universe Review Where Does the Physics of Extreme Gravitational Collapse Reside? Carlos Barceló 1,*, Raúl Carballo-Rubio 1 and Luis J. Garay 2,3 1 Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía, 18008 Granada, Spain;
[email protected] 2 Departamento de Física Teórica II, Universidad Complutense de Madrid, 28040 Madrid, Spain;
[email protected] 3 Instituto de Estructura de la Materia (IEM-CSIC), Serrano 121, 28006 Madrid, Spain * Correspondence:
[email protected]; Tel.: +34-958-121-311 Academic Editor: Gonzalo J. Olmo Received: 20 October 2015; Accepted: 3 May 2016; Published: 13 May 2016 Abstract: The gravitational collapse of massive stars serves to manifest the most severe deviations of general relativity with respect to Newtonian gravity: the formation of horizons and spacetime singularities. Both features have proven to be catalysts of deep physical developments, especially when combined with the principles of quantum mechanics. Nonetheless, it is seldom remarked that it is hardly possible to combine all these developments into a unified theoretical model, while maintaining reasonable prospects for the independent experimental corroboration of its different parts. In this paper we review the current theoretical understanding of the physics of gravitational collapse in order to highlight this tension, stating the position that the standard view on evaporating black holes stands for. This serves as the motivation for the discussion of a recent proposal that offers the opposite perspective, represented by a set of geometries that regularize the classical singular behavior and present modifications of the near-horizon Schwarzschild geometry as the result of the propagation of non-perturbative ultraviolet effects originated in regions of high curvature.