Beavers, Bugs and Chemistry: a Mammalian Herbivore Changes Chemistry Composition and Arthropod Communities in Foundation Tree Species

Total Page:16

File Type:pdf, Size:1020Kb

Beavers, Bugs and Chemistry: a Mammalian Herbivore Changes Chemistry Composition and Arthropod Communities in Foundation Tree Species Article Beavers, Bugs and Chemistry: A Mammalian Herbivore Changes Chemistry Composition and Arthropod Communities in Foundation Tree Species Rachel M. Durben 1,2, Faith M. Walker 1,2,3, Liza Holeski 1,2,4, Arthur R. Keith 1,2, Zsuzsi Kovacs 1,2, Sarah R. Hurteau 5, Richard L. Lindroth 4 , Stephen M. Shuster 1,2 and Thomas G. Whitham 1,2,* 1 The Environmental Genetics and Genomics Laboratory, Department of Biological Sciences, Northern Arizona University, P.O. Box 5640, Flagstaff, AZ 86011, USA; [email protected] (R.M.D.); [email protected] (F.M.W.); [email protected] (L.H.); [email protected] (A.R.K.); [email protected] (Z.K.); [email protected] (S.M.S.) 2 The Center for Adaptable Western Landscapes, Department of Biological Sciences, Northern Arizona University, P.O. Box 5640, Flagstaff, AZ 86011, USA 3 School of Forestry, Northern Arizona University, Flagstaff, AZ 86001, USA 4 Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA; [email protected] 5 Geography and Environmental Studies Department, University of New Mexico, Albuquerque, NM 87131, USA; [email protected] * Correspondence: [email protected] Citation: Durben, R.M.; Walker, F.M.; Abstract: The North American beaver (Castor canadensis Kuhl) and cottonwoods (Populus spp.) are Holeski, L.; Keith, A.R.; Kovacs, Z.; foundation species, the interactions of which define a much larger community and affect a threatened Hurteau, S.R.; Lindroth, R.L.; riparian habitat type. Few studies have tested the effect of these interactions on plant chemistry Shuster, S.M.; Whitham, T.G. Beavers, and a diverse arthropod community. We experimentally examined the impact of beaver foraging Bugs and Chemistry: A Mammalian on riparian communities by first investigating beaver food preferences for one cottonwood species, Herbivore Changes Chemistry Fremont cottonwood (P. fremontii S. Watson), compared to other locally available woody species. Composition and Arthropod We next examined the impact of beaver foraging on twig chemistry and arthropod communities Communities in Foundation Tree in paired samples of felled and unfelled cottonwood species in northern Arizona (P. fremontii) and Species. Forests 2021, 12, 877. southwestern Colorado (narrowleaf cottonwood, P. angustifolia James, and Eastern cottonwood, https://doi.org/10.3390/f12070877 P. deltoides W. Bartram ex Marshall). Four major patterns emerged: (1) In a cafeteria experiment, Academic Editors: Ben Moore and beavers chose P. fremontii six times more often than other woody native and exotic species. (2) With Julianne O’Reilly-Wapstra two cottonwood species, we found that the nitrogen and salicortin concentrations were up to 45% greater and lignin concentration 14% lower in the juvenile resprout growth of felled trees than the Received: 29 May 2021 juvenile growth on unfelled trees (six of seven analyses were significant for P. fremontii and four Accepted: 1 July 2021 of six were significant for P. angustifolia). (3) With two cottonwood species, arthropod community Published: 3 July 2021 composition on juvenile branches differed significantly between felled and unfelled trees, with up to 38% greater species richness, 114% greater relative abundance and 1282% greater species diversity Publisher’s Note: MDPI stays neutral on felled trees (six of seven analyses with P. fremontii and four of six analyses with P. angustifolia with regard to jurisdictional claims in were significant). The above findings indicate that the highest arthropod diversity is achieved in the published maps and institutional affil- heterogenous stands of mixed felled and unfelled trees than in stands of cottonwoods, where beavers iations. are not present. These results also indicate that beaver herbivory changes the chemical composition in 10 out of 13 chemical traits in the juvenile growth of two of the three cottonwood species to potentially allow better defense against future beaver herbivory. (4) With P. deltoides, only one of five analyses in chemistry was significant, and none of the four arthropod community analyses were significant, Copyright: © 2021 by the authors. suggesting that this species and its arthropod community responds differently to beaver. Potential Licensee MDPI, Basel, Switzerland. reasons for these differences are unknown. Overall, our findings suggest that in addition to their This article is an open access article impact on riparian vegetation, other mammals, birds, and aquatic organisms, beavers also may define distributed under the terms and the arthropod communities of two of three foundation tree species in these riparian ecosystems. conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Forests 2021, 12, 877. https://doi.org/10.3390/f12070877 https://www.mdpi.com/journal/forests Forests 2021, 12, 877 2 of 18 Keywords: beaver; Castor canadensis; cottonwood; Populus spp.; chemistry; arthropod communities; foundation species 1. Introduction The ecological processes that structure communities are fundamental aspects of ecol- ogy and evolution. Holling [1] proposed that “a small set of plant, animal, and abiotic processes structure ecosystems across scales in time and space”. In other words, not all species are equal, and a few are likely to contribute disproportionately to the structure and evolution of communities and ecosystems. Species that are strong interactors, affecting many other species and modifying their environments (e.g., dam building and selective foraging by beavers; shading and cooling of the understory by tree canopies) likely play a major role in structuring communities. Dayton [2] defined a foundation species as “a single species that defines much of the structure of a community by creating locally stable conditions for other species, and by modulating and stabilizing fundamental ecosystem processes”. Ellison et al. [3] reviewed this literature and concluded that dominant species, keystone species, ecosystem engineers and other strong interactors all fall within this category of foundation species. Because all ecosystems of the world likely have multiple and potentially interacting foundation species, it is especially important to identify and understand the interactions of these species as their loss due to global change (including climate change, invasive species, and altered species interactions) could cascade to affect the rest of the community [4]. Keith et al. [5,6] proposed and experimentally tested the interacting foundation species hypothesis and found that the interactions of two foundation species better explained community diversity, stability and species interaction networks than either one alone. Beavers and cottonwoods are considered foundation species because their presence in an ecosystem has far-reaching effects on community dynamics and ecosystem processes [3]. By felling trees that are used for food and construction activities (e.g., building dams that slow water flow and create ponds and lodges), beavers affect fish populations [7], stream flow and water temperature [8,9], nutrient cycling and availability [9–11], individual species and communities of arboreal arthropods [12–14], the composition of mixed cottonwood riparian forests and their genetic composition [15], communities of aquatic arthropods [16], vegetation diversity [17], tree architecture [18], and genetic diversity and productivity at the individual tree level [19]. Even in areas where beavers are no longer active but have cut trees and built dams in the recent past, their impact is evident in the structure of the riparian zone and has long-term effects on vegetation types [9,11,20–23]. Compared with the amount of land they cover, riparian corridors contain disproportionately high biodiversity [24] and are an important resource for birds and mammals. In the arid southwest USA, the narrow riparian “ribbon of green” (Figure1A) has been shown to support exceptionally high bird [25] and vegetation diversity [26]. However, the extent to which beavers interact with a foundation tree species to affect arthropod diversity in these southwestern stream systems has not been studied (but see [14]). One mechanism by which beaver herbivory might affect arthropod diversity is by altering the chemistry of the plants they browse. To determine whether there was a difference in twig chemistry between the juvenile resprout growth of beaver-felled trees (Figure1B), and the juvenile shoots at the base of unfelled trees, we collected samples from each to assess the concentrations of a suite of chemicals known to be present in these tissues. Since beavers eat the inner bark, or cambium layer of trees [27], we chose to sample twig tissue to quantify how beaver herbivory might affect the phytochemistry of resprouting cottonwoods for future feeding by beavers. While we cannot extrapolate on how twig chemistry may influence foliar arthropods, we were also interested in understanding how herbivory by beavers may differentially affect arthropods on multiple cottonwood species, which has not previously been examined in this system. Forests 2021, 12, 877 3 of 18 Forests 2021, 12, x FOR PEER REVIEW 3 of 18 (A) (B) (C) (D) Figure 1. (AFigure) Riparian 1. (A “ribbon) Riparian of green” “ribbon of ofP. fremontii green” of nearP. fremontii Moab, UT;near (B Moab,) Resprout UT; growth (B) Resprout of P. angustifolia growth of after felling by beavers;P. (C angustifolia) Leaf rollingafter moth felling (Anacampsis by beavers; niveopulvella (C) Leaf rollingChambers, moth 1875;
Recommended publications
  • Salicaceae Cottonwood Cottonwood (The Genus Populus) Is Composed of 35 Species Which Contain the Aspens and Poplars
    Populus spp. Family: Salicaceae Cottonwood Cottonwood (the genus Populus) is composed of 35 species which contain the aspens and poplars. Species in this group are native to Eurasia/north Africa [25], Central America [2] and North America [8]. All species look alike microscopically. The word populus is the classical Latin name for the poplar tree. Populus angustifolia-balsam, bitter cottonwood, black cottonwood, lanceleaf cottonwood, mountain cottonwood, narrowleaf cottonwood, narrow leaved poplar, Rydberg cottonwood, smoothbark cottonwood, willow cottonwood, willowleaf cottonwood Populus balsamifera-balm, balm of Gilead, balm of Gilead poplar, balm cottonwood, balsam, balsam cottonwood, balsam poplar, bam, black balsam poplar, black cottonwood, black poplar, California poplar, Canadian balsam poplar, Canadian poplar, cottonwax, hackmatack, hairy balm of Gilead, heartleaf balsam poplar, northern black cottonwood, Ontario poplar, tacamahac, tacamahac poplar, toughbark poplar, western balsam poplar Populus deltoides*-aspen cottonwood, big cottonwood, Carolina poplar, cotton tree, eastern cottonwood, eastern poplar, fremont cottonwood, great plains cottonwood, Missourian poplar, necklace poplar, northern fremont cottonwood, palmer cottonwood, plains cottonwood, Rio Grande cottonwood, river cottonwood, river poplar, southern cottonwood, Tennessee poplar, Texas cottonwood, valley cottonwood, Vermont poplar, Virginia poplar, water poplar, western cottonwood, whitewood, wislizenus cottonwood, yellow cottonwood Populus fremontii-Arizona cottonwood,
    [Show full text]
  • Observations on Seeds Fremont Cottonwood
    Observations on Seeds and Seedlings of Fremont Cottonwood Item Type Article Authors Fenner, Pattie; Brady, Ward W.; Patton, David R. Publisher University of Arizona (Tucson, AZ) Journal Desert Plants Rights Copyright © Arizona Board of Regents. The University of Arizona. Download date 29/09/2021 03:42:35 Link to Item http://hdl.handle.net/10150/552248 Fenner, Brady and Patton Fremont Cottonwood 55 where moisture is more constantly available than near the ObservationsonSeeds surface. Keywords: cottonwood, riparian, seed germination. The collection of data on natural river /floodplain ecosystems in the Southwest is of immediate concern because they are and Seedlings of rapidly being modified by construction of dams, wells and irrigation projects, channel alteration, phreatophyte control Fremont Cottonwood projects, and by clearing for agriculture. Additional information is needed on how these activities modify the environment and the subsequent effect on germination and establishment of Fremont Cottonwood. Pattie Fenner Both the importance and the diminished extent of riparian areas of the southwest have been acknowledged (Johnson and Arizona State University Jones, 1977). This has led to increased emphasis on under- standing ecological characteristics of major riparian species. Ward W. Bradyl This paper describes some characteristics of one riparian Arizona State University species, Fremont Cottonwood (Populus fremontii Wats). The characteristics are: seed viability under various storage condi- tions, effects of moisture stress on germination, and rates of and David R. Patton2 seedling root growth. Knowledge of these characteristics is Rocky Mountain Forest and Range Experiment Station important for understanding seedling ecology of the species, USDA Forest Service which, in turn, increases understanding of the dynamics of the riparian community as a whole.
    [Show full text]
  • Effects of Salinity on Establishment of Populus Fremontii (Cottonwood) and Tamarix Ramosissima (Saltcedar) in Southwestern United States
    Great Basin Naturalist Volume 55 Number 1 Article 6 1-16-1995 Effects of salinity on establishment of Populus fremontii (cottonwood) and Tamarix ramosissima (saltcedar) in southwestern United States Patrick B. Shafroth National Biological Survey, Midcontinent Ecological Science Center, Fort Collins, Colorado Jonathan M. Friedman National Biological Survey, Midcontinent Ecological Science Center, Fort Collins, Colorado Lee S. Ischinger National Biological Survey, Midcontinent Ecological Science Center, Fort Collins, Colorado Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Shafroth, Patrick B.; Friedman, Jonathan M.; and Ischinger, Lee S. (1995) "Effects of salinity on establishment of Populus fremontii (cottonwood) and Tamarix ramosissima (saltcedar) in southwestern United States," Great Basin Naturalist: Vol. 55 : No. 1 , Article 6. Available at: https://scholarsarchive.byu.edu/gbn/vol55/iss1/6 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Great Basin Nntur-a1iJ'it 5S(1), © 1995. pp. 58-65 EFFECTS OF SALINITY ON ESTABLISHMENT OF POPULUS FREMONTII (COTTONWOOD) AND TAMARlX RAMOSISSIMA (SALTCEDAR) IN SOUTHWESTERN UNITED STATES Patrick B. ShafrothL• Jonathan M. Friedmanl, and Lee S. IschingerL AB!'>"TR.ACT.-The exotic shmb Tamarix ramnsissima (saltcedar) has replaced the native Populusfremont# (cottonwood) along many streams in southwestern United States. We u.sed a controlled outdoor experiment to examine the influence of river salinity on germination and first-year survival of P. fremcnlii var.
    [Show full text]
  • Working List of Prairie Restricted (Specialist) Insects in Wisconsin (11/26/2015)
    Working List of Prairie Restricted (Specialist) Insects in Wisconsin (11/26/2015) By Richard Henderson Research Ecologist, WI DNR Bureau of Science Services Summary This is a preliminary list of insects that are either well known, or likely, to be closely associated with Wisconsin’s original native prairie. These species are mostly dependent upon remnants of original prairie, or plantings/restorations of prairie where their hosts have been re-established (see discussion below), and thus are rarely found outside of these settings. The list also includes some species tied to native ecosystems that grade into prairie, such as savannas, sand barrens, fens, sedge meadow, and shallow marsh. The list is annotated with known host(s) of each insect, and the likelihood of its presence in the state (see key at end of list for specifics). This working list is a byproduct of a prairie invertebrate study I coordinated from1995-2005 that covered 6 Midwestern states and included 14 cooperators. The project surveyed insects on prairie remnants and investigated the effects of fire on those insects. It was funded in part by a series of grants from the US Fish and Wildlife Service. So far, the list has 475 species. However, this is a partial list at best, representing approximately only ¼ of the prairie-specialist insects likely present in the region (see discussion below). Significant input to this list is needed, as there are major taxa groups missing or greatly under represented. Such absence is not necessarily due to few or no prairie-specialists in those groups, but due more to lack of knowledge about life histories (at least published knowledge), unsettled taxonomy, and lack of taxonomic specialists currently working in those groups.
    [Show full text]
  • Poplars and Willows: Trees for Society and the Environment / Edited by J.G
    Poplars and Willows Trees for Society and the Environment This volume is respectfully dedicated to the memory of Victor Steenackers. Vic, as he was known to his friends, was born in Weelde, Belgium, in 1928. His life was devoted to his family – his wife, Joanna, his 9 children and his 23 grandchildren. His career was devoted to the study and improve- ment of poplars, particularly through poplar breeding. As Director of the Poplar Research Institute at Geraardsbergen, Belgium, he pursued a lifelong scientific interest in poplars and encouraged others to share his passion. As a member of the Executive Committee of the International Poplar Commission for many years, and as its Chair from 1988 to 2000, he was a much-loved mentor and powerful advocate, spreading scientific knowledge of poplars and willows worldwide throughout the many member countries of the IPC. This book is in many ways part of the legacy of Vic Steenackers, many of its contributing authors having learned from his guidance and dedication. Vic Steenackers passed away at Aalst, Belgium, in August 2010, but his work is carried on by others, including mem- bers of his family. Poplars and Willows Trees for Society and the Environment Edited by J.G. Isebrands Environmental Forestry Consultants LLC, New London, Wisconsin, USA and J. Richardson Poplar Council of Canada, Ottawa, Ontario, Canada Published by The Food and Agriculture Organization of the United Nations and CABI CABI is a trading name of CAB International CABI CABI Nosworthy Way 38 Chauncey Street Wallingford Suite 1002 Oxfordshire OX10 8DE Boston, MA 02111 UK USA Tel: +44 (0)1491 832111 Tel: +1 800 552 3083 (toll free) Fax: +44 (0)1491 833508 Tel: +1 (0)617 395 4051 E-mail: [email protected] E-mail: [email protected] Website: www.cabi.org © FAO, 2014 FAO encourages the use, reproduction and dissemination of material in this information product.
    [Show full text]
  • Boyne Valley Provincial Park
    BOYNE VALLEY PROVINCIAL PARK One Malaise trap was deployed at Boyne Valley Provincial Park in 2014 (44.11563, -80.12777, 468m ASL; Figure 1). This trap collected arthropods for twenty weeks from April 28 – September 19, 2014. All 10 Malaise trap samples were processed; every other sample was analyzed using the individual specimen protocol while the second half was analyzed via bulk analysis. A total of 1571 BINs were obtained. Over half the BINs captured were flies (Diptera), followed by bees, ants and wasps (Hymenoptera), moths and butterflies (Lepidoptera), and beetles (Coleoptera; Figure 2). In total, 427 arthropod species were named, representing 29% of the BINs from the site (Appendix 1). All BINs were assigned at least to Figure 1. Malaise trap deployed at Boyne Valley family, and 66.6% were assigned to a genus (Appendix Provincial Park in 2014. 2). Specimens collected from Boyne Valley represent 183 different families and 558 genera. Figure 2. Taxonomy breakdown of BINs captured in the Malaise trap at Boyne Valley. APPENDIX 1. TAXONOMY REPORT Class Order Family Genus Species Arachnida Araneae Clubionidae Clubiona Clubiona obesa Philodromidae Philodromus Philodromus rufus Theridiidae Mesostigmata Digamasellidae Dinychidae Halolaelapidae Parasitidae Phytoseiidae Opiliones Phalangiidae Sclerosomatidae Leiobunum Sarcoptiformes Acaridae Oribatulidae Phenopelopidae Scheloribatidae Trombidiformes Anystidae Cunaxidae Cunaxoides Erythraeidae Leptus Hygrobatidae Atractides Scutacaridae Tarsonemidae Tetranychidae Tetranychus Trombidiidae
    [Show full text]
  • Growth and Survivorship of Fremont Cottonwood, Gooding Willow, and Salt Cedar Seedlings After Large Floods in Central Arizona
    Great Basin Naturalist Volume 57 Number 3 Article 2 7-31-1997 Growth and survivorship of Fremont cottonwood, Gooding willow, and salt cedar seedlings after large floods in central Arizona J. C. Stromberg Arizona State University, Tempe Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Stromberg, J. C. (1997) "Growth and survivorship of Fremont cottonwood, Gooding willow, and salt cedar seedlings after large floods in central Arizona," Great Basin Naturalist: Vol. 57 : No. 3 , Article 2. Available at: https://scholarsarchive.byu.edu/gbn/vol57/iss3/2 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Great Basin Naturalist 57(3), © 1997, pp, 198-208 GROWTH AND SURVIVORSHIP OF FREMONT COTIONWOOD, GOODDING WILLOW, AND SALT CEDAR SEEDLINGS AFTER LARGE FLOODS IN CENTRAL ARIZONA J.e. Stromberg! ABSTRACT.-During winter 1993, Arizona experienced regional river flooding. Floodwaters at the Hassayampa River eroded floodplains and created a 50-m-wide scour zone available for colonization by pioneer plant species. The slow rate and long duration ofthe floodwater recession allowed establishment of spring-germinating native trees (mainly Fre­ mont cottonwood [Populus fremontii] and Goodding willow [Salix gooddingii] as well as summer-germinating species including the introduced salt cedar (Tamarix chinensw and related species). Goodding willow and Fremont cottonwood seedlings showed zonation in the floodplain, while salt cedar was equally abundant in zones with saturated and dry sur­ face soils.
    [Show full text]
  • Insects That Feed on Trees and Shrubs
    INSECTS THAT FEED ON COLORADO TREES AND SHRUBS1 Whitney Cranshaw David Leatherman Boris Kondratieff Bulletin 506A TABLE OF CONTENTS DEFOLIATORS .................................................... 8 Leaf Feeding Caterpillars .............................................. 8 Cecropia Moth ................................................ 8 Polyphemus Moth ............................................. 9 Nevada Buck Moth ............................................. 9 Pandora Moth ............................................... 10 Io Moth .................................................... 10 Fall Webworm ............................................... 11 Tiger Moth ................................................. 12 American Dagger Moth ......................................... 13 Redhumped Caterpillar ......................................... 13 Achemon Sphinx ............................................. 14 Table 1. Common sphinx moths of Colorado .......................... 14 Douglas-fir Tussock Moth ....................................... 15 1. Whitney Cranshaw, Colorado State University Cooperative Extension etnomologist and associate professor, entomology; David Leatherman, entomologist, Colorado State Forest Service; Boris Kondratieff, associate professor, entomology. 8/93. ©Colorado State University Cooperative Extension. 1994. For more information, contact your county Cooperative Extension office. Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture,
    [Show full text]
  • Fremontii, Populus Angustfolia, and Their Hybrids
    aCICNCC DIRECT. DIocnemlcal 8 systematics and ecoloav-, ELSEVIER Biochemical Systematics and Ecology 33 (2005) 125-131 Foliar phenolic glycosides from Populus fremontii, Populus angustfolia, and their hybrids Brian ~ehill~.*,Allen claussb, Lindsay Wieczoreka, Thomas Whithamc, Richard Lindrotha aDepartment of Entomology. University of Wisconsin, 1630 Linden Road, Madison, WI 53706, USA b~epartmentof Chemistry, University of Wisconsin, I101 University Avenue, Madison, WI 53706, USA CDepartmentof Biological Sciences & The Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, USA Received 28 February 2004; accepted 16 June 2004 Abstract Salicortin (1) and HCH-salicortin (2) were isolated and identified from the foliage of Populus fremontii and its F1 hybrids with Populus angust$olia. Salicortin, but not HCH-salicortin, also occurred in P. angustifolia and complex backcrosses to angustifolia. Concentrations ranged from 0 to 17.5% dry weight for salicortin and 0 to 5.9% dry weight for HCH-salicortin. HCH- salicortin may possess potent anti-herbivore activity as it contains two of the hydroxycyclo- hexen-on-oyl moieties known to confer such activity to salicortin. Further, this compound may be a useful chemotaxonomic character within the genus Populus, since it appears to occur in section Aigeiros but not in section Tacamahaca. O 2004 Elsevier Ltd. All rights resewed. Keywords: Populus fremontii; Populus angustifolia; Salicaceae; Ecological biochemistry; Salicortin; HCH- salicortin; Anti-herbivore compounds * Corresponding author. Department of Chemistry, United States Naval Academy, 572 Holloway Road, Annapolis, MD 21402, USA. Tel.: + 1 410 293 6637; fax: + 1 410 293 2218. E-mail address: [email protected] (B. Rehill). 0305-1978/$ - see front matter O 2004 Elsevier Ltd.
    [Show full text]
  • Distribution, Host Plants and Natural Enemies of Sugar Beet Root Aphid (Pemphigus Fuscicornis) in Slovakia*
    Zbornik Matice srpske za prirodne nauke / Proc. Nat. Sci, Matica Srpska Novi Sad, ¥ 110, 221—226, 2006 UDC 633.63:632.752(437.6-14)“2003/2004" Peter Tóth, Ján I. Tancik, Monika Tóthová, Vladimír Paåuta Slovak Agricultural University, A. Hlinku 2 949 76 Nitra, Slovak Republic DISTRIBUTION, HOST PLANTS AND NATURAL ENEMIES OF SUGAR BEET ROOT APHID (PEMPHIGUS FUSCICORNIS) IN SLOVAKIA* ABSTRACT: During 2003—2004, field surveys were realized to observe the distribu- tion of sugar beet aphid, Pemphigus fuscicornis (K o c h) (Sternorrhyncha: Pemphigidae)in southwestern Slovakia. The research was carried out at 60 different localities with altitudes 112—220 m a. s. l. Sugar beet root aphid was recorded at 30 localities. The aphid was re- corded in Slovakia for the first time, but its occurrence was predicted and symptoms and harmfulness overlooked by now. The presence of P. fuscicornis was investigated on roots of various plants from Chenopodiaceae. The most important host plants were various speci- es of lambsquarters (above all Chenopodium album). Furthermore sugar beet (Beta vulgaris provar. altissima), red beet (B. vulgaris provar. conditiva) and oraches (Atriplex spp.) act as host plants. Infestation of sugar beet by P. fuscicornis never exceeded 5% at single locality in Slovakia. Dry and warm weather create presumptions for strong harmfulness. In Slo- vakia, Chenopodium album is a very important indicator of sugar beet aphid presence allowing evaluation of control requirements. During the study, the larvae of Thaumatomyia glabra (Diptera: Chloropidae) were detected as important natural enemies of sugar beet ap- hid. The species occurred at each location evaluated.
    [Show full text]
  • The Biology of Pemphigus Spyrothecae Galls On
    THE BIOLOGY OF PEMPHIGUS SPYROTHECAE GALLS ON POPLAR LEAVES KARIN L. ALTON B.Sc. Thesis submitted to the University of Nottingham for the Degree of Doctor of Philosophy Department of Biological Sciences University of Nottingham Nottingham NG7 2RD November 1999 CONTENTS ABSTRACT 1 Chapter 1: INTRODUCTION 1.1 Habitat selection 2 1.2 Models of habitat selection 3 1.3 Applying theory to real situations: galling aphids as a model system 12 1.4 Biology of aphid galls 15 1.5 Biology of Pemphigus spyrothecae Pass. (1860) 19 1.6 Site description 23 1.7 Study objectives 24 Chapter 2: INTER-PLANT VARIATION AND THE EFFECTS ON APHID POPULATION DYNAMICS 2.1 Introduction 31 2.2 Methods 33 2.3 Results 35 2.4 Discussion 38 Chapter 3: WITHIN-PLANT HETEROGENEITY AND THE EFFECTS ON APHID POPULATION DYNAMICS 3. 1 Introduction 55 3.2 Methods 57 3.3 Results 61 3.4 Discussion 63 Chapter4: APHID EMERGENCE AT BUDBURST 4.1 Introduction 95 4.2 Methods 98 4.3 Results 102 4.4 Discussion 108 Chapter 5: THE PHENOLOGICAL BACKGROUND TO APHID NUMBERS IN THE GALL 5.1 Introduction 149 5.2 Methods 151 5.3 Results 153 5.4 Discussion 156 Chapter 6: THE EFFECTS OF MULTIPLY GALLED PETIOLES ON APHID FITNESS 6.1 Introduction 183 6.2 Methods 185 6.3 Results 187 6.4 Discussion 189 Chapter 7: DO PREDATORS AFFECT APHID GALL DISTRIBUTION AND MORTALITY? 7.1 Introduction 213 7.2 Methods 215 7.3 Results 217 7.4 Discussion 219 Chapter 8: DISCUSSION 235 REFERENCES 240 ACKNOWLEDGEMENTS 259 1 ABSTRACT The gall forming aphid Pemphigus spyrothecae is a plant parasite that colonises the leaf petiole of the black poplar Populus nigra and its hybrids and varieties.
    [Show full text]
  • Gall-Inducing Aphids (Hemiptera: Aphidoidea: Eriosomatinae) Associated with Salicaceae and Ulmaceae in Razavi Khorasan Province, with New Records for Fauna of Iran
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of the Academy's Library Acta Phytopathologica et Entomologica Hungarica 54 (1), pp. 113–126 (2019) DOI: 10.1556/038.54.2019.010 Gall-inducing Aphids (Hemiptera: Aphidoidea: Eriosomatinae) Associated with Salicaceae and Ulmaceae in Razavi Khorasan Province, with New Records for Fauna of Iran A. NAJMI1, H. S. NAMAGHI1*, S. BARJADZE2 and L. FEKRAT1 1Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran 2Institute of Zoology, Ilia State University, Tbilisi, Georgia (Received: 11 November 2018; accepted: 16 November 2018) A survey of gall-inducing aphids on elm and poplar trees was carried out during 2017 in Razavi Kho- rasan province, NE Iran. As a result, 15 species of gall-inducing aphids from 5 genera, all belonging to the subfamily Eriosomatinae, were recorded on 6 host plant species. The collected species included the genera Eriosoma, Kaltenbachiella, Pemphigus, Tetraneura and Thecabius. Pemphigus passeki Börner (Hemiptera: Aphididae) and Pemphigus populinigrae (Schrank) (Hemiptera: Aphididae) on Populus nigra var. italica (Sal- icaceae) were new records for the Iranian aphid fauna. Both new recorded species belong to the tribe Pem- phigini, subfamily Eriosomatinae. Among the identified species, 8 aphid species were new records for Razavi Khorasan province. Keywords: Aphid, elm, poplar, fauna, gall-inducing aphid. Many insect groups, around 13,000 species, are known as plant gall makers (Nyman and Julkunen-Tiitto, 2000; Suzuki et al., 2009). Among them, Aphidoidea is a very large superfamily in the hemipteran suborder Sternorrhyncha with about 5000 known species (Blackman and Eastop, 2000; Ge et al., 2016).
    [Show full text]