the town of Dudleyville, conditions must persist until seedling roots grow to depths Arizona, on the San Pedro River, approximately 10 km upstream of the confluence with the Gila River. Cottonwoods at this location also were in several age -classes, and the population as a whole was not decadent. Associated species IWard W. Brady, Associate Professor of Agriculture and Pattie Fenner, Graduate Assistant, Division of Agriculture, Arizona State University, Tempe, Arizona included Willow and Tamarisk (Tamarix pentandra Pall). 85287, 602- 965 -2402. The third study area was located in Tempe, Arizona. 2David R. Patton, Principal Wildlife Biologist, Rocky Mountain Forest and Range Fremont Cottonwood trees at this location were selected for Experiment Station, Forestry Sciences Lab, Arizona State University Campus, Tempe, study because they were close enough to the laboratory to Arizona85287, 602 -261 -4365. closely monitor phenological development. 56 Desert Plants 6(1) Summer 1984 Table 1. Effects of moisture stress on germination of Fremont cottonwood seeds. Atmospheres tension Hours '0 0_5 2 4 6 8 10 12 14 16 Percentage germination of cottonwood seeds at successive time intervals 15 91.7 (a) 81.7 (ab) 66.7 (tic) 61.7 (bc) 48.3 (c) 25.0 (d) 15.0 (d) 0.0 (e) 1.7 (e) 0.0 (e) 25 93.3 (a) 85.0 (a) 83.3 (a) 75.0 (a) 76.7 (a) 48.7 (a) 26.7 (c) 5.0 (d) 5.0 (d) 1.7 (d) 38 95.0 (a) 88.3 (ab) 86.7 (ab) 81.7 (ab) 78.3 (b) 55.0 (c) 41.7 (c) 16.7 (dl 11.7 (d) 1.7 (e) 47 96.7 (a) 90.0 (b) 86.7 (b) 88.3 (b) 86.7 (b) 66.7 (c) 58.3 (c) 26.7 (d) 15.0 (d) 5.0 (e) 86 96.7 (a) 90.0 (ab) 88.3 (ab) 90.0 (ab) 91.7 (a) 75.0 (bc) 63.3 (c) 26.7 (d) 16.7 (d) 5.0 (e) 110 96.7 (a) 90.0 (ab) 88.3 (ab) 90.0 (ab) 91.7 (ab) 78.3 (bc) 65.0 (c) 30.0 (d) 16.7 (de) 5.0 (e) 134 96.7 (ab) 90.0 (ab) 90.0 (ab) 90.0 (ab) 93.3 (ab) 78.3 (bc) 65.0 (c) 36.7 (d) 16.7 (e) 8.3 (e) Letters within a single hourly period indicate significant difference at the 0.05 level. Methods five bags were placed in a more exposed, warmer site. Five to Fremont Cottonwood seeds were gathered from trees growing twenty seeds were removed weekly from each bag, brought in Tempe, immediately following dispersal. Seeds were washed back to the laboratory, and germinated. for approximately 2 minutes in a 5% Clorox/water solution In the moisture stress tests, aqueous solutions of d- mannitol (sodium hypochlorite) with a few drops of dish soap to increase were used to simulate varying amounts of soil moisture avail- wettability of fiber matrix. This liquid was drained, and the able to cottonwood seeds and seedlings in the process of seeds were sprayed with Captan. Studies by Richardson et al. germination and establishment. These solutions varied in concentra- (1982) indicated that application of Captan may reduce seed tion to simulate soil moisture tensions from 0 to 16 atmos- germination, especially when high concentrations are used. pheres. Distilled water was used for 0 atmosphere soil However, fungi problems made application necessary. The moisture tension. Twenty seeds were placed in a petri dish seeds were next placed in a petri dish containing five pieces of containing five pieces of filter paper moistened with 5 ml of filter paper moistened with 5 ml of distilled water. This same specific d- mannitol solution or distilled water. Three replica- washing and germinating procedure was used for all viability tions of each concentration were made. Values were tested by tests. Germination was noted at 24 -hour intervals, for 1 week. analysis of variance on arcsine transformation of percentage If germination did not occur within 1 week, viability was germination, in order to test for significant differences in counted as zero. number of seeds germinated at each time interval. Viability tests were performed under two different condi- Wiggans and Gardner (1959) established d- mannitol as a tions in the spring of 1978. One set of seeds was stored in a non -toxic chemical which was accurate in limiting moisture brown paper lunch bag, in the laboratory, where temperatures available to a germinating seed when mixed with water remained approximately constant at 25° C. Three dishes of 20 according to the following equation: seeds each were germinated every day for 1 week, every second PVm day for the second week, and at weekly intervals thereafter g = until no seeds germinated. The second set of seeds was stored RT in a similar brown paper bag, in a greenhouse, where temper- where g = grams of d- mannitol, P = desired osmotic pressure in ature and moisture conditions approximated those outside, atmospheres, V = volume of mixed solution in liters, m= except for the amelioration of extremes by an air cooler. Three molecular weight of d- mannitol, R = 0.0825 atm. degrees per dishes of 20 seeds each were germinated daily for 1 week, every mole, and T = absolute temperature. There have been some second day for the second week, and weekly thereafter until questions posed since 1959 concerning equivalence of osmotic seeds no longer germinated. to matric tension (Farmer and Bonner, 1967; McDonough, Seeds were stored under natural environmental conditions 1977), and a toxicity of d- mannitol. However, difficulties in in the spring of 1979. Ten 7.5 -cm- square bags made of nylon regulation of available moisture in any other manner and lack mosquito netting were filled with cottonwood seeds collected of a better chemical have led d- mannitol solutions to be widely immediately following dispersal. These bags were then placed accepted for seed germination experiments. in the Salt River study area, at sites where seeds were naturally Soil samples from the floodplains of the San Pedro and Salt accumulating and which appeared to be suitable sites for River study areas were sterilized, and textures were determined germination.
Recommended publications
  • Salicaceae Cottonwood Cottonwood (The Genus Populus) Is Composed of 35 Species Which Contain the Aspens and Poplars
    Populus spp. Family: Salicaceae Cottonwood Cottonwood (the genus Populus) is composed of 35 species which contain the aspens and poplars. Species in this group are native to Eurasia/north Africa [25], Central America [2] and North America [8]. All species look alike microscopically. The word populus is the classical Latin name for the poplar tree. Populus angustifolia-balsam, bitter cottonwood, black cottonwood, lanceleaf cottonwood, mountain cottonwood, narrowleaf cottonwood, narrow leaved poplar, Rydberg cottonwood, smoothbark cottonwood, willow cottonwood, willowleaf cottonwood Populus balsamifera-balm, balm of Gilead, balm of Gilead poplar, balm cottonwood, balsam, balsam cottonwood, balsam poplar, bam, black balsam poplar, black cottonwood, black poplar, California poplar, Canadian balsam poplar, Canadian poplar, cottonwax, hackmatack, hairy balm of Gilead, heartleaf balsam poplar, northern black cottonwood, Ontario poplar, tacamahac, tacamahac poplar, toughbark poplar, western balsam poplar Populus deltoides*-aspen cottonwood, big cottonwood, Carolina poplar, cotton tree, eastern cottonwood, eastern poplar, fremont cottonwood, great plains cottonwood, Missourian poplar, necklace poplar, northern fremont cottonwood, palmer cottonwood, plains cottonwood, Rio Grande cottonwood, river cottonwood, river poplar, southern cottonwood, Tennessee poplar, Texas cottonwood, valley cottonwood, Vermont poplar, Virginia poplar, water poplar, western cottonwood, whitewood, wislizenus cottonwood, yellow cottonwood Populus fremontii-Arizona cottonwood,
    [Show full text]
  • Effects of Salinity on Establishment of Populus Fremontii (Cottonwood) and Tamarix Ramosissima (Saltcedar) in Southwestern United States
    Great Basin Naturalist Volume 55 Number 1 Article 6 1-16-1995 Effects of salinity on establishment of Populus fremontii (cottonwood) and Tamarix ramosissima (saltcedar) in southwestern United States Patrick B. Shafroth National Biological Survey, Midcontinent Ecological Science Center, Fort Collins, Colorado Jonathan M. Friedman National Biological Survey, Midcontinent Ecological Science Center, Fort Collins, Colorado Lee S. Ischinger National Biological Survey, Midcontinent Ecological Science Center, Fort Collins, Colorado Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Shafroth, Patrick B.; Friedman, Jonathan M.; and Ischinger, Lee S. (1995) "Effects of salinity on establishment of Populus fremontii (cottonwood) and Tamarix ramosissima (saltcedar) in southwestern United States," Great Basin Naturalist: Vol. 55 : No. 1 , Article 6. Available at: https://scholarsarchive.byu.edu/gbn/vol55/iss1/6 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Great Basin Nntur-a1iJ'it 5S(1), © 1995. pp. 58-65 EFFECTS OF SALINITY ON ESTABLISHMENT OF POPULUS FREMONTII (COTTONWOOD) AND TAMARlX RAMOSISSIMA (SALTCEDAR) IN SOUTHWESTERN UNITED STATES Patrick B. ShafrothL• Jonathan M. Friedmanl, and Lee S. IschingerL AB!'>"TR.ACT.-The exotic shmb Tamarix ramnsissima (saltcedar) has replaced the native Populusfremont# (cottonwood) along many streams in southwestern United States. We u.sed a controlled outdoor experiment to examine the influence of river salinity on germination and first-year survival of P. fremcnlii var.
    [Show full text]
  • Growth and Survivorship of Fremont Cottonwood, Gooding Willow, and Salt Cedar Seedlings After Large Floods in Central Arizona
    Great Basin Naturalist Volume 57 Number 3 Article 2 7-31-1997 Growth and survivorship of Fremont cottonwood, Gooding willow, and salt cedar seedlings after large floods in central Arizona J. C. Stromberg Arizona State University, Tempe Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Stromberg, J. C. (1997) "Growth and survivorship of Fremont cottonwood, Gooding willow, and salt cedar seedlings after large floods in central Arizona," Great Basin Naturalist: Vol. 57 : No. 3 , Article 2. Available at: https://scholarsarchive.byu.edu/gbn/vol57/iss3/2 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Great Basin Naturalist 57(3), © 1997, pp, 198-208 GROWTH AND SURVIVORSHIP OF FREMONT COTIONWOOD, GOODDING WILLOW, AND SALT CEDAR SEEDLINGS AFTER LARGE FLOODS IN CENTRAL ARIZONA J.e. Stromberg! ABSTRACT.-During winter 1993, Arizona experienced regional river flooding. Floodwaters at the Hassayampa River eroded floodplains and created a 50-m-wide scour zone available for colonization by pioneer plant species. The slow rate and long duration ofthe floodwater recession allowed establishment of spring-germinating native trees (mainly Fre­ mont cottonwood [Populus fremontii] and Goodding willow [Salix gooddingii] as well as summer-germinating species including the introduced salt cedar (Tamarix chinensw and related species). Goodding willow and Fremont cottonwood seedlings showed zonation in the floodplain, while salt cedar was equally abundant in zones with saturated and dry sur­ face soils.
    [Show full text]
  • Eastern Cottonwood Populus Deltoides
    Eastern cottonwood Populus deltoides Physical characteristics Ecological characteristics Trunk | Bark: ! e bark of a mature cottonwood is so thick that it In natural conditions, Eastern cottonwood trees typically can withstand " res with just minimum damage. Yet, they are also grow near a water source. Cottonwood groves are typically known for having “weak” wood and will drop branches occasionally, indicitive that a water source is nearby as they consume large particularly during windy spells. amounts of water in their growth cycle; a mature cotton- wood tree uses 200 gallons of water a day. Cottonwoods are Leaf: ! e leaf is very so dependent on water that they will drop leaves during an coarsely toothed, the teeth extended period of drought in order to conserve moisture. If are curved and gland tipped, a cottonwood root is cut, it will “bleed” water for days until and the petiole is # at. ! e the cut heals. leaves are dark green in the summer and turn yellow in Distribution range the fall. In dry locations they While mud banks le$ a$ er # oods provide ideal conditions for drop their leaves early from seedling germination, human soil cultivation has allowed them the combination of drought to increase their range away from such habitats. ! e Eastern and leaf rust, leaving their cottonwood is native to North America, growing throughout fall color dull or absent. the eastern, central, and southwestern United States, the south- ernmost part of eastern Canada, and northeastern Mexico. “Trembling Leaves” Relationship with other species An identifying characteristics of the Eastern Non-human: When a cottonwood loses a branch, it Cottonwood tree is that beacuase its leaves are is likely the heartwood will begin to rot at the break, sail-like shaped with long # at stems they have forming holes that make the ideal accommodations a tendency to tremble and # utter from even for birds, squirrels or bees to build nests.
    [Show full text]
  • Poplar Chap 1.Indd
    Populus: A Premier Pioneer System for Plant Genomics 1 1 Populus: A Premier Pioneer System for Plant Genomics Stephen P. DiFazio,1,a,* Gancho T. Slavov 1,b and Chandrashekhar P. Joshi 2 ABSTRACT The genus Populus has emerged as one of the premier systems for studying multiple aspects of tree biology, combining diverse ecological characteristics, a suite of hybridization complexes in natural systems, an extensive toolbox of genetic and genomic tools, and biological characteristics that facilitate experimental manipulation. Here we review some of the salient biological characteristics that have made this genus such a popular object of study. We begin with the taxonomic status of Populus, which is now a subject of ongoing debate, though it is becoming increasingly clear that molecular phylogenies are accumulating. We also cover some of the life history traits that characterize the genus, including the pioneer habit, long-distance pollen and seed dispersal, and extensive vegetative propagation. In keeping with the focus of this book, we highlight the genetic diversity of the genus, including patterns of differentiation among populations, inbreeding, nucleotide diversity, and linkage disequilibrium for species from the major commercially- important sections of the genus. We conclude with an overview of the extent and rapid spread of global Populus culture, which is a testimony to the growing economic importance of this fascinating genus. Keywords: Populus, SNP, population structure, linkage disequilibrium, taxonomy, hybridization 1Department of Biology, West Virginia University, Morgantown, West Virginia 26506-6057, USA; ae-mail: [email protected] be-mail: [email protected] 2 School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA; e-mail: [email protected] *Corresponding author 2 Genetics, Genomics and Breeding of Poplar 1.1 Introduction The genus Populus is full of contrasts and surprises, which combine to make it one of the most interesting and widely-studied model organisms.
    [Show full text]
  • Fremontii, Populus Angustfolia, and Their Hybrids
    aCICNCC DIRECT. DIocnemlcal 8 systematics and ecoloav-, ELSEVIER Biochemical Systematics and Ecology 33 (2005) 125-131 Foliar phenolic glycosides from Populus fremontii, Populus angustfolia, and their hybrids Brian ~ehill~.*,Allen claussb, Lindsay Wieczoreka, Thomas Whithamc, Richard Lindrotha aDepartment of Entomology. University of Wisconsin, 1630 Linden Road, Madison, WI 53706, USA b~epartmentof Chemistry, University of Wisconsin, I101 University Avenue, Madison, WI 53706, USA CDepartmentof Biological Sciences & The Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, USA Received 28 February 2004; accepted 16 June 2004 Abstract Salicortin (1) and HCH-salicortin (2) were isolated and identified from the foliage of Populus fremontii and its F1 hybrids with Populus angust$olia. Salicortin, but not HCH-salicortin, also occurred in P. angustifolia and complex backcrosses to angustifolia. Concentrations ranged from 0 to 17.5% dry weight for salicortin and 0 to 5.9% dry weight for HCH-salicortin. HCH- salicortin may possess potent anti-herbivore activity as it contains two of the hydroxycyclo- hexen-on-oyl moieties known to confer such activity to salicortin. Further, this compound may be a useful chemotaxonomic character within the genus Populus, since it appears to occur in section Aigeiros but not in section Tacamahaca. O 2004 Elsevier Ltd. All rights resewed. Keywords: Populus fremontii; Populus angustifolia; Salicaceae; Ecological biochemistry; Salicortin; HCH- salicortin; Anti-herbivore compounds * Corresponding author. Department of Chemistry, United States Naval Academy, 572 Holloway Road, Annapolis, MD 21402, USA. Tel.: + 1 410 293 6637; fax: + 1 410 293 2218. E-mail address: [email protected] (B. Rehill). 0305-1978/$ - see front matter O 2004 Elsevier Ltd.
    [Show full text]
  • Santa Ana Pueblo Cottonwood Growth Studies
    Cottonwood Growth and Bosque Restoration Along the Middle Rio Grande at Santa Ana Pueblo, NM Middle Rio Grande Bosque Initiative 2005 Cottonwood Growth and Restoration Along the Middle Rio Grande at Santa Ana Pueblo, NM Esteban Muldavin P.I., Amanda Browder, and Elizabeth Milford New Mexico Natural Heritage Program Museum of Southwestern Biology University of New Mexico January 2005 ABSTRACT The effects on the growth of Rio Grande cottonwood (Populus deltoides ssp. wislizeni) following the understory removal of exotic trees and shrubs from stands along the Rio Grande at Santa Ana Pueblo, NM was addressed in the context of river discharge and precipitation. Complete understory removal of Russian olive (Elaeagnus angustifolia) and saltcedar (Tamarisk ramosissima) was conducted in 1998 in two stands while two adjacent stands received limited or no thinning. Dendro-ecological methods were applied to measure annual cottonwood tree growth between 1979 and 2002 and then post-treatment growth from 1998 through 2002 was compared between cleared and uncleared stands relative to the previous twenty years. While all four stands superficially looked to be of similar ages, they in fact were established nearly a decade apart beginning around 1939 and becoming progressively younger downstream and as the active channel was approached. The youngest stand was established around 1959. There were definite patterns of growth that corresponded to extremes in growing-season river discharge as regulated by Cochiti Dam (40 km upstream), and, to a limited degree, antecedent winter precipitation. But these factors were not entirely consistent and distance from the river, channel incision, groundwater patterns, soils differences, and tree age, along with intra-annual variation in water availability and temperature may be important.
    [Show full text]
  • Biological Resources and Management
    Vermilion flycatcher The upper Muddy River is considered one of the Mojave’s most important Common buckeye on sunflower areas of biodiversity and regionally Coyote (Canis latrans) Damselfly (Enallagma sp.) (Junonia coenia on Helianthus annuus) important ecological but threatened riparian landscapes (Provencher et al. 2005). Not only does the Warm Springs Natural Area encompass the majority of Muddy River tributaries it is also the largest single tract of land in the upper Muddy River set aside for the benefit of native species in perpetuity. The prominence of water in an otherwise barren Mojave landscape provides an oasis for regional wildlife. A high bird diversity is attributed to an abundance of riparian and floodplain trees and shrubs. Contributions to plant diversity come from the Mojave Old World swallowtail (Papilio machaon) Desertsnow (Linanthus demissus) Lobe-leaved Phacelia (Phacelia crenulata) Cryptantha (Cryptantha sp.) vegetation that occur on the toe slopes of the Arrow Canyon Range from the west and the plant species occupying the floodplain where they are supported by a high water table. Several marshes and wet meadows add to the diversity of plants and animals. The thermal springs and tributaries host an abundance of aquatic species, many of which are endemic. The WSNA provides a haven for the abundant wildlife that resides permanently or seasonally and provides a significant level of protection for imperiled species. Tarantula (Aphonopelma spp.) Beavertail cactus (Opuntia basilaris) Pacific tree frog (Pseudacris regilla)
    [Show full text]
  • Populus Deltoides Bartl Ex Marsh
    Populus deltoides BartL ex Marsh. Eastern Cottonwood Salicaceae Willow family P. deltoides BartL ex Marsh. vaL deltoides Eastern Cottonwood (typical) D. T.. Cooper Eastern cottonwood (Populus deltoides), one of the from much of Florida and the Gulf Coast except largest eastern hardwoods, is short-lived but the along rivers. The western boundary is not well fastest-growing commercial forest species in North defined because eastern cottonwood intergrades with America. It grows best on moist well-drained sands var. occidentalis, plains cottonwood, 'where the ran­ or silts near streams, often in pure stands. The light­ ges overlap. Altitude is a primary determiner of the weight, rather soft wood is used primarily for core western boundary. stock in manufacturing fumiture and for pulpwood. Eastern cottonwood is one of the few hardwood Climate species that is planted and grown specifically for these purposes. In various parts of its range, eastern cottonwood is Besides the typical eastem variety (var. deltoides), subjected to temperatures as high as 46° C (115° F) there is a western variety, pJains cottonwood {var_ and as low as --45° C (-50° F). Average January occidentalis}. Its leaves, more bI'oad than long, are temperatures vary from -10° C (14° F) to 8° C (46° slightly smaller and more coarsely toothed than the F). It occurs in areas with from less than 100 to more typical variety. than 200 consecutive frost-free days per year. Rain­ fall ranges from less than 380 mm (15 in) in the EASTERN COTTONWOOD north-i.vest corner of the range to more than 1400 mm (55 in) in the southern part of the range.
    [Show full text]
  • TREES for WESTERN NEBRASKA Justin Evertson & Bob Henrickson
    THE NEBRASKA STATEWIDE ARBORETUM PRESENTS TREES FOR WESTERN NEBRASKA Justin Evertson & Bob Henrickson. For more plant information, visit plantnebraska.org or retreenbraska.unl.edu The following species are recommended for areas in the western half of Nebraska and/or typically receive less than 20” of moisture per year. Size Range: The size range indicated for each plant is the expected average mature height x spread for Nebraska. Large Deciduous Trees (typically over 40 feet tall at maturity) 1. Ash, Black ‐ Fraxinus nigra (good on wet sites; very cold tolerant; Fallgold a common form; 45’x 35’) 2. Ash, Green ‐ Fraxinus pennsylvanica (native; very adaptable; good on wet or dry sites; over‐planted; 40‐60’x 25‐40’; 3. Ash, White ‐ Fraxinus americana (native eastern G.P.; good purple/yellow fall color; 40‐50’x 40‐50’) NOTE ON ASH SPECIES: Native American ash trees including those above are being decimated by Emerald Ash Borer (EAB) and the insect is now in Nebraska. NSA recommends that native ash species no longer be planted in Nebraska. 4. Ash, Manchurian ‐ Fraxinus mandshurica (from Asia; upright growth; drought tolerant; may be resistant to EAB; 40’x 30’) 5. Catalpa, Northern ‐ Catalpa speciosa (native; tough tree; large, heart‐shaped leaves, showy flowers and long seed pods; 50’x 35’) 6. Coffeetree, Kentucky ‐ Gymnocladus dioicus (native; amazingly adaptable; beautiful winter form; 50’x 40’) 7. Cottonwood, Eastern ‐ Populus deltoides (majestic native; not for extremely dry sites; avoid most cultivars; 80’x 60’) 8. Cottonwood, Lanceleaf ‐ Populus acuminata (native; naturally occurring hybrid; narrow leaves; for west. G.P.; 50’x 35’) 9.
    [Show full text]
  • Beavers, Bugs and Chemistry: a Mammalian Herbivore Changes Chemistry Composition and Arthropod Communities in Foundation Tree Species
    Article Beavers, Bugs and Chemistry: A Mammalian Herbivore Changes Chemistry Composition and Arthropod Communities in Foundation Tree Species Rachel M. Durben 1,2, Faith M. Walker 1,2,3, Liza Holeski 1,2,4, Arthur R. Keith 1,2, Zsuzsi Kovacs 1,2, Sarah R. Hurteau 5, Richard L. Lindroth 4 , Stephen M. Shuster 1,2 and Thomas G. Whitham 1,2,* 1 The Environmental Genetics and Genomics Laboratory, Department of Biological Sciences, Northern Arizona University, P.O. Box 5640, Flagstaff, AZ 86011, USA; [email protected] (R.M.D.); [email protected] (F.M.W.); [email protected] (L.H.); [email protected] (A.R.K.); [email protected] (Z.K.); [email protected] (S.M.S.) 2 The Center for Adaptable Western Landscapes, Department of Biological Sciences, Northern Arizona University, P.O. Box 5640, Flagstaff, AZ 86011, USA 3 School of Forestry, Northern Arizona University, Flagstaff, AZ 86001, USA 4 Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA; [email protected] 5 Geography and Environmental Studies Department, University of New Mexico, Albuquerque, NM 87131, USA; [email protected] * Correspondence: [email protected] Citation: Durben, R.M.; Walker, F.M.; Abstract: The North American beaver (Castor canadensis Kuhl) and cottonwoods (Populus spp.) are Holeski, L.; Keith, A.R.; Kovacs, Z.; foundation species, the interactions of which define a much larger community and affect a threatened Hurteau, S.R.; Lindroth, R.L.; riparian habitat type. Few studies have tested the effect of these interactions on plant chemistry Shuster, S.M.; Whitham, T.G.
    [Show full text]
  • Cottonwood an American Wood United States Department of Agriculture FS-23 I
    Fore~t m. Service Cottonwood An American Wood United States Department of Agriculture FS-23 I Two species of cottonwood trees in the United States are commercially impor­ tant: eastern cottonwood and black cot­ tonwood. Eastern cottonwood is the more important of these. Wood of both species is similar in appearance and properties, being light in weight and color with a fairly straight grain and uniform texture. It is not strong and decays rapidly in damp areas or when in contact with soil. It is used prin­ cipally for lightweight containers or those requiring an absence of odor or taste, and for interior parts of furniture, core stock in plywood, and high-grade pulp for paper production. '. An American Wood Cottonwood (Populus deltoides Bartr. ex Marsh. and P. trichocarpa Torr. & Gray) Harvey E. Kennedy , Jr. ' Distribution Cottonwood is the general name used for about a dozen closely related trees native to the United States. However, of these only eastern cottonwood and black cottonwood are commercially im­ portant for timber production. Eastern cottonwood (Populus deltoides) grows in every State, except Maine, Massachusetts, and Delaware, from the Great Plains eastward (fig. 1), mostly on river bottom lands, rarely in the mountains. Commercially, it is most important along the Mississippi River and its major tributaries. Black cottonwood, Populus trichocarpa, largest of the American species of Populus grows along the Pacific Coast from Kodiak Island and Kenai Penin­ sula through southeastern Alaska to northern California (fig 2). It is also found along the Coast Ranges and Sierra Nevada to southern California and northern Mexico.
    [Show full text]