Grasshopper Bioindicators of Effective Large-Scale Ecological Networks

Total Page:16

File Type:pdf, Size:1020Kb

Grasshopper Bioindicators of Effective Large-Scale Ecological Networks Grasshopper Bioindicators of Effective Large -Scale Ecological Networks by Corinna Sarah Bazelet Dissertation presented for the degree of Doctor of Philosophy (PhD) ( Entomology ) at the University of Stellenbosch Promote r: Prof. Michael J. Samways Faculty of Science Department of Conservation Ecology and Entomology March 2011 Declaration By submitting this thesis/dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. March 2011 Copyright © 2011 University of Stellenbosch All rights reserved iii Abstract Land use change is leading to rapid biodiversity loss in terrestrial ecosystems worldwide. Ecological networks (ENs) are systems of remnant natural habitat which remain intact in a transformed matrix, and have been suggested as a means to mitigate the effects of habitat loss and transformation and the resulting loss of biodiversity. Conceptually, ENs are similar to habitat corridors but are larger in scale and more heterogeneous in their design and management. Like corridors, the efficacy of ENs for biodiversity conservation has been called into question and requires empirical investigation. South Africa boasts a unique system of extensive ENs associated with exotic timber plantations, mostly within the highly endangered grassland biome and Indian Ocean Coastal Belt in KwaZulu-Natal Province, South Africa. In these regions, grasshoppers respond sensitively to management practices such as grazing, mowing and burning, justifying their a priori selection as an ecological indicator. In this study, I utilize grasshopper assemblages to determine the efficacy of ENs for biodiversity conservation and suggest guidelines for EN optimization. Specifically, I assess grasshopper assemblage sensitivity and robustness to habitat quality within ENs, congruence of grasshoppers with butterflies, and I identify indicator species which can be utilized by managers for EN assessment in future. I also perform a case study of isolated fragment utilization by a highly mobile generalist species, the bird locust, Ornithacris cyanea (Stoll, 1813) (Acrididae: Cyrtacanthacridinae). Grasshopper assemblages were sampled within ENs in two geographic regions (Zululand and the KwaZulu-Natal Midlands) and in two years (2007 and 2008) during the peak season of grasshopper abundance, late summer (February-April). Local-scale environmental variables relating to management practices and landscape-scale environmental variables relating to design of the ENs were quantified. Management practices explained, on average, two-thirds of the variability in grasshopper assemblages that could be explained, while design variables explained one-third. Grass height and the time since the last fire event were most consistently influential, while area, context, isolation, proportion of bare ground and proportion of forbs at a site, proved influential in some analyses but not others. This response was robust over time and among geographic regions. Grasshopper species richness and abundance were highly congruent with that of butterflies and did not differ among isolated fragments, connected corridors and reference sites, although they did differ among geographic regions. Not all grasshopper species responded similarly to ENs. There was a strong phylogenetic signal in species response to environmental variables, with the distribution of highly mobile families varying more among years. Linear, heavily disturbed power line servitudes had higher grasshopper abundance, and generalist species consistent with early successional assemblages. Reference sites had more graminivorous species and those with intermediate mobility. Three species of grasshopper iv were identified with IndVal and validated on an independently collected dataset as indicators of high habitat quality. A case study of the bird locust showed that populations of this highly mobile species were effectively isolated and undergoing anthrovicariance even at short distances. These results indicated that heterogeneous ENs supported diverse grasshopper assemblages, although movement among isolated fragments may have been limited. A grasshopper bioindication method for South Africa’s ENs is suggested and has great potential for assessment of a crucial and sensitive trophic layer within the ENs. This method should be field-tested and revised over time as grasshopper relative abundances and species compositions may change. Increased heterogeneity, simulation of multiple successional stages, and increased connectivity are expected to positively impact biodiversity, particularly of insect primary herbivores. Globally, ENs, if managed and designed appropriately, have potential to enhance biodiversity, particularly of smaller resident organisms which can utilize the ENs for movement and live within them. v Opsomming Veranderinge in grondgebruik lei tot ‘n vinnige verlies van biodiversiteit in terrestriële ekosysteme wêreldwyd. Ekologiese netwerke (ENs) is sisteme van oorblywende natuurlike habitat wat ongeskonde bly in getransformeerde matrikse, en is voorgestel as ‘n manier om die verlies aan biodiversiteit as gevolg van habitatverlies en transformasie te verminder. Konseptueel, is ENs soortgelyk aan habitat korridors, maar is groter in omvang en meer heterogeen in hulle ontwerp en bestuur. Soos korridors, is die effektiwiteit van ENs om biodiversiteit te bewaar bevraagteken, en vereis dit empiriese ondersoek. Suid-Afrika spog met ‘n unieke stelsel van uitgebreide ENs wat geassossieer is met uitheemse plantasies, meestal in die hoogs bedreigde grasveld bioom en Indiese Oseaan kusstrook in KwaZulu- Natal Provinsie, Suid Afrika. In hierdie streek reageer sprinkane sensitief op bestuurspraktyke soos beweiding, sny en brand. In hierdie studie het ek sprinkaan gemeenskappe gebruik om die effektiwiteit van ENs vir bewaring van biodiversiteit te bepaal en om riglyne te stel vir EN optimering. Spesifiek het ek sprinkaan gemeenskap sensitiwiteit en robustness tot habitat kwaliteit bepaal, oreenstemming tussen sprinkane en skoenlappers getoets, en het ek indikator species geïdentifiseer wat in die toekoms deur bestuurders gebruik kan word vir EN assessering. Ek het ook ‘n gevallestudie gedoen van geïsoleerde fragment benutting deur ‘n hoogs mobiele, algemene spesie, Ornithacris cyanea (Stoll, 1813) (Acrididae: Cyrtacanthacridinae). Sprinkaan gemeenskappe was versamel in twee geografiese gebiede (Zululand en die KwaZulu-Natal Midlands) en in twee jare (2007 en 2008) gedurende die seisoen van hoogste sprinkaan aktiwiteit, laat somer (Februarie – April). Plaaslike-skaal omgewingsveranderlikes met betrekking tot bestuurspraktyke en landskap-skaal omgewingsveranderlikes met betrekking tot die ontwerp van ENs is gekwantifiseer. Bestuurspraktyke verduidelik, gemiddeld, twee derdes van die variasie in die sprinkaan gemeenskappe, terwyl ontwerpveranderlikes een derde verduidelik. Grashoogte en tyd sedert die laaste brand was konsekwent invloedryk, terwyl area, konteks, isolasie, hoeveelheid kaal grond en hoeveelheid kruidagtige plantegroei invloedryk was in sekere analyses, maar in ander nie. Hierdie reaksie was konstant oor tyd en tussen geografiese gebiede. Sprinkaan spesies rykheid en hoeveelheid was hoogs kongruent met die van skoenlappers, en het nie verskil tussen geïsoleerde fragmente, verbinde korridors en verwysingsareas nie, maar hulle het verskil vi tussen geografiese streke. Nie alle sprinkaan spesies het soortgelyk gereageer tot ENs nie. Daar was ‘n sterk filogenetiese sein in spesies reaksies op die omgewingsveranderlikes, met meer variasie tussen jare in die verspeiding van hoogs mobiele families. Liniêre, hoogs versteurde kraglyn dienspaaie het hoer sprinkaan hoeveelhede gehad en algemene spesies wat geassosieer is met gemeenskappe in vroeë stadiums van suksessie. Verwysingsareas het meer graminivorous spesies gehad en spesies met intermediêre mobiliteit. Drie sprinkaan spesies is geïdentifiseer met IndVal en bevestig met ‘n onafhanklik versamelde dataset as indikators van hoë kwaliteit habitat. ‘n Gevallestudie op O. cyanea het aangedui dat populasies van hierdie hoogs mobiele spesie geïsoleerd is en dat hulle anthrovicariance ondergaan, selfs op kort afstande. Hierdie resultate dui aan dat heterogene ENs diverse sprinkaan gemeenskappe ondersteun, hoewel beweging tussen geïsoleerde fragmente dalk beperk is. Verhoogde heterogeneïteit, simulasie van verskeie suksessiewe fases en meer konnektiwiteit sal moontlik ‘n positiewe invloed op biodiversiteit hê, aangesien sprinkane verteenwoordigend was van insek primêre herbivore. Wêreldwyd, as ENs op ‘n gepaste manier bestuur en ontwerp word, het dit die potensiaal om biodiversiteit te bevorder. Dit is veral belangrik vir kleiner, plaaslike organisms wat ENs kan benut vir beweging en as leefhabitat. ‘n Sprinkaan bioindikasie metode vir Suid-Afrika se ENs is voorgestel en het groot potensiaal vir die assessering van ‘n belangrike en sensitiewe trofiese laag binne die ENs. Hierdie metode moet in die praktyk getoets word en hersien word oor tyd om veranderinge in sprinkaan relatiewe hoeveelhede en spesies komposisies in ag te neem. vii Acknowledgements This project was generously supported by the Mauerberger Foundation Fund and RUBICODE. Mondi
Recommended publications
  • 119 Genus Amauris Huebner
    AFROTROPICAL BUTTERFLIES 17th edition (2018). MARK C. WILLIAMS. http://www.lepsocafrica.org/?p=publications&s=atb Genus Amauris Hübner, [1816] In: Hübner, [1816-[1826]. Verzeichniss bekannter Schmettlinge 14 (432 + 72 pp.). Augsburg. Type-species: Papilio niavius Linnaeus, by subsequent designation (Scudder, 1875. Proceedings of the American Academy of Arts and Sciences 10: 108 (91-293).). The genus Amauris belongs to the Family Nymphalidae Rafinesque, 1815; Subfamily Danainae Boisduval, 1833; Tribe Danaini Boisduval, 1833; Subtribe Amaurina Le Cerf, 1922. Amauris is the only Afrotropical genus in the Subtribe Amaurina. Amauris is an exclusively Afrotropical genus containing 16 species. Relevant literature: De Vries, 2002 [Differential wing toughness with other taxa]. Amauris species. Final instar larva. Images courtesy Raimund Schutte Amauris species. Pupa. 1 Image courtesy Raimund Schutte Subgenus Amauris Hübner, [1816] In: Hübner, [1816-26]. Verzeichniss bekannter Schmettlinge 14 (432 + 72 pp.). Augsburg. Type-species: Papilio niavius Linnaeus, by subsequent designation (Scudder, 1875. Proceedings of the American Academy of Arts and Sciences 10: 108 (91-293).). *Amauris (Amauris) niavius (Linnaeus, 1758)# Friar Male of the Friar Butterfly (Amauris niavius) at Lake Sibaya, Zululand. Image courtesy Steve Woodhall. Papilio niavius Linnaeus, 1758. Systema Naturae 1, Regnum Animale, 10th edition: 470 (824 pp.). Holmiae. Amauris (Amauris) niavius (Linnaeus, 1758). Pringle et al., 1994: 48. Amauris niavius niavius. Male (Wingspan 75 mm). Left
    [Show full text]
  • Species Composition and Diversity of Insects of the Kogyae Strict Nature Reserve in Ghana
    Open Journal of Ecology, 2014, 4, 1061-1079 Published Online December 2014 in SciRes. http://www.scirp.org/journal/oje http://dx.doi.org/10.4236/oje.2014.417087 Species Composition and Diversity of Insects of the Kogyae Strict Nature Reserve in Ghana Rosina Kyerematen1,2*, Erasmus Henaku Owusu1, Daniel Acquah-Lamptey1, Roger Sigismund Anderson2, Yaa Ntiamoa-Baidu1,3 1Department of Animal Biology and Conservation Science, University of Ghana, Legon, Ghana 2African Regional Postgraduate Programme in Insect Science, University of Ghana, Legon, Ghana 3Centre for African Wetlands, University of Ghana, Legon, Ghana Email: *[email protected], [email protected], [email protected], [email protected], [email protected] Received 6 September 2014; revised 9 November 2014; accepted 21 November 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Kogyae Strict Nature Reserve, the only one in Ghana, was established to promote scientific re- search, particularly on how nature revitalizes itself after major disasters, and also to check the southward drift of the savannah grassland. This study presents the first comprehensive inventory of species composition and diversity of insects of the Reserve. Insects were surveyed between September 2011 and June 2012 to capture the end of the rainy season, the dry season and the peak of the wet season. Samples were taken from two sites within the Reserve, Dagomba and Oku using various sampling techniques including pitfall traps, malaise traps and sweep nets. Insect com- munities were characterized in terms of, 1) species richness estimators, 2) species richness, 3) Shannon-Weiner Index of Diversity, 4) Pielou’s evenness and 5) Bray-Curtis similarity.
    [Show full text]
  • Environmental and Social Impact Assessment Seismic Reflection Survey and Well Drilling, Umkhanyakude District Municipality, Northern Kzn
    SFG1897 v2 Public Disclosure Authorized ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT SEISMIC REFLECTION SURVEY AND WELL DRILLING, UMKHANYAKUDE DISTRICT MUNICIPALITY, NORTHERN KZN Public Disclosure Authorized Client: SANEDI–SACCCS Consultant: G.A. Botha (PhD, Pr.Sci.Nat) in association with specialist consultants; Brousse-James and Associates, WetRest, Jeffares & Green, S. Allan Council for Geoscience, P.O. Box 900, Pietermaritzburg, 3200 Council for Geoscience report: 2016-0009 June, 2016 Copyright © Council for Geoscience, 2016 Public Disclosure Authorized Public Disclosure Authorized Table of Contents Executive Summary ..................................................................................................................................... vii 1 Introduction ........................................................................................................................................... 1 2 Project description ................................................................................................................................ 4 2.1 Location and regional context ....................................................................................................... 5 2.2 2D seismic reflection survey and well drilling; project description and technical aspects ............ 7 2.2.1 Seismic survey (vibroseis) process ....................................................................................... 7 2.2.2 Well drilling ...........................................................................................................................
    [Show full text]
  • Contribution to the Lepidopterans of Visakhapatnam Region, Andhra Pradesh, India
    ANALYSIS Vol. 21, Issue 68, 2020 ANALYSIS ARTICLE ISSN 2319–5746 EISSN 2319–5754 Species Contribution to the Lepidopterans of Visakhapatnam Region, Andhra Pradesh, India Solomon Raju AJ1, Venkata Ramana K2 1Department of Environmental Sciences, Andhra University, Visakhapatnam 530 003, India 2Department of Botany, Andhra University, Visakhapatnam 530 003, India Corresponding author: A.J. Solomon Raju, Department of Environmental Sciences, Andhra University, Visakhapatnam 530 003, India Mobile: 91-9866256682, email: [email protected] Article History Received: 28 June 2020 Accepted: 02 August 2020 Published: August 2020 Citation Solomon Raju AJ, Venkata Ramana K. Contribution to the Lepidopterans of Visakhapatnam Region, Andhra Pradesh, India. Species, 2020, 21(68), 275-280 Publication License This work is licensed under a Creative Commons Attribution 4.0 International License. General Note Article is recommended to print as color digital version in recycled paper. ABSTRACT The butterflies Byblia ilithyia (Nymphalidae), Pieris canidia (Pieridae) and Azanus jesous (Lycaenidae) and the day-flying moth, Nyctemera adversata (Erebidae) are oligophagous. Previously, only B. ilithyia has been reported to be occurring in this region while the other three species are being reported for the first time from this region. The larval host plants include Jatropha gossypiifolia and Tragia involucrata for B. ilithyia, Brassica oleracea var. oleracea and B. oleracea var. botrytis for P. canidia, and Acacia auriculiformis for Azanus jesous. The nectar plants include Tragia involucrata, Euphorbia hirta and Jatropha gossypiifolia for B. ilithyia, Premna latifolia and Cleome viscosa for P. canidia, Lagascea mollis, Tridax procumbens and Digera muricata for A. jesous and Bidens pilosa for 275 N. adversata. The study recommends extensive field investigations to find out more larval plants and nectar plants for each Page lepidopteran species now reported.
    [Show full text]
  • Check-List of the Butterflies of the Kakamega Forest Nature Reserve in Western Kenya (Lepidoptera: Hesperioidea, Papilionoidea)
    Nachr. entomol. Ver. Apollo, N. F. 25 (4): 161–174 (2004) 161 Check-list of the butterflies of the Kakamega Forest Nature Reserve in western Kenya (Lepidoptera: Hesperioidea, Papilionoidea) Lars Kühne, Steve C. Collins and Wanja Kinuthia1 Lars Kühne, Museum für Naturkunde der Humboldt-Universität zu Berlin, Invalidenstraße 43, D-10115 Berlin, Germany; email: [email protected] Steve C. Collins, African Butterfly Research Institute, P.O. Box 14308, Nairobi, Kenya Dr. Wanja Kinuthia, Department of Invertebrate Zoology, National Museums of Kenya, P.O. Box 40658, Nairobi, Kenya Abstract: All species of butterflies recorded from the Kaka- list it was clear that thorough investigation of scientific mega Forest N.R. in western Kenya are listed for the first collections can produce a very sound list of the occur- time. The check-list is based mainly on the collection of ring species in a relatively short time. The information A.B.R.I. (African Butterfly Research Institute, Nairobi). Furthermore records from the collection of the National density is frequently underestimated and collection data Museum of Kenya (Nairobi), the BIOTA-project and from offers a description of species diversity within a local literature were included in this list. In total 491 species or area, in particular with reference to rapid measurement 55 % of approximately 900 Kenyan species could be veri- of biodiversity (Trueman & Cranston 1997, Danks 1998, fied for the area. 31 species were not recorded before from Trojan 2000). Kenyan territory, 9 of them were described as new since the appearance of the book by Larsen (1996). The kind of list being produced here represents an information source for the total species diversity of the Checkliste der Tagfalter des Kakamega-Waldschutzge- Kakamega forest.
    [Show full text]
  • TNP SOK 2011 Internet
    GARDEN ROUTE NATIONAL PARK : THE TSITSIKAMMA SANP ARKS SECTION STATE OF KNOWLEDGE Contributors: N. Hanekom 1, R.M. Randall 1, D. Bower, A. Riley 2 and N. Kruger 1 1 SANParks Scientific Services, Garden Route (Rondevlei Office), PO Box 176, Sedgefield, 6573 2 Knysna National Lakes Area, P.O. Box 314, Knysna, 6570 Most recent update: 10 May 2012 Disclaimer This report has been produced by SANParks to summarise information available on a specific conservation area. Production of the report, in either hard copy or electronic format, does not signify that: the referenced information necessarily reflect the views and policies of SANParks; the referenced information is either correct or accurate; SANParks retains copies of the referenced documents; SANParks will provide second parties with copies of the referenced documents. This standpoint has the premise that (i) reproduction of copywrited material is illegal, (ii) copying of unpublished reports and data produced by an external scientist without the author’s permission is unethical, and (iii) dissemination of unreviewed data or draft documentation is potentially misleading and hence illogical. This report should be cited as: Hanekom N., Randall R.M., Bower, D., Riley, A. & Kruger, N. 2012. Garden Route National Park: The Tsitsikamma Section – State of Knowledge. South African National Parks. TABLE OF CONTENTS 1. INTRODUCTION ...............................................................................................................2 2. ACCOUNT OF AREA........................................................................................................2
    [Show full text]
  • (Orthoptera, Caelifera, Acrididae) on the Subfamily Level Using Molecular Markers
    e-ISSN 1734-9168 Folia Biologica (Kraków), vol. 67 (2019), No 3 http://www.isez.pan.krakow.pl/en/folia-biologica.html https://doi.org/10.3409/fb_67-3.12 The Evaluation of Genetic Relationships within Acridid Grasshoppers (Orthoptera, Caelifera, Acrididae) on the Subfamily Level Using Molecular Markers Igor SUKHIKH , Kirill USTYANTSEV , Alexander BUGROV, Michael SERGEEV, Victor FET, and Alexander BLINOV Accepted August 20, 2019 Published online September 11, 2019 Issue online September 30, 2019 Original article SUKHIKH I., USTYANTSEV K., BUGROV A., SERGEEV M., FET V., BLINOV A. 2019. The evaluation of genetic relationships within Acridid grasshoppers (Orthoptera, Caelifera, Acrididae) on the subfamily level using molecular markers. Folia Biologica (Kraków) 67: 119-126. Over the last few decades, molecular markers have been extensively used to study phylogeny, population dynamics, and genome mapping in insects and other taxa. Phylogenetic methods using DNA markers are inexpensive, fast and simple to use, and may help greatly to resolve phylogenetic relationships in groups with problematic taxonomy. However, different markers have various levels of phylogenetic resolution, and it’s important to choose the right set of molecular markers for a studied taxonomy level. Acrididae is the most diverse family of grasshoppers. Many attempts to resolve the phylogenetic relationships within it did not result in a clear picture, partially because of the limited number of molecular markers used. We have tested a phylogenetic resolution of three sets of the most commonly utilized mitochondrial molecular markers available for Acrididae sequences in the database: (i) complete protein-coding mitochondrial sequences, (ii) concatenated mitochondrial genes COI, COII, and Cytb, and (iii) concatenated mitochondrial genes COI and COII.
    [Show full text]
  • Study on the Consumption Index and Growth Rate of Acrotylus
    Journal of Entomology and Zoology Studies 2016; 4(4): 407-412 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Study on the Consumption Index and Growth JEZS 2016; 4(7): 407-412 © 2016 JEZS Rate of Acrotylus humbertianus Saussure on Received: 17-05-2016 Accepted: 18-06-2016 Different Diet under Scanning Electron Muhammad Rafique Pitafi Microscope Department of Zoology, University of Sindh, Jamshoro, Pakistan Muhammad Rafique Pitafi, Riffat Sultana, Muhammad Saeed Wagan, Muhammad Kashif Sammon Riffat Sultana Department of Zoology, University of Sindh, Jamshoro, Abstract Pakistan Acrotylus humbertianus Saussure is a major agriculture pest in Sindh. This species consumes a wide variety of food plants from different families. In order to test it preference on different diets a conformity Muhammad Saeed Wagan chemical analysis has been done under Scanning Electron Microscope (SEM) for the first time. The Department of Zoology, maximum consumption index (CI) of all stages A. humbertianus on cabbage was recorded 0.042-0.78 University of Sindh, Jamshoro, mg/day followed by 0.2-0.42mg/d on sugarcane and 0.019-0.43mg/d on maize, while least CI was Pakistan calculated i-e 0.016-0.39 mg/day on mix diet. Beside this, growth rate (GR) of A. humbertianus on these food plants indicates that (GR) was highest on sugarcane i-e 0.016-0.25mg/d followed by 0.02 -0.62mg/d Muhammad Kashif Sammon and 0.013-0.35mg/d on cabbage and maize respectively, while it was 0.011-0.32 mg/d on mixed diet. The Center for Pure and Applied first and second instars of A.
    [Show full text]
  • Biodiversiteitsopname Biodiversity Assessment
    Biodiversiteitsopname Biodiversity Assessment Bome - Trees (77 sp) Veldblomme - Flowering veld plants (65 sp) Grasse - Grasses (41 sp) Naaldekokers - Dragonflies (46 sp) Skoenlappers - Butterflies (81 sp) Motte - Moths (95 sp) Nog insekte - Other insects (102 sp) Spinnekoppe - Spiders (53 sp) Paddas - Frogs (14 sp) Reptiele - Reptiles (22 sp) Voëls - Birds (185 sp) Soogdiere - Mammals (23 sp) 4de uitgawe: Jan 2015 Plante/Plants Diere/Animals (24 000 spp in SA) Anthropoda Chordata (>150 000 spp in SA) Arachnida Insecta (spinnekoppe/spiders, 2020 spp in SA) Neuroptera – mayflies, lacewings, ant-lions (385 spp in SA) Odonata – dragonflies (164 spp in SA) Blattodea – cockroaches (240 spp in SA) Mantodea – mantids (185 spp in SA) Isoptera – termites (200 spp in SA) Orthoptera – grasshoppers, stick insects (900 spp in SA) Phthiraptera – lice (1150 spp in SA) Hemiptera – bugs (>3500 spp in SA) Coleoptera – beetles (18 000 spp in SA) Lepidoptera – butterflies (794 spp in SA), moths (5200 spp in SA) Diptera – flies (4800 spp in SA) Siphonoptera – fleas (100 spp in SA) Hymenoptera – ants, bees, wasps (>6000 spp in SA) Trichoptera – caddisflies (195 spp in SA) Thysanoptera – thrips (230 spp in SA) Vertebrata Tunicata (sea creatures, etc) Fish Amphibia Reptiles Birds Mammals (115 spp in SA) (255 spp in SA) (858 spp in SA) (244 spp in SA) Bome – Trees (n=77) Koffiebauhinia - Bauhinia petersiana - Dainty bauhinia Rooi-ivoor - Berchemia zeyheri - Red ivory Witgat - Boscia albitrunca - Shepherd’s tree Bergvaalbos - Brachylaena rotundata - Mountain silver-oak
    [Show full text]
  • Grasshoppers and Locusts (Orthoptera: Caelifera) from the Palestinian Territories at the Palestine Museum of Natural History
    Zoology and Ecology ISSN: 2165-8005 (Print) 2165-8013 (Online) Journal homepage: http://www.tandfonline.com/loi/tzec20 Grasshoppers and locusts (Orthoptera: Caelifera) from the Palestinian territories at the Palestine Museum of Natural History Mohammad Abusarhan, Zuhair S. Amr, Manal Ghattas, Elias N. Handal & Mazin B. Qumsiyeh To cite this article: Mohammad Abusarhan, Zuhair S. Amr, Manal Ghattas, Elias N. Handal & Mazin B. Qumsiyeh (2017): Grasshoppers and locusts (Orthoptera: Caelifera) from the Palestinian territories at the Palestine Museum of Natural History, Zoology and Ecology, DOI: 10.1080/21658005.2017.1313807 To link to this article: http://dx.doi.org/10.1080/21658005.2017.1313807 Published online: 26 Apr 2017. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tzec20 Download by: [Bethlehem University] Date: 26 April 2017, At: 04:32 ZOOLOGY AND ECOLOGY, 2017 https://doi.org/10.1080/21658005.2017.1313807 Grasshoppers and locusts (Orthoptera: Caelifera) from the Palestinian territories at the Palestine Museum of Natural History Mohammad Abusarhana, Zuhair S. Amrb, Manal Ghattasa, Elias N. Handala and Mazin B. Qumsiyeha aPalestine Museum of Natural History, Bethlehem University, Bethlehem, Palestine; bDepartment of Biology, Jordan University of Science and Technology, Irbid, Jordan ABSTRACT ARTICLE HISTORY We report on the collection of grasshoppers and locusts from the Occupied Palestinian Received 25 November 2016 Territories (OPT) studied at the nascent Palestine Museum of Natural History. Three hundred Accepted 28 March 2017 and forty specimens were collected during the 2013–2016 period.
    [Show full text]
  • 392 Genus Actizera Chapman
    AFROTROPICAL BUTTERFLIES 17th edition (2018). MARK C. WILLIAMS. http://www.lepsocafrica.org/?p=publications&s=atb Genus Actizera Chapman, 1910 Transactions of the Entomological Society of London 1910: 483 (479-497). Type-species: Lycaena atrigemmata Butler, by monotypy. The genus Actizera belongs to the Family Lycaenidae Leach, 1815; Subfamily Polyommatinae Swainson, 1827; Tribe Polyommatini Swainson, 1827; Subtribe incertae sedis. The other genera in the Subtribe incertae sedis in the Afrotropical Region are Cupidopsis, Pseudonacaduba, Catochrysops, Lampides, Uranothauma, Cacyreus, Harpendyreus, Leptotes, Cyclyrius, Tuxentius, Tarucus, Zintha, Zizeeria, Zizina, Zizula, Brephidium, Oraidium, Azanus, Eicochrysops, Euchrysops, Orachrysops, Lepidochrysops, Thermoniphas and Oboronia. Actizera (Blues) is a purely Afrotropical genus containing four species. *Actizera atrigemmata (Butler, 1878) Lycaena atrigemmata Butler, 1878. Annals and Magazine of Natural History (5) 2: 290 (283-297). Actizera atrigemmata Butler, 1878. d’Abrera, 2009: 816. Type locality: Madagascar: “Fianarantsoa”. Distribution: Madagascar. Specific localities: Madagascar – Fianarantsoa (TL). Habitat: Transformed grassland (Lees et al., 2003). Early stages: Nothing published. Larval food: Nothing published. Note: Larsen (2005a) suggests that this taxon may be a subspecies of Actizera lucida. *Actizera drucei (Bethune-Baker, 1906) Zizera [sic] drucei Bethune-Baker, 1906. Annals and Magazine of Natural History (7) 17: 109 (104-110). Actizera lucida drucei (Bethune-Baker, 1906). Stempffer, 1967: 262-63. Synonym of Actizera lucida (Trimen, 1883). Ackery et al., 1995. Actizera drucei (Bethune-Baker, 1906). Lees et al., 2003. stat. rev. Type locality: Madagascar: “Madagascar”. Distribution: Madagascar. Specific localities: Madagascar – Sirabe (probably Antsirabe) (Lees et al., 2003). Habitat: Transformed grassland (Lees et al., 2003). Early stages: Nothing published. Larval food: Nothing published. Note: Not listed by d’Abrera, 2009: 816.
    [Show full text]
  • Arise by Chance As the Result of Mutation. They Therefore Suggest
    THE EVOLUTION OF DOMINANCE UNDER DISRUPTIVE SELECTION C. A. CLARKE and P. Ni. SHEPPARD Department of Medicine and Department of Zoology, University of Liverpool Received6.iii.59 1.INTRODUCTION INa paper on the effects of disruptive selection, Mather (1955) pointed out that if there are two optimum values for a character and all others are less advantageous or disadvantageous there will be disruptive selection which can lead to the evolution of a polymorphism. Sheppard (1958) argued that where such selection is effective and the change from one optimum value to the other is switched by a single pair of allelomorphs there will be three genotypes but only two advantageous phenotypes. Consequently if dominance were absent initially it would be evolved as a result of the disruptive selection, the heterozygote and one of the homozygotes both coming to resemble one of the two optimum phenotypes (see Ford, 1955, on Tripharna comes). Thoday (1959) has shown by means of an artificial selection experiment that, even when a character is, at the beginning, controlled polygenically (sternopleural chaeta-number in Drosophila) and there is 50 per cent. gene exchange between the "high" and "low" selected sub-popu- lations, a polymorphism can evolve. The most fully understood examples of disruptive selection (other than sex) are provided by instances of Batesian Mimicry, where there are a number of distinct warningly coloured species, acting as models, which are mimicked by the polymorphic forms of a single more edible species. Fisher and Ford (see Ford, 1953) have argued that a suffi- ciently good resemblance between mimic and model is not likely to arise by chance as the result of mutation.
    [Show full text]