Pulsar Scattering, Lensing and Gravity Waves

Pulsar Scattering, Lensing and Gravity Waves

<p>Introduction <br>Convergent Plasma Lenses <br>Gravity Waves <br>Black Holes/Fuzzballs <br>Summary </p><p>Pulsar Scattering, Lensing and Gravity Waves </p><p>Ue-Li Pen, Lindsay King, Latham Boyle <br>CITA </p><p>Feb 15, 2012 </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p>Introduction </p><p>Convergent Plasma Lenses <br>Gravity Waves <br>Black Holes/Fuzzballs <br>Summary </p><p>Overview </p><p>IIII</p><p>Pulsar Scattering VLBI ISM holography, distance measures Enhanced Pulsar Timing Array gravity waves fuzzballs </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p>Introduction </p><p>Convergent Plasma Lenses <br>Gravity Waves <br>Black Holes/Fuzzballs <br>Summary </p><p>Pulsar Scattering </p><p>IIII</p><p>Pulsars scintillate strongly due to ISM propagation Lens of geometric size ∼ AU Can be imaged with VLBI (Brisken et al 2010) Deconvolved by interstellar holography (Walker et al 2008) </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p>Introduction </p><p>Convergent Plasma Lenses <br>Gravity Waves <br>Black Holes/Fuzzballs <br>Summary </p><p>Scattering Image </p><p>Data from Brisken et al, Holographic VLBI. </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p>Introduction </p><p>Convergent Plasma Lenses <br>Gravity Waves <br>Black Holes/Fuzzballs <br>Summary </p><p>ISM enigma </p><p>Scattering angle observed mas, 10<sup style="top: -0.3299em;">−8 </sup>rad. </p><p>IIII</p><p>Snell’s law: sin(θ<sub style="top: 0.1363em;">1</sub>)/ sin(θ<sub style="top: 0.1363em;">2</sub>) = n<sub style="top: 0.1363em;">2</sub>/n<sub style="top: 0.1363em;">1 </sub></p><p>n − 1 ∼ 10<sup style="top: -0.3299em;">−12 </sup></p><p>.<br>4 orders of magnitude mismatch. </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p>Introduction </p><p>Convergent Plasma Lenses <br>Gravity Waves <br>Black Holes/Fuzzballs <br>Summary </p><p>Possibilities </p><p>II</p><p>turbulent ISM: sum of many small scatters. Cannot explain discrete images. </p><p>confinement problem: super mini dark matter halos, cosmic strings? </p><p>III</p><p>Geometric alignment: Goldreich and Shridhar (2006) Snell’s law at grazing incidence: ∆α = (1 − n<sub style="top: 0.1363em;">2</sub>/n<sub style="top: 0.1363em;">1</sub>)/α grazing incidence is geometry preferred at 2-D structures </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p>Introduction </p><p>Convergent Plasma Lenses <br>Gravity Waves <br>Black Holes/Fuzzballs <br>Summary </p><p>Current Sheets </p><p>IIIII</p><p>generic outcome of reconnection Pang et al 2010 highly uncertain size, time scale Petschek vs Sweet-Parker long standing controversies </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p><p>Introduction </p><p>Convergent Plasma Lenses </p><p>Gravity Waves </p><p>Lenses </p><p>Black Holes/Fuzzballs <br>Summary </p><p>Gaussian Lens </p><p>III</p><p>Romani et al 1987, Clegg et al 1998 General highly triaxial system projected into highly elliptical pattern </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p><p>Introduction </p><p>Convergent Plasma Lenses </p><p>Gravity Waves </p><p>Lenses </p><p>Black Holes/Fuzzballs <br>Summary </p><p>Geometry </p><p>D<sub style="top: 0.1172em;">ds </sub>D<sub style="top: 0.083em;">s </sub></p><p></p><ul style="display: flex;"><li style="flex:1">~</li><li style="flex:1">~</li><li style="flex:1">~</li><li style="flex:1">~</li><li style="flex:1">~</li><li style="flex:1">~</li></ul><p>β = θ − </p><p>αˆ(D<sub style="top: 0.1481em;">d</sub>θ) = θ − α~(θ) ψ(θ) = σ<sub style="top: 0.2767em;">θ</sub><sup style="top: -0.3299em;">2</sup>κ<sub style="top: 0.1363em;">0 </sub>exp(−θ<sup style="top: -0.3299em;">2</sup>/2σ<sub style="top: 0.2767em;">θ</sub><sup style="top: -0.3299em;">2</sup>) </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p><p>Introduction </p><p>Convergent Plasma Lenses </p><p>Gravity Waves </p><p>Lenses </p><p>Black Holes/Fuzzballs <br>Summary </p><p>Plasma lensing </p><p>q</p><p>c<sub style="top: 0.1481em;">ph </sub>= c/ (1 − ω<sub style="top: 0.2248em;">p</sub><sup style="top: -0.2626em;">2</sup>/ω<sup style="top: -0.2626em;">2</sup>) </p><p>q</p><p>ω<sub style="top: 0.1363em;">p </sub></p><p>=</p><p>n<sub style="top: 0.1363em;">e</sub>e<sup style="top: -0.2627em;">2</sup>/ꢀ<sub style="top: 0.1363em;">0</sub>m<sub style="top: 0.1363em;">e </sub></p><p>Φ ≈ ω<sub style="top: 0.2248em;">p</sub><sup style="top: -0.3753em;">2</sup>c<sup style="top: -0.3753em;">2</sup>/4ω<sup style="top: -0.3753em;">2 </sup></p><p>critical points and caustics in large convergence limit: </p><p>ꢀ</p><p>√ ꢁ </p><p>e</p><p>κ<sub style="top: 0.1364em;">0 </sub></p><p>√</p><p>θ<sub style="top: 0.1364em;">c </sub>= ± 1 + </p><p>,</p><p>β<sub style="top: 0.1364em;">c </sub>= ± </p><p>2κ<sub style="top: 0.1364em;">0 </sub></p><p>e</p><p>magnifications: </p><ul style="display: flex;"><li style="flex:1">−1 </li><li style="flex:1">1</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">µ = </li><li style="flex:1">,</li></ul><p></p><p>1 + κ<sub style="top: 0.1363em;">0 </sub>2 log(−κ<sub style="top: 0.1363em;">0</sub>) − 1 </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p><p>Introduction </p><p>Convergent Plasma Lenses </p><p>Gravity Waves </p><p>Lenses </p><p>Black Holes/Fuzzballs <br>Summary </p><p>Time light curves </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p><p>Introduction </p><p>Convergent Plasma Lenses </p><p>Gravity Waves </p><p>Lenses </p><p>Black Holes/Fuzzballs <br>Summary </p><p>Time light curves </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p><p>Introduction </p><p>Convergent Plasma Lenses </p><p>Gravity Waves </p><p>Lenses </p><p>Black Holes/Fuzzballs <br>Summary </p><p>Fiedler Event </p><p>2.7 and 8.1 GHz light curves of QSO 0954+658 (Fiedler et al. 1994) </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p><p>Introduction </p><p>Convergent Plasma Lenses </p><p>Gravity Waves </p><p>Lenses </p><p>Black Holes/Fuzzballs <br>Summary </p><p>Holographic Secondary Spectrum </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p><p>Introduction </p><p>Convergent Plasma Lenses </p><p>Gravity Waves </p><p>Lenses </p><p>Black Holes/Fuzzballs <br>Summary </p><p>Pre/post-dictions </p><p>II</p><p>plasma underdensity in current sheets (not generic?) weak (logarithmic) frequency dependence of ESE (Fiedler et al 1987) </p><p>II</p><p>unresolved ESE VLBI image increase during flux decrement (Lazio et al 2000) </p><p>pulsar inverse parabolic arc cross sections </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p><p>Introduction </p><p>Convergent Plasma Lenses </p><p>Gravity Waves </p><p>Lenses </p><p>Black Holes/Fuzzballs <br>Summary </p><p>Lensing applications </p><p>IIIII</p><p>Use ISM lens as a giant AU scale interferometer! straightforward to resolve the pulsar beam reflex motion. measure pulsar spin axis parallactic angle may be able to resolve pulsar emission region precise pulsar distance measurements </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p><p>Introduction <br>Convergent Plasma Lenses </p><p>Gravity Waves </p><p>Black Holes/Fuzzballs <br>Summary </p><p>Pulsar Gravity Wave Observatory </p><p>II</p><p>Major resolution and sensitivity boost compared to PTA Boyle and Pen 2010: resolution is λ/L, where λ ∼ 10ly and L ∼ 10kly, typically arc minute localization of sources </p><p>I</p><p>No longer in source confused limit, able to use pulsar intrinsic GW term </p><p>II</p><p>distances needed, from the lens distance reconstruction! during ESE, uses two screens to solve all unknowns. </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p><p>Introduction <br>Convergent Plasma Lenses <br>Gravity Waves </p><p>Black Holes/Fuzzballs </p><p>Summary </p><p>Black Holes Tests </p><p>I</p><p>Lai and Rafikov BH reconstruction: not possible to measure spin. </p><p>IIII</p><p>neglects coherent interference between images time delay measured to ∼ ns instead of ∼ms. 10,000 σ spin detection instead of &lt; 1. what are we really testing? Einstein? no alternatives in strong field? </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p><p>Introduction <br>Convergent Plasma Lenses <br>Gravity Waves </p><p>Black Holes/Fuzzballs </p><p>Summary </p><p>Fuzzballs </p><p>IIII</p><p>proposed by S. Mathur as alternatives to Black Holes has substantial cult following in stringy community resolves Hawking’s information paradox plausible argument due to failure of no-hair “theorem” </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p><p>Introduction <br>Convergent Plasma Lenses <br>Gravity Waves </p><p>Black Holes/Fuzzballs </p><p>Summary </p><p>Hair? </p><p>I</p><p>classical no-hair: decay of perturbations on dynamical time (ms) </p><p>II</p><p>Thermal hair: Boltzman factor supression? </p><p>70 </p><p>exp(−∆E/kT) ∼ exp(−Mc<sup style="top: -0.3299em;">2</sup>/kT) ∼ 10<sup style="top: -0.3299em;">−10 </sup>: macroscopic excitation most unlikely thing ever considered? (including boltzman brains!) </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p><p>Introduction <br>Convergent Plasma Lenses <br>Gravity Waves </p><p>Black Holes/Fuzzballs </p><p>Summary </p><p>Correction Factors </p><p>I</p><p>thermodynamic partition function weights by degeneracy of states: (n<sub style="top: 0.1364em;">1</sub>/n<sub style="top: 0.1364em;">2</sub>) exp(−(E<sub style="top: 0.1364em;">1 </sub>− E<sub style="top: 0.1364em;">2</sub>)/kT). </p><p>IIII</p><p>entropy S = log n, proportionate to area cancels the Boltzman factor! round black holes have the least area – least likely state! generic black hole should be fractal, i.e. fuzzball </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p><p>Introduction <br>Convergent Plasma Lenses <br>Gravity Waves </p><p>Black Holes/Fuzzballs </p><p>Summary </p><p>Quantum Gravity </p><p>I</p><p>Stringy interpretation: quantum mechanics is unitary, fuzzball violate Hawking calculation premise </p><p>II</p><p>order unity deviations near schwarzschild radius deviations fall off as (r<sub style="top: 0.1363em;">s</sub>/r)<sup style="top: -0.3299em;">l </sup>: unlikely to be tested with accretion flows at ꢀ 2M </p><p>II</p><p>pulsar-BH binary lensing: results in modified or absent fringes! </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p><p>Introduction <br>Convergent Plasma Lenses <br>Gravity Waves <br>Black Holes/Fuzzballs </p><p>Summary </p><p>Conclusions </p><p>I</p><p>Physics: Underdense current sheets. New input for reconnection plasma studies </p><p>II</p><p>Pulsar kinematics: emission region physics, spin axis precise distance measurements: multi-frequency VLBI monitoring of pulsars </p><p>II</p><p>increased sensitivity coherent precision gravity wave astrometry </p><p>tests of quantum gravity: need to find inclined BH-PSR binary </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    23 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us