A Survey on Hyperparasitoids of the Poplar Spiral Gall Aphid, Pemphigus Spyrothecae Passerini (Hemiptera: Aphididae) in Northwest Iran

Total Page:16

File Type:pdf, Size:1020Kb

A Survey on Hyperparasitoids of the Poplar Spiral Gall Aphid, Pemphigus Spyrothecae Passerini (Hemiptera: Aphididae) in Northwest Iran J. Crop Prot. 2014, 3 (3): 369-376 ______________________________________________________ Research Article A survey on hyperparasitoids of the poplar spiral gall aphid, Pemphigus spyrothecae Passerini (Hemiptera: Aphididae) in Northwest Iran Mostafa Ghafouri-Moghaddam1, Hossein Lotfalizadeh2 and Ehsan Rakhshani3* 1. Department of Plant Protection, College of Agricultural Sciences, University of Mohaghegh Ardabili, Ardabil, Iran. 2. Department of Plant Protection, East-Azarbaijan Research Center for Agriculture and Natural Resources, Tabriz, Iran. 3. Department of Plant Protection, College of Agriculture, University of Zabol, Iran. Abstract: A survey was carried out on the hyperparasitoids of the poplar spiral gall aphid, Pemphigus spyrothecae Passerini, 1860 in Ardabil province from 2012 to 2013. Two pteromalid species, including Pachyneuron solitarium (Hartig, 1838) and Asaphes suspensus (Nees, 1834) were reared from the mummified aphids. Both species are hyperparasitoid of P. spyrothecae via Monoctonia vesicarii Tremblay, 1991 (Hymenoptera: Braconidae, Aphidiinae). Pachyneuron solitarium is newly recorded from Iran. Keywords: Pemphigus, Monoctonia, Pachyneuron, Asaphes, new record Introduction12 (Lotfalizadeh and Gharali, 2008; Mitroiu et al., 2011; Hasani et al., 2011: Hasani and Madjdzadeh, 2012; Mahdavi and Madjdzadeh, Aphid hyperparasitoids are found mainly in five 2013; Dehdar and Madjdzadeh, 2013). It families of three superfamilies of Hymenoptera: includes important natural enemies of numerous (i) Figitidae of Cynipoidea; (ii) Encyrtidae, pest insects, widely distributed in major insect Pteromalidae and Eulophidae of Chalcidoidea; orders such as Coleoptera, Diptera, Downloaded from jcp.modares.ac.ir at 5:05 IRST on Saturday September 25th 2021 and (iii) Megaspilidae of Ceraphronoidea Lepidoptera, Hymenoptera and Hemiptera (Sullivan, 1988). They are all solitary (Dzhanokmen, 1989). parasitoids except for a few gregarious species, Species of the family Pemphigidae are gall and either endoparasitic or ectoparasitic forming aphids on different host plants depending on the family (Sullivan and Völkl, (Blackman and Eastop, 1994), among them 1999). The family Pteromalidae Dalman, 1820 species of the genus Pemphigus Hartig, 1839 (Hymenoptera: Chalcidoidea) with more than (Pemphiginae) have a specific affinity to poplars 3,500 described species ordered in 390 genera (Populus-species, Salicaceae) (Whitham, 1980). (Noyes, 2013) is one of the largest families Over 70 Pemphigus species have been described among parasitic Hymenoptera of the until now, of which 46 are known to form galls on superfamily Chalcidoidea. To date about 145 leaves or twigs of Populus species (Blackman and species of Pteromalidae are recorded from Iran Eastop, 1994). Seven species of the family Pemphigidae have been known in Iran in Handling Editor: Dr. Ali Asghar Talebi association with poplars as gall makers (Rezwani, ________________________________ 2001). Pemphigus spyrothecae Passerini, 1860 is * Corresponding author, e-mail: [email protected] a holocyclic species that develops exclusively on Received: 22 January 2014, Accepted: 17 February 2014 its primary host (Urban, 2002). It is known from Published online: 17 February 2014 369 Hyperparasitoids of Pemphigus spyrothecae __________________________________________ J. Crop Prot. Poland (Heie, 1980), Hungary, Bulgaria, Populus nigra was sampled, and it was dissected Romania, Serbia, Croatia (Čamprag et al., 2003), in situ in order to inspect the presence of Greece (Ioannidis, 1996), Ukraine and Russia mummified aphid (Fig. 1). If present, the galls (Pisnya and Fedorenko, 1988). In addition to were collected and placed inside small plastic Europe, there are records from Asian countries boxes covered with muslin for ventilation. All including Georgia, Armenia, Kazakhstan the materials were subsequently transferred to (Čamprag et al., 2003) and Iran (Derakhshan- the nearest location with natural conditions Shadmehri et al., 2001). The specific environment similar to collecting area and monitored until the of the closed galls is a habitat inviting specific next year. The emerged parasitoids and natural enemies (Rakhshani et al., 2007; Urban, hyperparasitoids were carefully collected using 2002). Ghafouri-Moghaddam et al. (2012) an aspirator and placed into 75% ethanol for previously recorded the aphidiine parasitoid, further examination. External morphology was Monoctonia vesicarii Tremblay, 1991 in illustrated using an Olympus™ SZH, equipped association with P. spyrothecae on P. nigra in with a Canon™ A720 digital camera. The Iran. Takada et al. (2010) reported three specimens were identified according to the chalcidoid species consisting of Aprostocetus (A.) reliable keys and descriptions (Graham, 1969; doronokianus (Kamijo), Pachyneuron sp. and Doğanlar, 1986) by the second author. Eupelmus sp. as hyperparasitoids of Pemphigus Terminology and morphology follow Bouček matsumurai (Monzen) on Populus maximowiczii (1988) and Gibson (2001). The specimens were from Japan. The primary parasitoid has also been deposited in the insect collection of the recorded as M. vesicarii. Kurdjumov (1913) Department of Plant Protection, East-Azarbaijan reported Aprostocetus (A.) populi (Kurdjumov) as Research Center for Agriculture and Natural hyperparasitoid of P. populinigrae (Schrank) in Resources, Tabriz, Iran. General data regarding Ukraine. In General, the aphid hyperparasitoids geographical distribution, biology as well as are considered to be detrimental for biological brief taxonomic comments are given for each control efforts since, they reduce the efficiency of species. primary parasitoids (Starý, 1970). However, under certain circumstances they may even have a Results regulatory effect to maintain the balance between population of primary parasitoid and its host aphid Two following pteromalid species were reared (Bennet, 1981; Sullivan, 1988). The objective of from the mummified aphids. Both species were Downloaded from jcp.modares.ac.ir at 5:05 IRST on Saturday September 25th 2021 the present study was to identify the hyperparasitoids of P. spyrothecae via M. hyperparasitoid species attacking Monoctonia vesicarii. vesicarii in Ardabil province. Asaphes suspensus (Nees, 1834) Materials and Methods Material examined: IRAN, Ardabil province, Ardabil, 38°19'32"N, 48°25'28"E, 1315m, In order to investigate the occurrence of the 21.xi.2012; leg.: M. Ghafouri-Moghaddam, 6♀ aphid hyperparasitoids associated with & 3♂. Pemphigus aphids, a survey was carried out Distribution in Iran: It has already been during 2012-2013 in Ardabil province, where the recorded from Iran by Lotfalizadeh and Gharali poplars are naturally or artificially growing. First (2008) from East Azarbaijan province in author collected leaves with unopened galls from Northwest Iran and by Mitroiu et al. (2011) the branches at a height of 2.5 meter from these from Kerman province (Southeast Iran), as trees in mid-November 2012 and mid-September well as by Dehdar and Madjdzadeh (2013) 2013 and on the fallen leaves with unopened from Kurdestan province (Western Iran). galls beneath the same trees in late October There is only one species from this genus in 2013. The plant material with aphid galls from Iran. 370 Ghafouri-Moghaddam et al. _________________________________________ J. Crop Prot. (2014) Vol. 3 (3) Figure 1 The leaf galls of Pemphigus spyrothecae on Populus nigra (A) and the mummified aphids with emergence hole of the primary and secondary parasitoids (B). province in Northwest Iran and by Mitroiu et 19.ix.2013; Leg.: M. Ghafouri-Moghaddam, al. (2011) from Kerman province (Southeast 4♀, 3♂. Iran), as well as by Dehdar and Madjdzadeh Distribution in Iran: New record for Iran. (2013) from Kurdestan province (Western General distribution: Cosmopolitan. Iran). There is only one species from this Diagnosis. This species can be distinguished genus in Iran. from the closely related species, P. muscarum by General distribution: Asaphes suspensus is the combination of following characters: In P. widely distributed as a secondary parasitoid of solitarium the anterior margin of the clypeus is Braconidae (Aphidiinae) in the Holarctic region slightly produced, the produced part weakly (Noyes, 2013). Its distribution in the Neotropical emarginated or subtruncate, and the surface of region is regarded as doubtful by Gibson and clypeus only weakly convex, whereas in P. Vikberg (1998) who considered that these muscarum the anterior margin of the clypeus, records belong to the P. californicus complex. which is more strongly convex, has a blunt, Diagnosis. Head transverse in frontal view rounded median projection. (width 1.25 times of height); first funicular Brief description: Female. (Fig. 2A) Median segment transvers, second funicular segment produced portion of clypeus narrow, with anterior Downloaded from jcp.modares.ac.ir at 5:05 IRST on Saturday September 25th 2021 ring-like, the rest slightly transverse; margin slightly emarginate or truncate and its metapleuron bare, frenulum of scutellum surface virtually flat (Fig. 2D); head in dorsal smooth and shiny; petiole slightly longer than view with temples rounded posteriorly; scape wide, strongly carinate; basal cell of fore wing reaching upper edge of median ocellus, first with two rows of setae, speculum poorly funicular segment as long as the second, slightly developed, submarginal vein with several setae. longer than wide, following four segments a little Coloration: Head and mesosoma dark with
Recommended publications
  • A Preliminary Invertebrate Survey
    Crane Park, Twickenham: preliminary invertebrate survey. Richard A. Jones. 2010 Crane Park, Twickenham: preliminary invertebrate survey BY RICHARD A. JONES F.R.E.S., F.L.S. 135 Friern Road, East Dulwich, London SE22 0AZ CONTENTS Summary . 2 Introduction . 3 Methods . 3 Site visits . 3 Site compartments . 3 Location and collection of specimens . 4 Taxonomic coverage . 4 Survey results . 4 General . 4 Noteworthy species . 5 Discussion . 9 Woodlands . 9 Open grassland . 10 River bank . 10 Compartment breakdown . 10 Conclusion . 11 References . 12 Species list . 13 Page 1 Crane Park, Twickenham: preliminary invertebrate survey. Richard A. Jones. 2010 Crane Park, Twickenham: preliminary invertebrate survey BY RICHARD A. JONES F.R.E.S., F.L.S. 135 Friern Road, East Dulwich, London SE22 0AZ SUMMARY An invertebrate survey of Crane Park in Twickenham was commissioned by the London Borough of Richmond to establish a baseline fauna list. Site visits were made on 12 May, 18 June, 6 and 20 September 2010. Several unusual and scarce insects were found. These included: Agrilus sinuatus, a nationally scarce jewel beetle that breeds in hawthorn Argiope bruennichi, the wasp spider, recently starting to spread in London Dasytes plumbeus, a nationally scarce beetle found in grassy places Ectemnius ruficornis, a nationally scarce wasp which nests in dead timber Elodia ambulatoria, a nationally rare fly thought to be a parasitoid of tineid moths breeding in bracket fungi Eustalomyia hilaris, a nationally rare fly that breeds in wasp burrows in dead timber
    [Show full text]
  • Insects That Feed on Trees and Shrubs
    INSECTS THAT FEED ON COLORADO TREES AND SHRUBS1 Whitney Cranshaw David Leatherman Boris Kondratieff Bulletin 506A TABLE OF CONTENTS DEFOLIATORS .................................................... 8 Leaf Feeding Caterpillars .............................................. 8 Cecropia Moth ................................................ 8 Polyphemus Moth ............................................. 9 Nevada Buck Moth ............................................. 9 Pandora Moth ............................................... 10 Io Moth .................................................... 10 Fall Webworm ............................................... 11 Tiger Moth ................................................. 12 American Dagger Moth ......................................... 13 Redhumped Caterpillar ......................................... 13 Achemon Sphinx ............................................. 14 Table 1. Common sphinx moths of Colorado .......................... 14 Douglas-fir Tussock Moth ....................................... 15 1. Whitney Cranshaw, Colorado State University Cooperative Extension etnomologist and associate professor, entomology; David Leatherman, entomologist, Colorado State Forest Service; Boris Kondratieff, associate professor, entomology. 8/93. ©Colorado State University Cooperative Extension. 1994. For more information, contact your county Cooperative Extension office. Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture,
    [Show full text]
  • Distribution, Host Plants and Natural Enemies of Sugar Beet Root Aphid (Pemphigus Fuscicornis) in Slovakia*
    Zbornik Matice srpske za prirodne nauke / Proc. Nat. Sci, Matica Srpska Novi Sad, ¥ 110, 221—226, 2006 UDC 633.63:632.752(437.6-14)“2003/2004" Peter Tóth, Ján I. Tancik, Monika Tóthová, Vladimír Paåuta Slovak Agricultural University, A. Hlinku 2 949 76 Nitra, Slovak Republic DISTRIBUTION, HOST PLANTS AND NATURAL ENEMIES OF SUGAR BEET ROOT APHID (PEMPHIGUS FUSCICORNIS) IN SLOVAKIA* ABSTRACT: During 2003—2004, field surveys were realized to observe the distribu- tion of sugar beet aphid, Pemphigus fuscicornis (K o c h) (Sternorrhyncha: Pemphigidae)in southwestern Slovakia. The research was carried out at 60 different localities with altitudes 112—220 m a. s. l. Sugar beet root aphid was recorded at 30 localities. The aphid was re- corded in Slovakia for the first time, but its occurrence was predicted and symptoms and harmfulness overlooked by now. The presence of P. fuscicornis was investigated on roots of various plants from Chenopodiaceae. The most important host plants were various speci- es of lambsquarters (above all Chenopodium album). Furthermore sugar beet (Beta vulgaris provar. altissima), red beet (B. vulgaris provar. conditiva) and oraches (Atriplex spp.) act as host plants. Infestation of sugar beet by P. fuscicornis never exceeded 5% at single locality in Slovakia. Dry and warm weather create presumptions for strong harmfulness. In Slo- vakia, Chenopodium album is a very important indicator of sugar beet aphid presence allowing evaluation of control requirements. During the study, the larvae of Thaumatomyia glabra (Diptera: Chloropidae) were detected as important natural enemies of sugar beet ap- hid. The species occurred at each location evaluated.
    [Show full text]
  • POPULATION DYNAMICS of the SYCAMORE APHID (Drepanosiphum Platanoidis Schrank)
    POPULATION DYNAMICS OF THE SYCAMORE APHID (Drepanosiphum platanoidis Schrank) by Frances Antoinette Wade, B.Sc. (Hons.), M.Sc. A thesis submitted for the degree of Doctor of Philosophy of the University of London, and the Diploma of Imperial College of Science, Technology and Medicine. Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire, SL5 7PY, U.K. August 1999 1 THESIS ABSTRACT Populations of the sycamore aphid Drepanosiphum platanoidis Schrank (Homoptera: Aphididae) have been shown to undergo regular two-year cycles. It is thought this phenomenon is caused by an inverse seasonal relationship in abundance operating between spring and autumn of each year. It has been hypothesised that the underlying mechanism of this process is due to a plant factor, intra-specific competition between aphids, or a combination of the two. This thesis examines the population dynamics and the life-history characteristics of D. platanoidis, with an emphasis on elucidating the factors involved in driving the dynamics of the aphid population, especially the role of bottom-up forces. Manipulating host plant quality with different levels of aphids in the early part of the year, showed that there was a contrast in aphid performance (e.g. duration of nymphal development, reproductive duration and output) between the first (spring) and the third (autumn) aphid generations. This indicated that aphid infestation history had the capacity to modify host plant nutritional quality through the year. However, generalist predators were not key regulators of aphid abundance during the year, while the specialist parasitoids showed a tightly bound relationship to its prey. The effect of a fungal endophyte infecting the host plant generally showed a neutral effect on post-aestivation aphid dynamics and the degree of parasitism in autumn.
    [Show full text]
  • The Biology of Pemphigus Spyrothecae Galls On
    THE BIOLOGY OF PEMPHIGUS SPYROTHECAE GALLS ON POPLAR LEAVES KARIN L. ALTON B.Sc. Thesis submitted to the University of Nottingham for the Degree of Doctor of Philosophy Department of Biological Sciences University of Nottingham Nottingham NG7 2RD November 1999 CONTENTS ABSTRACT 1 Chapter 1: INTRODUCTION 1.1 Habitat selection 2 1.2 Models of habitat selection 3 1.3 Applying theory to real situations: galling aphids as a model system 12 1.4 Biology of aphid galls 15 1.5 Biology of Pemphigus spyrothecae Pass. (1860) 19 1.6 Site description 23 1.7 Study objectives 24 Chapter 2: INTER-PLANT VARIATION AND THE EFFECTS ON APHID POPULATION DYNAMICS 2.1 Introduction 31 2.2 Methods 33 2.3 Results 35 2.4 Discussion 38 Chapter 3: WITHIN-PLANT HETEROGENEITY AND THE EFFECTS ON APHID POPULATION DYNAMICS 3. 1 Introduction 55 3.2 Methods 57 3.3 Results 61 3.4 Discussion 63 Chapter4: APHID EMERGENCE AT BUDBURST 4.1 Introduction 95 4.2 Methods 98 4.3 Results 102 4.4 Discussion 108 Chapter 5: THE PHENOLOGICAL BACKGROUND TO APHID NUMBERS IN THE GALL 5.1 Introduction 149 5.2 Methods 151 5.3 Results 153 5.4 Discussion 156 Chapter 6: THE EFFECTS OF MULTIPLY GALLED PETIOLES ON APHID FITNESS 6.1 Introduction 183 6.2 Methods 185 6.3 Results 187 6.4 Discussion 189 Chapter 7: DO PREDATORS AFFECT APHID GALL DISTRIBUTION AND MORTALITY? 7.1 Introduction 213 7.2 Methods 215 7.3 Results 217 7.4 Discussion 219 Chapter 8: DISCUSSION 235 REFERENCES 240 ACKNOWLEDGEMENTS 259 1 ABSTRACT The gall forming aphid Pemphigus spyrothecae is a plant parasite that colonises the leaf petiole of the black poplar Populus nigra and its hybrids and varieties.
    [Show full text]
  • Gall-Inducing Aphids (Hemiptera: Aphidoidea: Eriosomatinae) Associated with Salicaceae and Ulmaceae in Razavi Khorasan Province, with New Records for Fauna of Iran
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of the Academy's Library Acta Phytopathologica et Entomologica Hungarica 54 (1), pp. 113–126 (2019) DOI: 10.1556/038.54.2019.010 Gall-inducing Aphids (Hemiptera: Aphidoidea: Eriosomatinae) Associated with Salicaceae and Ulmaceae in Razavi Khorasan Province, with New Records for Fauna of Iran A. NAJMI1, H. S. NAMAGHI1*, S. BARJADZE2 and L. FEKRAT1 1Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran 2Institute of Zoology, Ilia State University, Tbilisi, Georgia (Received: 11 November 2018; accepted: 16 November 2018) A survey of gall-inducing aphids on elm and poplar trees was carried out during 2017 in Razavi Kho- rasan province, NE Iran. As a result, 15 species of gall-inducing aphids from 5 genera, all belonging to the subfamily Eriosomatinae, were recorded on 6 host plant species. The collected species included the genera Eriosoma, Kaltenbachiella, Pemphigus, Tetraneura and Thecabius. Pemphigus passeki Börner (Hemiptera: Aphididae) and Pemphigus populinigrae (Schrank) (Hemiptera: Aphididae) on Populus nigra var. italica (Sal- icaceae) were new records for the Iranian aphid fauna. Both new recorded species belong to the tribe Pem- phigini, subfamily Eriosomatinae. Among the identified species, 8 aphid species were new records for Razavi Khorasan province. Keywords: Aphid, elm, poplar, fauna, gall-inducing aphid. Many insect groups, around 13,000 species, are known as plant gall makers (Nyman and Julkunen-Tiitto, 2000; Suzuki et al., 2009). Among them, Aphidoidea is a very large superfamily in the hemipteran suborder Sternorrhyncha with about 5000 known species (Blackman and Eastop, 2000; Ge et al., 2016).
    [Show full text]
  • Beavers, Bugs and Chemistry: a Mammalian Herbivore Changes Chemistry Composition and Arthropod Communities in Foundation Tree Species
    Article Beavers, Bugs and Chemistry: A Mammalian Herbivore Changes Chemistry Composition and Arthropod Communities in Foundation Tree Species Rachel M. Durben 1,2, Faith M. Walker 1,2,3, Liza Holeski 1,2,4, Arthur R. Keith 1,2, Zsuzsi Kovacs 1,2, Sarah R. Hurteau 5, Richard L. Lindroth 4 , Stephen M. Shuster 1,2 and Thomas G. Whitham 1,2,* 1 The Environmental Genetics and Genomics Laboratory, Department of Biological Sciences, Northern Arizona University, P.O. Box 5640, Flagstaff, AZ 86011, USA; [email protected] (R.M.D.); [email protected] (F.M.W.); [email protected] (L.H.); [email protected] (A.R.K.); [email protected] (Z.K.); [email protected] (S.M.S.) 2 The Center for Adaptable Western Landscapes, Department of Biological Sciences, Northern Arizona University, P.O. Box 5640, Flagstaff, AZ 86011, USA 3 School of Forestry, Northern Arizona University, Flagstaff, AZ 86001, USA 4 Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA; [email protected] 5 Geography and Environmental Studies Department, University of New Mexico, Albuquerque, NM 87131, USA; [email protected] * Correspondence: [email protected] Citation: Durben, R.M.; Walker, F.M.; Abstract: The North American beaver (Castor canadensis Kuhl) and cottonwoods (Populus spp.) are Holeski, L.; Keith, A.R.; Kovacs, Z.; foundation species, the interactions of which define a much larger community and affect a threatened Hurteau, S.R.; Lindroth, R.L.; riparian habitat type. Few studies have tested the effect of these interactions on plant chemistry Shuster, S.M.; Whitham, T.G.
    [Show full text]
  • Seasonal Variation in Honeydew Sugar Content of Galling Aphids (Aphidoidea: Pemphigidae: Fordinae) Feeding on Pistacia: Host Ecology and Aphid Physiology
    ARTICLE IN PRESS Basic and Applied Ecology 7 (2006) 141—151 www.elsevier.de/baae Seasonal variation in honeydew sugar content of galling aphids (Aphidoidea: Pemphigidae: Fordinae) feeding on Pistacia: Host ecology and aphid physiology David Woola,Ã, Donald L. Hendrixb, Ofra Shukrya aDepartment of Zoology, Tel Aviv University, Tel Aviv 69978, Israel bWestern Cotton Research Laboratory, USDA-ARS, 4135 E Broadway Road, Phoenix, AZ 85040, USA Received 21 June 2004; accepted 25 February 2005 KEYWORDS Summary Aphid metabolism; We investigated the possibility that seasonal variation in host-tree sap quality was Gall aphids; reflected in aphid honeydew sugar content. Aphids (Homoptera) feed on the phloem Phloem feeding; sap of their host plants and excrete sugar-rich honeydew. We compared the sugar Seasonal changes composition of honeydew excreted by four species of closely related aphids (Pemphigidae: Fordinae ) inducing galls on Pistacia palaestina (Anacardiaceae). Samples were collected four times a year in 1997 and 1998. Samples from one species feeding on the roots of a secondary host, a perennial herb, were also included in the study. More than 20 sugars were detected in the honeydew. Sugars that were present in more than 40% of the samples were analyzed quantitatively in a hierarchical manner. The mean proportions of each sugar of the total sugar content in different species were not significantly different, but samples taken at different dates contained significantly different proportions of the sugars. The most frequent sugars in all species were glucose and fructose. Generally, the proportion of glucose exceeded fructose, but in honeydew from aphids feeding on the roots of the secondary host the reverse was true.
    [Show full text]
  • (Hemiptera: Aphididae) in Sugar Beet
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2016 Ecology and Management of Pemphigus betae (Hemiptera: Aphididae) in Sugar Beet Rudolph J. Pretorius Central University of Technology Gary L. Hein University of Nebraska-Lincoln, [email protected] Jeff Bradshaw University of Nebraska, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Pretorius, Rudolph J.; Hein, Gary L.; and Bradshaw, Jeff, "Ecology and Management of Pemphigus betae (Hemiptera: Aphididae) in Sugar Beet" (2016). Faculty Publications: Department of Entomology. 492. https://digitalcommons.unl.edu/entomologyfacpub/492 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Journal of Integrated Pest Management (2016) 7(1): 10; 1–9 doi: 10.1093/jipm/pmw008 Profiles Ecology and Management of Pemphigus betae (Hemiptera: Aphididae) in Sugar Beet Rudolph J. Pretorius,1 Gary L. Hein,2 and Jeffrey D. Bradshaw3,4 1Department of Agriculture, Central University of Technology, Private Bag X20539, Bloemfontein, 9300, Free State Province, South Africa ([email protected]), 2Doctor of Plant Health Program, University of Nebraska-Lincoln, 279E Plant Sciences Hall, P.O. Box 830933, Lincoln NE 68504 ([email protected]), 3Department of Entomology, Panhandle Research and Extension Center, University of Nebraska-Lincoln, 405 Ave. I, Scottsbluff NE 69361 ([email protected]), and 4Corresponding author, e-mail: [email protected] Received 21 November 2015; Accepted 6 April 2016 Abstract Pemphigus betae Doane (Hemiptera: Aphididae), is a sporadic pest of sugar beet (Beta vulgaris L.
    [Show full text]
  • Revision of the World Monoctonia Starý, Parasitoids of Gall Aphids: Taxonomy, Distribution, Host Range, and Phylogeny (Hymenoptera, Braconidae: Aphidiinae)
    Zootaxa 3905 (4): 474–488 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3905.4.2 http://zoobank.org/urn:lsid:zoobank.org:pub:800EE805-56CB-4303-A299-242808806687 Revision of the world Monoctonia Starý, parasitoids of gall aphids: taxonomy, distribution, host range, and phylogeny (Hymenoptera, Braconidae: Aphidiinae) EHSAN RAKHSHANI1, PETR STARÝ2, NICOLÁS PÉREZ HIDALGO3, JELISAVETA ČKRKIĆ4, MOSTAFA GHAFOURI MOGHADDAM1, SNEŽANA TOMANOVIĆ5, ANDJELJKO PETROVIĆ4 & ŽELJKO TOMANOVIĆ4 1Department of Plant Protection, College of Agriculture, Zabol University, Zabol, P. O. Box: 998615–538, I .R. Iran. E-mail: [email protected] 2Institute of Entomology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 31, 37005 České Budějovice, Czech Republic. E-mail: [email protected] 3Departamento de Biodiversidad y Gestión Ambiental, Universidad de León, 24071 León, Spain; email: [email protected] 4Institute of Zoology, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia. E-mail: [email protected]; [email protected]; [email protected] 5Laboratory for Medical Entomology, Department for Parasitology, Center of Excellence for Toxoplasmosis and Medical Entomology, Institute for Medical Research, University of Belgrade, 11129, Belgrade, Serbia. E-mail: [email protected] Abstract The present paper represents a contribution to the knowledge of the taxonomy of Monoctonia Starý aphid parasitoids ob- tained using the barcoding region of the mitochondrial COI gene. We discuss the phylogenetic position of the genus within the subtribe Monoctonina, redescribe known species, and describe Monoctonia japonica sp.
    [Show full text]
  • Is the Subfamily Eriosomatinae (Hemiptera: Aphididae) Monophyletic?
    Turkish Journal of Zoology Turk J Zool (2014) 38: 285-297 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1303-15 Is the subfamily Eriosomatinae (Hemiptera: Aphididae) monophyletic? 1,2 1 1, Xing-Yi LI , Li-Yun JIANG , Ge-Xia QIAO * 1 Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China 2 University of Chinese Academy of Sciences, Beijing, P.R. China Received: 13.03.2013 Accepted: 09.12.2013 Published Online: 21.03.2014 Printed: 18.04.2014 Abstract: Eriosomatinae, the gall-forming aphid subfamily, traditionally consists of 3 tribes, Eriosomatini, Pemphigini, and Fordini. However, the phylogenetic relationships among these tribes remain controversial, which has made it difficult to conduct further investigation regarding the evolution of galls and host alternations in this group. We analyzed the molecular phylogeny of the subfamily Eriosomatinae, combining sequences from 2 mitochondrial genes (COI and COII) and 2 nuclear genes (EF-1α and LWO). The reconstructions were implemented based on single-gene and multigene datasets through 3 different reconstructing algorithms, respectively; analyses with 5 different out-groups were also conducted. Results revealed a large paraphyletic clade, in which there were 4 out-groups clustering between Eriosomatini and the other 2 tribes. However, the monophyly of the 3 tribes was well supported by the obtained trees, respectively. Key words: Eriosomatinae, molecular phylogeny, monophyly, paraphyletic group 1. Introduction 1994), and it has been proposed that Eriosomatini should The aphid subfamily Eriosomatinae (Hemiptera: be divided into 2 subgroups, as well (Zhang et al., 1999).
    [Show full text]
  • Ecology and Radiation of Galling Aphids (Tamalia; Hemiptera: Aphididae) on Their Host Plants (Ericaceae)
    ARTICLE IN PRESS Basic and Applied Ecology 6 (2005) 463—469 www.elsevier.de/baae Ecology and radiation of galling aphids (Tamalia; Hemiptera: Aphididae) on their host plants (Ericaceae) Donald G. Miller IIIÃ Department of Biological Sciences, California State University, Chico, CA 95929-0515, USA Received 9 May 2005; accepted 8 July 2005 KEYWORDS Summary Tamalia coweni; At least two species of aphid, Tamalia coweni and Tamalia dicksoni (Hemiptera: Tamalia inquilinus; Aphididae) induce galls on the leaves of Arctostaphylos spp. shrubs (Ericaceae). These Adaptive zone; galls are frequently inhabited by at least one species of congeneric inquiline. The Key innovation; inquiline clade has branched off from the gall-inducing clade and appears to be Inquiline; radiating rapidly on different host-plants, in contrast to the gall inducers. This striking Arctostaphylos; pattern may offer insight into the factors driving speciation. Three key innovations Arbutus; present ecological opportunities for Tamalia gall-inducers and inquilines: (1) the Comarostaphylis induction of galls not only on leaf margins, but also on leaf midribs and inflorescences, both of which are novel host plant organs for Tamalia. (2) Gall-induction on well- armed host plants, otherwise protected with dense and viscous pubescence. (3) The origin of the inquiline habit in congeneric Tamalia aphids is a shift into a novel adaptive zone. Inquiline Tamalia exploit gall-inducers by competing successfully within the gall. They may have specialized along host-plant lines because of the critical need for precise timing with the plant during the gall invasion process. & 2005 Gesellschaft fu¨r O¨kologie. Published by Elsevier Gmbh. All rights reserved.
    [Show full text]