
<p>Introduction <br>Convergent Plasma Lenses <br>Gravity Waves <br>Black Holes/Fuzzballs <br>Summary </p><p>Pulsar Scattering, Lensing and Gravity Waves </p><p>Ue-Li Pen, Lindsay King, Latham Boyle <br>CITA </p><p>Feb 15, 2012 </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p>Introduction </p><p>Convergent Plasma Lenses <br>Gravity Waves <br>Black Holes/Fuzzballs <br>Summary </p><p>Overview </p><p>IIII</p><p>Pulsar Scattering VLBI ISM holography, distance measures Enhanced Pulsar Timing Array gravity waves fuzzballs </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p>Introduction </p><p>Convergent Plasma Lenses <br>Gravity Waves <br>Black Holes/Fuzzballs <br>Summary </p><p>Pulsar Scattering </p><p>IIII</p><p>Pulsars scintillate strongly due to ISM propagation Lens of geometric size ∼ AU Can be imaged with VLBI (Brisken et al 2010) Deconvolved by interstellar holography (Walker et al 2008) </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p>Introduction </p><p>Convergent Plasma Lenses <br>Gravity Waves <br>Black Holes/Fuzzballs <br>Summary </p><p>Scattering Image </p><p>Data from Brisken et al, Holographic VLBI. </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p>Introduction </p><p>Convergent Plasma Lenses <br>Gravity Waves <br>Black Holes/Fuzzballs <br>Summary </p><p>ISM enigma </p><p>Scattering angle observed mas, 10<sup style="top: -0.3299em;">−8 </sup>rad. </p><p>IIII</p><p>Snell’s law: sin(θ<sub style="top: 0.1363em;">1</sub>)/ sin(θ<sub style="top: 0.1363em;">2</sub>) = n<sub style="top: 0.1363em;">2</sub>/n<sub style="top: 0.1363em;">1 </sub></p><p>n − 1 ∼ 10<sup style="top: -0.3299em;">−12 </sup></p><p>.<br>4 orders of magnitude mismatch. </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p>Introduction </p><p>Convergent Plasma Lenses <br>Gravity Waves <br>Black Holes/Fuzzballs <br>Summary </p><p>Possibilities </p><p>II</p><p>turbulent ISM: sum of many small scatters. Cannot explain discrete images. </p><p>confinement problem: super mini dark matter halos, cosmic strings? </p><p>III</p><p>Geometric alignment: Goldreich and Shridhar (2006) Snell’s law at grazing incidence: ∆α = (1 − n<sub style="top: 0.1363em;">2</sub>/n<sub style="top: 0.1363em;">1</sub>)/α grazing incidence is geometry preferred at 2-D structures </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p>Introduction </p><p>Convergent Plasma Lenses <br>Gravity Waves <br>Black Holes/Fuzzballs <br>Summary </p><p>Current Sheets </p><p>IIIII</p><p>generic outcome of reconnection Pang et al 2010 highly uncertain size, time scale Petschek vs Sweet-Parker long standing controversies </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p><p>Introduction </p><p>Convergent Plasma Lenses </p><p>Gravity Waves </p><p>Lenses </p><p>Black Holes/Fuzzballs <br>Summary </p><p>Gaussian Lens </p><p>III</p><p>Romani et al 1987, Clegg et al 1998 General highly triaxial system projected into highly elliptical pattern </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p><p>Introduction </p><p>Convergent Plasma Lenses </p><p>Gravity Waves </p><p>Lenses </p><p>Black Holes/Fuzzballs <br>Summary </p><p>Geometry </p><p>D<sub style="top: 0.1172em;">ds </sub>D<sub style="top: 0.083em;">s </sub></p><p></p><ul style="display: flex;"><li style="flex:1">~</li><li style="flex:1">~</li><li style="flex:1">~</li><li style="flex:1">~</li><li style="flex:1">~</li><li style="flex:1">~</li></ul><p>β = θ − </p><p>αˆ(D<sub style="top: 0.1481em;">d</sub>θ) = θ − α~(θ) ψ(θ) = σ<sub style="top: 0.2767em;">θ</sub><sup style="top: -0.3299em;">2</sup>κ<sub style="top: 0.1363em;">0 </sub>exp(−θ<sup style="top: -0.3299em;">2</sup>/2σ<sub style="top: 0.2767em;">θ</sub><sup style="top: -0.3299em;">2</sup>) </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p><p>Introduction </p><p>Convergent Plasma Lenses </p><p>Gravity Waves </p><p>Lenses </p><p>Black Holes/Fuzzballs <br>Summary </p><p>Plasma lensing </p><p>q</p><p>c<sub style="top: 0.1481em;">ph </sub>= c/ (1 − ω<sub style="top: 0.2248em;">p</sub><sup style="top: -0.2626em;">2</sup>/ω<sup style="top: -0.2626em;">2</sup>) </p><p>q</p><p>ω<sub style="top: 0.1363em;">p </sub></p><p>=</p><p>n<sub style="top: 0.1363em;">e</sub>e<sup style="top: -0.2627em;">2</sup>/ꢀ<sub style="top: 0.1363em;">0</sub>m<sub style="top: 0.1363em;">e </sub></p><p>Φ ≈ ω<sub style="top: 0.2248em;">p</sub><sup style="top: -0.3753em;">2</sup>c<sup style="top: -0.3753em;">2</sup>/4ω<sup style="top: -0.3753em;">2 </sup></p><p>critical points and caustics in large convergence limit: </p><p>ꢀ</p><p>√ ꢁ </p><p>e</p><p>κ<sub style="top: 0.1364em;">0 </sub></p><p>√</p><p>θ<sub style="top: 0.1364em;">c </sub>= ± 1 + </p><p>,</p><p>β<sub style="top: 0.1364em;">c </sub>= ± </p><p>2κ<sub style="top: 0.1364em;">0 </sub></p><p>e</p><p>magnifications: </p><ul style="display: flex;"><li style="flex:1">−1 </li><li style="flex:1">1</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">µ = </li><li style="flex:1">,</li></ul><p></p><p>1 + κ<sub style="top: 0.1363em;">0 </sub>2 log(−κ<sub style="top: 0.1363em;">0</sub>) − 1 </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p><p>Introduction </p><p>Convergent Plasma Lenses </p><p>Gravity Waves </p><p>Lenses </p><p>Black Holes/Fuzzballs <br>Summary </p><p>Time light curves </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p><p>Introduction </p><p>Convergent Plasma Lenses </p><p>Gravity Waves </p><p>Lenses </p><p>Black Holes/Fuzzballs <br>Summary </p><p>Time light curves </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p><p>Introduction </p><p>Convergent Plasma Lenses </p><p>Gravity Waves </p><p>Lenses </p><p>Black Holes/Fuzzballs <br>Summary </p><p>Fiedler Event </p><p>2.7 and 8.1 GHz light curves of QSO 0954+658 (Fiedler et al. 1994) </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p><p>Introduction </p><p>Convergent Plasma Lenses </p><p>Gravity Waves </p><p>Lenses </p><p>Black Holes/Fuzzballs <br>Summary </p><p>Holographic Secondary Spectrum </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p><p>Introduction </p><p>Convergent Plasma Lenses </p><p>Gravity Waves </p><p>Lenses </p><p>Black Holes/Fuzzballs <br>Summary </p><p>Pre/post-dictions </p><p>II</p><p>plasma underdensity in current sheets (not generic?) weak (logarithmic) frequency dependence of ESE (Fiedler et al 1987) </p><p>II</p><p>unresolved ESE VLBI image increase during flux decrement (Lazio et al 2000) </p><p>pulsar inverse parabolic arc cross sections </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p><p>Introduction </p><p>Convergent Plasma Lenses </p><p>Gravity Waves </p><p>Lenses </p><p>Black Holes/Fuzzballs <br>Summary </p><p>Lensing applications </p><p>IIIII</p><p>Use ISM lens as a giant AU scale interferometer! straightforward to resolve the pulsar beam reflex motion. measure pulsar spin axis parallactic angle may be able to resolve pulsar emission region precise pulsar distance measurements </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p><p>Introduction <br>Convergent Plasma Lenses </p><p>Gravity Waves </p><p>Black Holes/Fuzzballs <br>Summary </p><p>Pulsar Gravity Wave Observatory </p><p>II</p><p>Major resolution and sensitivity boost compared to PTA Boyle and Pen 2010: resolution is λ/L, where λ ∼ 10ly and L ∼ 10kly, typically arc minute localization of sources </p><p>I</p><p>No longer in source confused limit, able to use pulsar intrinsic GW term </p><p>II</p><p>distances needed, from the lens distance reconstruction! during ESE, uses two screens to solve all unknowns. </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p><p>Introduction <br>Convergent Plasma Lenses <br>Gravity Waves </p><p>Black Holes/Fuzzballs </p><p>Summary </p><p>Black Holes Tests </p><p>I</p><p>Lai and Rafikov BH reconstruction: not possible to measure spin. </p><p>IIII</p><p>neglects coherent interference between images time delay measured to ∼ ns instead of ∼ms. 10,000 σ spin detection instead of < 1. what are we really testing? Einstein? no alternatives in strong field? </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p><p>Introduction <br>Convergent Plasma Lenses <br>Gravity Waves </p><p>Black Holes/Fuzzballs </p><p>Summary </p><p>Fuzzballs </p><p>IIII</p><p>proposed by S. Mathur as alternatives to Black Holes has substantial cult following in stringy community resolves Hawking’s information paradox plausible argument due to failure of no-hair “theorem” </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p><p>Introduction <br>Convergent Plasma Lenses <br>Gravity Waves </p><p>Black Holes/Fuzzballs </p><p>Summary </p><p>Hair? </p><p>I</p><p>classical no-hair: decay of perturbations on dynamical time (ms) </p><p>II</p><p>Thermal hair: Boltzman factor supression? </p><p>70 </p><p>exp(−∆E/kT) ∼ exp(−Mc<sup style="top: -0.3299em;">2</sup>/kT) ∼ 10<sup style="top: -0.3299em;">−10 </sup>: macroscopic excitation most unlikely thing ever considered? (including boltzman brains!) </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p><p>Introduction <br>Convergent Plasma Lenses <br>Gravity Waves </p><p>Black Holes/Fuzzballs </p><p>Summary </p><p>Correction Factors </p><p>I</p><p>thermodynamic partition function weights by degeneracy of states: (n<sub style="top: 0.1364em;">1</sub>/n<sub style="top: 0.1364em;">2</sub>) exp(−(E<sub style="top: 0.1364em;">1 </sub>− E<sub style="top: 0.1364em;">2</sub>)/kT). </p><p>IIII</p><p>entropy S = log n, proportionate to area cancels the Boltzman factor! round black holes have the least area – least likely state! generic black hole should be fractal, i.e. fuzzball </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p><p>Introduction <br>Convergent Plasma Lenses <br>Gravity Waves </p><p>Black Holes/Fuzzballs </p><p>Summary </p><p>Quantum Gravity </p><p>I</p><p>Stringy interpretation: quantum mechanics is unitary, fuzzball violate Hawking calculation premise </p><p>II</p><p>order unity deviations near schwarzschild radius deviations fall off as (r<sub style="top: 0.1363em;">s</sub>/r)<sup style="top: -0.3299em;">l </sup>: unlikely to be tested with accretion flows at ꢀ 2M </p><p>II</p><p>pulsar-BH binary lensing: results in modified or absent fringes! </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p><p>Introduction <br>Convergent Plasma Lenses <br>Gravity Waves <br>Black Holes/Fuzzballs </p><p>Summary </p><p>Conclusions </p><p>I</p><p>Physics: Underdense current sheets. New input for reconnection plasma studies </p><p>II</p><p>Pulsar kinematics: emission region physics, spin axis precise distance measurements: multi-frequency VLBI monitoring of pulsars </p><p>II</p><p>increased sensitivity coherent precision gravity wave astrometry </p><p>tests of quantum gravity: need to find inclined BH-PSR binary </p><p></p><ul style="display: flex;"><li style="flex:1">U. Pen </li><li style="flex:1">Pulsar Scattering, Lensing and Gravity Waves </li></ul><p></p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages23 Page
-
File Size-