Phylogenetic Relationships Among the Temperate Bamboos (Poaceae: Bambusoideae) with an Emphasis on Arundinaria and Allies Jimmy K

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic Relationships Among the Temperate Bamboos (Poaceae: Bambusoideae) with an Emphasis on Arundinaria and Allies Jimmy K Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2008 Phylogenetic relationships among the temperate bamboos (Poaceae: Bambusoideae) with an emphasis on Arundinaria and allies Jimmy K. Triplett Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons Recommended Citation Triplett, Jimmy K., "Phylogenetic relationships among the temperate bamboos (Poaceae: Bambusoideae) with an emphasis on Arundinaria and allies" (2008). Retrospective Theses and Dissertations. 15723. https://lib.dr.iastate.edu/rtd/15723 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Phylogenetic relationships among the temperate bamboos (Poaceae: Bambusoideae) with an emphasis on Arundinaria and allies by Jimmy K. Triplett A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Botany (Systematics and Evolution) Program of Study Committee: Lynn G. Clark, Major Professor Gregory W. Courtney John D. Nason Robert S. Wallace Jonathan F. Wendel Iowa State University Ames, Iowa 2008 Copyright © Jimmy K. Triplett 2008. All rights reserved 3316248 3316248 2008 ii TABLE OF CONTENTS LIST OF FIGURES iv LIST OF TABLES viii ABSTRACT x CHAPTER 1. OVERVIEW 1 Organization of the Thesis 1 Literature Review 2 Literature Cited 10 CHAPTER 2. PHYLOGENY OF THE TEMPERATE WOODY BAMBOOS (POACEAE: BAMBUSOIDEAE) WITH AN EMPHASIS ON ARUNDINARIA AND ALLIES. A manuscript to be submitted to Systematic Botany. Jimmy K. Triplett and Lynn G. Clark 15 Abstract 15 Introduction 16 Materials and Methods 20 Results 26 Discussion 32 Acknowledgements 49 Literature Cited 49 Appendix 1 56 CHAPTER 3. PHYLOGENETIC RELATIONSHIPS WITHIN ARUNDINARIA (POACEAE: BAMBUSOIDEAE) IN NORTH AMERICA. A manuscript to be submitted to Evolution or American Journal of Botany. Jimmy Triplett, Kimberly A. Oltrogge, and Lynn G. Clark 59 Abstract 59 Introduction 60 Materials and Methods 66 Results 74 Discussion 86 iii Acknowledgements 94 Literature Cited 95 CHAPTER 4. HILL CANE (ARUNDINARIA APPALACHIANA), A NEW SPECIES OF BAMBOO (POACEAE: BAMBUSOIDEAE) FROM THE SOUTHERN APPALACHIAN MOUNTAINS. A version of a manuscript published in SIDA. Jimmy Triplett, Alan S. Weakley and Lynn G. Clark 104 Abstract 104 Introduction 104 Materials and Methods 108 Results and Discussion 109 Taxonomic Treatment 115 Acknowledgements 122 Literature Cited 123 CHAPTER 5. RETICULATE EVOLUTION IN THE ARUNDINARIA CLADE (POACEAE: BAMBUSOIDEAE). A manuscript to be submitted to New Phytologist. Jimmy Triplett and Lynn G. Clark 127 Abstract 127 Introduction 128 Materials and Methods 133 Results 139 Discussion 158 Acknowledgements 178 Literature Cited 179 Appendix 1 187 CHAPTER 6. GENERAL CONCLUSIONS 190 General Conclusions 190 Future Directions 192 Literature Cited 194 ACKNOWLEDGEMENTS 195 iv LIST OF FIGURES CHAPTER 2. Figure 1. Strict consensus of 768 equally most parsimonious trees based on the 4-region dataset (rps16-trnQ, trnC-rpoB, trnD-trnT, trnT-trnL). Numbers above lines indicate bootstrap values (MP/ML). Numbers below the line indicate posterior probabilities from the Bayesian analysis. 28 Figure 2. Strict consensus of 6 equally most parsimonious trees based on the 12-region dataset. Numbers above lines indicate bootstrap values (MP/ML), and numbers below lines indicate posterior probabilities from the Bayesian analysis. 31 CHAPTER 3. Figure 1. Map of southeastern North America showing geographical distribution of Arundinaria species. Black triangles = A. gigantea; open circles = A. appalachiana; black circles = A. tecta; x = putative hybrids. 67 Figure 2. cp DNA haplotype phylogeny. Single most parsimonious tree (Length = 9, CI = 1.0, RI = 1.0) resulting from the analysis of trnTL and including indels recoded as binary present/absent characters. Bootstrap values greater than 50% are given above the branches. Haplotype accessions are summarized in Table 2. 77 Figure 3. A. Genetic relationships among 83 populations of Arundinaria inferred from AFLP data using a neighbor-joining analysis of Nei-Li distances. Tree rooted with Sasa. Parenthetical codes designate trnTL haplotypes. Numbers above branches indicate bootstrap support values (>70%). B. Neighbor-joining phylogram, excluding hybrid accessions. (Sasa removed for clarity). Bootstrap values are indicated for major clusters only. 79 Figure 4. Neighbor-net of AFLP data based on Nei-Li distances, highlighting the positions of putative hybrid accessions relative to species of Arundinaria. cp DNA haplotypes of the putative hybrids are indicated in parentheses. 81 Figure 5. Two-dimensional ordination of accessions representing Arundinaria gigantea (G), A. appalachiana (A), A. tecta (T), and putative hybrids (indicated by v voucher numbers). Ordination was conducted using nonmetric multidimensional scaling on a pairwise distance matrix calculated using the Nei-Li dissimilarity coefficient. Final stress was reached after 50 iterations. Final stress = 1.169095. 82 Figure 6. Contribution of amplified fragment length polymorphism (AFLP) fragments to Arundinaria species and hybrids. LETTER CODES – G: present only in A. gigantea; T: present only in A. tecta; A: present only in A. appalachiana; a/t: present in both A. appalachiana and A. tecta COLOR CODES – Black: present in all three species; White: present only in A. gigantea; Grey: present in A. appalachiana and/or A. tecta. 83 Figure 7. Strict consensus of 7385 most parsimonious trees obtained from the AFLP dataset, excluding putative hybrid accessions. Tree length (L) 655, CI = 0.5061, RI = 0.9364. Parenthetical codes designate trnTL haplotypes. Bootstrap values greater than 70% are given above the branches. 85 CHAPTER 4. Figure 1. Distribution of Arundinaria appalachiana in the southeastern United States. Filled circles based on documented specimens; open circles based on unvouchered sight records. 111 Figure 2. Arundinaria appalachiana. A. Top knot of new shoot. B. Foliage leaf complement from midculm node. C. Foliage leaf, showing apex of sheath, fimbriae, pseudopetiole, and base of blade. D. Detail of abaxial surface of blade showing tessellation and pilose vestiture. E. Culm leaf at midculm node. F. Branch complement showing compressed basal internodes and reiterative secondary branch (arrow). Scale bar = 1 cm unless otherwise noted. All drawings based on Triplett and Ozaki 99. (Illustrations by J. Triplett) 116 Figure 3. Arundinaria appalachiana. A. Partially dissected spikelet showing two florets. B. Synflorescence with five spikelets. Scale bar = 1 cm. Drawings based on Ahles and Leisner 15147. (Illustrations by J. Triplett) 117 vi Figures 4 and 5. Arundinaria appalachiana. 4. Habit, in Rhea Co., Tennessee. 5. Close- up of primary branch with compressed basal internodes, Dekalb Co., Alabama. (Photos by J. Triplett) 118 CHAPTER 5. Figure 1. Strict consensus of 6 equally most parsimonious trees based on the 4-region dataset (rps16-trnQ, trnC-rpoB, trnD-trnT, trnT-trnL). Numbers above lines indicate bootstrap values (MP/ML). Numbers below the line indicate posterior probabilities from the Bayesian analysis. 141 Figure 2. A. Genetic relationships among 52 accessions of the Arundinaria Clade inferred from AFLP data using a neighbor-joining analysis of Nei-Li distances. Tree rooted with Phyllostachys. Numbers above branches indicate bootstrap support values (>65%). B. Summary of the UPGMA dendrogram for the same dataset. Clusters that received bootstrap support over >70% are indicated by asterisks. 143 Figure 3. Two-dimensional ordination of accessions representing the Arundinaria Clade. Putative hybrid associations are indicated between parent genera (circled) and nothogenera (indicated by arrows). See Fig. 1 for species names (by voucher number). Ordination was conducted using nonmetric multidimensional scaling on a pairwise distance matrix calculated using the Nei-Li dissimilarity coefficient. Final stress was reached after 5 iterations. Final stress = 16.059440. 145 Figure 4. A. Summary phylogram of genetic relationships among 248 accessions of the Arundinaria Clade inferred from AFLP data using a neighbor-joining analysis of Nei-Li distances. Tree rooted with Phyllostachys. B. Summary UPGMA dendrogram for the same dataset. Major clusters that received bootstrap support over >70% are indicated by asterisks. 147 Figure 5. A and B. Mid-point rooted phylogram of genetic relationships among 248 accessions of the Arundinaria Clade inferred from AFLP data using a neighbor- vii joining analysis of Nei-Li distances. Numbers above branches indicate bootstrap support values (>70%). 148-149 Figure 6. Contribution of amplified fragment length polymorphism (AFLP) fragments to putative hybrid taxa. Putative parents are indicated under the name of the hybrid. LETTER CODES – A, B: proportion of bands diagnostic of parent A or B, respectively. SHADING – White: parent A; Black: parent B; Light Grey (upper left): bands present in both parents and the hybrid; Dark Grey: bands unique to the hybrid. 152 Figure 7. A. Neighbor-net of AFLP data based on Nei-Li distances, highlighting the positions of Pseudosasa japonica accessions relative to species
Recommended publications
  • Flora of China 22: 132–135. 2006. 26. GELIDOCALAMUS T. H. Wen, J
    Flora of China 22: 132–135. 2006. 26. GELIDOCALAMUS T. H. Wen, J. Bamboo Res. 1(1): 21. 1982. 短枝竹属 duan zhi zhu shu Zhu Zhengde (朱政德 Chu Cheng-de); Chris Stapleton Shrubby bamboos. Rhizomes leptomorph, with running underground stems. Culms pluricaespitose, erect; internodes terete; nodes weakly prominent. Branches 7–12 per node, rarely more than 20, slender, without secondary branching. Culm sheaths persistent, much shorter than internodes; auricles absent or conspicuous; ligule arched or truncate, short; blade broadly conical or narrowly lanceolate. Leaves usually solitary on each branch; sheaths narrow, closely appressed to branchlets and inconspicuous, usu- ally solitary or rarely 2 or more; blade lanceolate or broadly lanceolate to elliptical, short transverse veins distinct. Inflorescence paniculate, large, open, terminal to leafy branches. Spikelets mostly light green, small, 3–5-flowered; pedicel slender. Rachilla com- pressed. Glumes 2; lemma compressed laterally, ridged abaxially; palea 2-keeled, truncate at apex; lodicules 3. Stamens 3; filaments free. Stigmas 2, or rarely 1, plumose. Caryopsis globose, beaked. New shoots autumn–winter. ● Nine species: China. In addition to the species treated below, Gelidocalamus dongdingensis C. F. Huang & C. D. Dai (Wuyi Sci. J. 8: 173. 1991) was described from Fujian (Wuyi Shan), but no specimens have been seen by the authors and this taxon must be left as a doubtful species. Gelidocalamus velutinus W. T. Lin (Acta Phytotax. Sin. 26: 233. 1988) was described from Guangdong (Yunan). This plant has 14–16 branches per node and distinctive, oblong culm sheath auricles, and looks more like a species of Pleioblastus than a Gelidocalamus. 1a.
    [Show full text]
  • Understory Community Shifts in Response to Repeated Fire and Fire Surrogate Treatments in the Southern Appalachian Mountains, USA Emily C
    Oakman et al. Fire Ecology (2021) 17:7 Fire Ecology https://doi.org/10.1186/s42408-021-00097-1 ORIGINAL RESEARCH Open Access Understory community shifts in response to repeated fire and fire surrogate treatments in the southern Appalachian Mountains, USA Emily C. Oakman1, Donald L. Hagan1* , Thomas A. Waldrop2 and Kyle Barrett1 Abstract Background: Decades of fire exclusion in the southern Appalachian Mountains, USA, has led to changing forest structure and species composition over time. Forest managers and scientists recognize this and are implementing silvicultural treatments to restore forest communities. In this study, conducted at the southern Appalachian Fire and Fire Surrogate Study site in Green River Game Land, North Carolina, USA, we assessed the effects of four fuel- reduction methods (burned four times, B; mechanical treatment two times, M; mechanical treatment two times plus burned four times, MB; and control, C) on the changes in understory community from pre-treatment to post- treatment years (2001 to 2016). We used non-metric multidimensional scaling (NMDS) to determine overall understory community heterogeneity, agglomerative hierarchical cluster analyses (AHCA) to determine finer-scale changes in understory community structure, and indicator species analyses (ISA) to identify the species that were associated with the different fuel reduction treatments over time. Results: The NMDS ordination showed little separation between treatment polygons. The AHCA resulted in two main categories of understory species responses based on how treatment plots clustered together: (1) species apparently unaffected by the treatments (i.e., no treatment pattern present within cluster); and (2) species that responded to B, M, or MB treatments (i.e., pattern of treatment plots present within cluster).
    [Show full text]
  • DPR Journal 2016 Corrected Final.Pmd
    Bul. Dept. Pl. Res. No. 38 (A Scientific Publication) Government of Nepal Ministry of Forests and Soil Conservation Department of Plant Resources Thapathali, Kathmandu, Nepal 2016 ISSN 1995 - 8579 Bulletin of Department of Plant Resources No. 38 PLANT RESOURCES Government of Nepal Ministry of Forests and Soil Conservation Department of Plant Resources Thapathali, Kathmandu, Nepal 2016 Advisory Board Mr. Rajdev Prasad Yadav Ms. Sushma Upadhyaya Mr. Sanjeev Kumar Rai Managing Editor Sudhita Basukala Editorial Board Prof. Dr. Dharma Raj Dangol Dr. Nirmala Joshi Ms. Keshari Maiya Rajkarnikar Ms. Jyoti Joshi Bhatta Ms. Usha Tandukar Ms. Shiwani Khadgi Mr. Laxman Jha Ms. Ribita Tamrakar No. of Copies: 500 Cover Photo: Hypericum cordifolium and Bistorta milletioides (Dr. Keshab Raj Rajbhandari) Silene helleboriflora (Ganga Datt Bhatt), Potentilla makaluensis (Dr. Hiroshi Ikeda) Date of Publication: April 2016 © All rights reserved Department of Plant Resources (DPR) Thapathali, Kathmandu, Nepal Tel: 977-1-4251160, 4251161, 4268246 E-mail: [email protected] Citation: Name of the author, year of publication. Title of the paper, Bul. Dept. Pl. Res. N. 38, N. of pages, Department of Plant Resources, Kathmandu, Nepal. ISSN: 1995-8579 Published By: Mr. B.K. Khakurel Publicity and Documentation Section Dr. K.R. Bhattarai Department of Plant Resources (DPR), Kathmandu,Ms. N. Nepal. Joshi Dr. M.N. Subedi Reviewers: Dr. Anjana Singh Ms. Jyoti Joshi Bhatt Prof. Dr. Ram Prashad Chaudhary Mr. Baidhya Nath Mahato Dr. Keshab Raj Rajbhandari Ms. Rose Shrestha Dr. Bijaya Pant Dr. Krishna Kumar Shrestha Ms. Shushma Upadhyaya Dr. Bharat Babu Shrestha Dr. Mahesh Kumar Adhikari Dr. Sundar Man Shrestha Dr.
    [Show full text]
  • MANAGING the TOP FIVE INVASIVE PLANTS in CALVERT COUNTY 1. What Are the Top 5 Invasive Plants in Calvert County? Phragmites
    MANAGING THE TOP FIVE INVASIVE PLANTS IN CALVERT COUNTY 1. What are the top 5 invasive plants in Calvert County? Phragmites, English Ivy, Kudzu, Bamboo and Autumn Olive. Phragmites common reed (Phragmites australis) Accidentally imported in ship ballast, European phragmites has spread up and down the East Coast for centuries, displacing millions of acres of wetland plants, including native phragmites. The Maryland Eastern Shore may harbor our only remaining native phragmites (Phragmites australis ssp. americanus.) Whereas native phragmites grows in sparse clumps and decomposes readily, European phragmites forms impenetrable monocultures more than 15-feet tall composed of both old and new canes. Subsequently, infested wetlands become dry land, wildlife habitat is destroyed, and a fire hazard created. Roots penetrate several feet deep and extend out 10 feet a season. Wind and water, carrying seed and rhizome/root fragments, have spread phragmites to tidal and nontidal wetland and dry lands, including ditches. It is extremely difficult to combat. English ivy (Hedera helix) Eurasian, not English, in origin, this evergreen vine threatens habitats at all heights. At ground level, its leaves shade out seedlings and herbs, forming acres of monoculture and attracting rodents. In trees, it engulfs branches, shading and slowly killing them. Its weight topples trees in wind, snow or icy conditions. It serves as a reservoir for bacterial leaf scorch, a serious disease of trees including maples, oaks and elms. Vines mature in trees, then flower and bear toxic berries which induce birds to vomit them out, ensuring spread. Any rooted piece can resprout. Kudzu (Pueraria montana var. lobata) “The vine that ate the South” was promoted as livestock forage, an ornamental, and for erosion control until the 1950s.
    [Show full text]
  • Changes in Plant Functional Groups During Secondary Succession in a Tropical Montane Rain Forest
    Article Changes in Plant Functional Groups during Secondary Succession in a Tropical Montane Rain Forest Kexin Fan 1,2, Jing Tao 1,3, Lipeng Zang 1,2, Jie Yao 1,2, Jihong Huang 1,2, Xinghui Lu 1,2, Yi Ding 1,2, Yue Xu 1,2 and Runguo Zang 1,2,* 1 Key Laboratory of Forest Ecology and Environment, State Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China; [email protected] (K.F.); [email protected] (J.T.); [email protected] (L.Z.); [email protected] (J.Y.); [email protected] (J.H.); [email protected] (X.L.); [email protected] (Y.D.); [email protected] (Y.X.) 2 Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China 3 Yunnan Institute of Forestry Inventory and Planning, Kunming 650051, China * Correspondence: [email protected]; Tel.: +86-010-6288-9546 Received: 18 October 2019; Accepted: 10 December 2019; Published: 12 December 2019 Abstract: Aggregating diverse plant species into a few functional groups based on functional traits provides new insights for promoting landscape planning and conserving biodiversity in species-diverse regions. Ecophysiological traits are the basis of the functioning of an ecosystem. However, studies related to the identification of functional groups based on plant ecophysiological traits in tropical forests are still scarce because of the inherent difficulties in measuring them. In this study, we measured five ecophysiological traits: net photosynthetic capacity (Amax), maximum stomatal conductance (gmax), water use efficiency (WUE), transpiration rate (Trmmol), and specific leaf areas (SLA) for 87 plant species dominant in a chronosequence of secondary succession, using four time periods (5 year-primary, 15 year-early, and 40 year-middle successional stages after clear cutting and old growth) in the tropical montane rainforest on Hainan Island, China.
    [Show full text]
  • The Genera of Bambusoideae (Gramineae) in the Southeastern United States Gordon C
    Eastern Illinois University The Keep Faculty Research & Creative Activity Biological Sciences January 1988 The genera of Bambusoideae (Gramineae) in the southeastern United States Gordon C. Tucker Eastern Illinois University, [email protected] Follow this and additional works at: http://thekeep.eiu.edu/bio_fac Part of the Biology Commons Recommended Citation Tucker, Gordon C., "The eg nera of Bambusoideae (Gramineae) in the southeastern United States" (1988). Faculty Research & Creative Activity. 181. http://thekeep.eiu.edu/bio_fac/181 This Article is brought to you for free and open access by the Biological Sciences at The Keep. It has been accepted for inclusion in Faculty Research & Creative Activity by an authorized administrator of The Keep. For more information, please contact [email protected]. TUCKER, BAMBUSOIDEAE 239 THE GENERA OF BAMBUSOIDEAE (GRAMINEAE) IN THE SOUTHEASTERN UNITED STATESu GoRDON C. T ucKER3 Subfamily BAMBUSOIDEAE Ascherson & Graebner, Synop. Mitteleurop. Fl. 2: 769. 1902. Perennial or annual herbs or woody plants of tropical or temperate forests and wetlands. Rhizomes present or lacking. Stems erect or decumbent (some­ times rooting at the lower nodes); nodes glabrous, pubescent, or puberulent. Leaves several to many, glabrous to sparsely pubescent (microhairs bicellular); leaf sheaths about as long as the blades, open for over tf2 their length, glabrous; ligules wider than long, entire or fimbriate; blades petiolate or sessile, elliptic to linear, acute to acuminate, the primary veins parallel to-or forming an angle of 5-10• wi th-the midvein, transverse veinlets numerous, usually con­ spicuous, giving leaf surface a tessellate appearance; chlorenchyma not radiate (i.e., non-kranz; photosynthetic pathway C.,).
    [Show full text]
  • American Bamboo Society
    $5.00 AMERICAN BAMBOO SOCIETY Bamboo Species Source List No. 34 Spring 2014 This is the thirty-fourth year that the American Bamboo Several existing cultivar names are not fully in accord with Society (ABS) has compiled a Source List of bamboo plants requirements for naming cultivars. In the interests of and products. The List includes more than 510 kinds nomenclature stability, conflicts such as these are overlooked (species, subspecies, varieties, and cultivars) of bamboo to allow continued use of familiar names rather than the available in the US and Canada, and many bamboo-related creation of new ones. The Source List editors reserve the products. right to continue recognizing widely used names that may not be fully in accord with the International Code of The ABS produces the Source List as a public service. It is Nomenclature for Cultivated Plants (ICNCP) and to published on the ABS website: www.Bamboo.org . Copies are recognize identical cultivar names in different species of the sent to all ABS members and can also be ordered from ABS same genus as long as the species is stated. for $5.00 postpaid. Some ABS chapters and listed vendors also sell the Source List. Please see page 3 for ordering Many new bamboo cultivars still require naming, description, information and pages 50 and following for more information and formal publication. Growers with new cultivars should about the American Bamboo Society, its chapters, and consider publishing articles in the ABS magazine, membership application. “Bamboo.” Among other requirements, keep in mind that new cultivars must satisfy three criteria: distinctiveness, The vendor sources for plants, products, and services are uniformity, and stability.
    [Show full text]
  • Indocalamus Latifolius) Under Heavy Metal Stress
    Hindawi e Scientific World Journal Volume 2018, Article ID 1219364, 6 pages https://doi.org/10.1155/2018/1219364 Research Article Growth Responses and Photosynthetic Indices of Bamboo Plant (Indocalamus latifolius) under Heavy Metal Stress Abolghassem Emamverdian ,1,2 Yulong Ding ,1,3 Farzad Mokhberdoran ,4 and Yinfeng Xie1,2 1 Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China 2College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China 3Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China 4Department of Agronomy and Plant Breeding, Faculty of Agriculture, Islamic Azad University, Mashhad Branch, Mashhad 94531, Iran Correspondence should be addressed to Yulong Ding; [email protected] Received 17 May 2018; Accepted 8 July 2018; Published 15 July 2018 Academic Editor: Zhenli He Copyright © 2018 Abolghassem Emamverdian et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Investigating factors involved in the alleviation of the toxic efects of heavy metals (HMs) on plants is regarded as one of the important research concerns in the environmental feld. Te southern regions of China are severely impacted by human-induced heavy metal (HM) contamination, which poses an impediment to growth and productivity of bamboo (Indocalamus latifolius) plants. Tis necessitates the investigation of the efects of HMs on growth and physiological properties of bamboo. Terefore, the aim of the study was to evaluate some gas exchange and growth parameters in two-year-old bamboo species under HMs stress.
    [Show full text]
  • Ornamental Grasses for the Midsouth Landscape
    Ornamental Grasses for the Midsouth Landscape Ornamental grasses with their variety of form, may seem similar, grasses vary greatly, ranging from cool color, texture, and size add diversity and dimension to season to warm season grasses, from woody to herbaceous, a landscape. Not many other groups of plants can boast and from annuals to long-lived perennials. attractiveness during practically all seasons. The only time This variation has resulted in five recognized they could be considered not to contribute to the beauty of subfamilies within Poaceae. They are Arundinoideae, the landscape is the few weeks in the early spring between a unique mix of woody and herbaceous grass species; cutting back the old growth of the warm-season grasses Bambusoideae, the bamboos; Chloridoideae, warm- until the sprouting of new growth. From their emergence season herbaceous grasses; Panicoideae, also warm-season in the spring through winter, warm-season ornamental herbaceous grasses; and Pooideae, a cool-season subfamily. grasses add drama, grace, and motion to the landscape Their habitats also vary. Grasses are found across the unlike any other plants. globe, including in Antarctica. They have a strong presence One of the unique and desirable contributions in prairies, like those in the Great Plains, and savannas, like ornamental grasses make to the landscape is their sound. those in southern Africa. It is important to recognize these Anyone who has ever been in a pine forest on a windy day natural characteristics when using grasses for ornament, is aware of the ethereal music of wind against pine foliage. since they determine adaptability and management within The effect varies with the strength of the wind and the a landscape or region, as well as invasive potential.
    [Show full text]
  • Forestry Department ON
    Forestry Department Food and Agriculture Organization of the United Nations International Network for Bamboo and Rattan (INBAR) GLOBAL FOREST RESOURCES ASSESSMENT 2005 INDIA COUNTRY REPORT ON BAMBOO RESOURCES NEW DELHI, MAY 2005 Global Forest Resources Assessment 2005 Working Paper 118 1 Rome, 2006 FRA WP 118 Country Report on Bamboo Resources India TABLE OF CONTENTS GENERAL GUIDELINES --------------------------------------------------------------------------- 3 GENERAL INFORMATION ----------------------------------------------------------------------- 3 1 TABLE T1 – EXTENT OF BAMBOO FORESTS----------------------------------------- 3 1.1 GBRA 2005 CATEGORIES AND DEFINITIONS------------------------------------------------------- 3 1.2 NATIONAL DATA ON BAMBOO RESOURCES -------------------------------------------------------- 3 1.2.1 Data sources ------------------------------------------------------------------------------------------------------------3 1.2.2 Classification and definitions --------------------------------------------------------------------------------------------3 1.2.3 Original data------------------------------------------------------------------------------------------------------------3 1.3 DATA FOR NATIONAL REPORTING TABLE T1------------------------------------------------------ 3 1.4 COMMENTS TO NATIONAL REPORTING TABLE T1 ------------------------------------------------ 3 2 TABLE T2 – OWNERSHIP OF BAMBOO FORESTS ---------------------------------- 3 2.1 GBRA 2005 CATEGORIES AND DEFINITIONS-------------------------------------------------------
    [Show full text]
  • Mistaken Identity? Invasive Plants and Their Native Look-Alikes: an Identification Guide for the Mid-Atlantic
    Mistaken Identity ? Invasive Plants and their Native Look-alikes an Identification Guide for the Mid-Atlantic Matthew Sarver Amanda Treher Lenny Wilson Robert Naczi Faith B. Kuehn www.nrcs.usda.gov http://dda.delaware.gov www.dsu.edu www.dehort.org www.delawareinvasives.net Published by: Delaware Department Agriculture • November 2008 In collaboration with: Claude E. Phillips Herbarium at Delaware State University • Delaware Center for Horticulture Funded by: U.S. Department of Agriculture Natural Resources Conservation Service Cover Photos: Front: Aralia elata leaf (Inset, l-r: Aralia elata habit; Aralia spinosa infloresence, Aralia elata stem) Back: Aralia spinosa habit TABLE OF CONTENTS About this Guide ............................1 Introduction What Exactly is an Invasive Plant? ..................................................................................................................2 What Impacts do Invasives Have? ..................................................................................................................2 The Mid-Atlantic Invasive Flora......................................................................................................................3 Identification of Invasives ..............................................................................................................................4 You Can Make a Difference..............................................................................................................................5 Plant Profiles Trees Norway Maple vs. Sugar
    [Show full text]
  • AUP RESEARCH STUDIES PRESENTED at the 3Rd INTERNATIONAL SCHOLARS CONFERENCE October 20-22, 2015 Universitas Advent Indonesia Bandung, Indonesia
    i AUP RESEARCH STUDIES PRESENTED at the 3rd INTERNATIONAL SCHOLARS CONFERENCE OCTOBER 20-22, 2015 UNIVERSITAS ADVENT INDONESIA BANDUNG, INDONESIA Available online at http://3rdscholarsconf.unai.edu/?page_id=8 Electronic ISSN : 2476-9606 Organized by: Universitas Advent Indonesia Bandung, Indonesia Adventist University of the Philippines Puting Kahoy, Silang, Cavite Asia-Pacific International University Muak Lek, Saraburi, Thailand Universitas Klabat Manado, Indonesia University Research Journal Volume 18 No. 2 December 2015 ii Adventist University of the Philippines Telephone: (049)-541-1211 Website: www.aup.edu.ph Copyright © 2015 by AUP Printing Press All rights reserved No part of this publication may be produced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without permission in writing from the publisher. PRINTED IN THE PHILIPPINES ISSN 1655-5619 December 2015 Volume 18 No.2 University Research Journal iii UNIVERSITY RESEARCH COUNCIL Chair: Dr. Miriam P. Narbarte Vice President, Academics Co-Chair: Dr. Jolly S. Balila Director, University Research Center Secretary: Dr. Lorcelie B. Taclan Research Consultant, University Research Center Members: Dr. Edwin A. Balila Dean, College of Science and Technology Dr. Flor Villa P. Marticio Dean, College of Arts and Humanities Dr. Lualhati P. Sausa Dean, College of Business Dr. Marissa H. Virgines Dean, College of Dentistry Dr. Gracel Ann S. Saban Dean, College of Education Dr. Miriam R. Estrada Dean, College of Health Prof. Susy A. Jael Dean, College of Nursing Dr. Julio C. Amurao REVIEWERS Dean, College of Theology Mrs. Eunice M. Carpizo Cynthia C. Quintana, RN, MSN Director, Community Extension Professor, Graduate School of Nursing, Arellano University Mrs.
    [Show full text]