Fundamental Astrometry - a Look Through the Past
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kumpulam Makalah Tarikh Islam
Mata Kuliah: TARIKH ISLAM SEJARAH CENDIKIAWAN MUSLIM 1 CENDIKIAWAN MUSLIM 1). Al-BIRUNI (973-1048 M) Astronom berjuluk “Guru Segala Ilmu” Nama lengkap beliau adalah Abu Arrayhan Muhammad Ibnu Ahmad Al- Biruni. Dalam sumber lain di tulis Abu Raihan Muhammad Al Bairuni. Beliau lebih terkenal dengan nama Al-Biruni. Nama beliau tercatat dengan tinta emas dalam sejarah sebagai ilmuwan dan filosof Muslim yang serba bisa. Dengan penguasaan beliau terhadap pelbagai ilmu pengetahuan dan bidang lainnya, beliau mendapatkan julukan sebagai “Ustadz fil „ulum” atau guru segala ilmu dan ilmuawan modern menyebut beliau professor par exellence. Meskipun sebagian besar ilmuwan Muslim masa lalu memang memiliki kemampuan multidimensi, namun beliau tampaknya lebih menonjol. Beliau tak hanya menguasai bahasa Arab dan undang-undang islam, tapi juga Sanskrit, Greek, Ibrani dan Syiria. Beliau memiliki pengetahuan tentang filsafat Yunani, yang menjadi salah satu sebab beliau menjadi sarjana agung yang pernah dilahirkan oleh dunia Islam. Beliau berhasil membuktikan, menyandingkan ilmu dan filsafat telah memungkinkan agama bisa terus hidup subur dan berkembang serta membantu meyelesaikan permasalahan yang dihadapi oleh umat. Beliau telah menghasilkan lebih dari 150 buah buku. Di antara buku-buku itu adalah “Al-Jamahir fi Al-Jawahir” yang berbicara mengenai batu-batu permata; “Al-Athar Al-Baqiah” berkaitan kesan-kesan lama peninggalan sejarah, dan “Al-Saidalah fi Al Tibb”, tentang obat-obatan. Penulisan beliau tentang sejarah Islam telah diterjemahkan kedalam bahasa inggris dengan judul “Chronology of Ancient Nation”. Banyak lagi buku tulisan beliau diterbitkan di Eropa dan tersimpan dengan baik di Museum Escorial, Spanyol. Beliau mendirikan pusat kajian astronomi mengenai system tata surya. Kajian beliau dalam bidang sains, matematika dan geometri telah menyelesaikan banyak masalah yang tidak dapat diselesaikan sebelumnya. -
Sphere Confusion: a Textual Reconstruction of Instruments and Observational Practice in First-Millennium CE China Daniel Patrick Morgan
Sphere confusion: a textual reconstruction of instruments and observational practice in first-millennium CE China Daniel Patrick Morgan To cite this version: Daniel Patrick Morgan. Sphere confusion: a textual reconstruction of instruments and observa- tional practice in first-millennium CE China . Centaurus, Wiley, 2016, 58 (1-2), pp.87-103. halshs- 01374805v3 HAL Id: halshs-01374805 https://halshs.archives-ouvertes.fr/halshs-01374805v3 Submitted on 4 Oct 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License Centaurus, 58.1 (2016) Sphere Confusion: a Textual Reconstruction of Astronomical Instruments and Observational Practice in First-millennium CE China * Daniel Patrick MORGAN Abstract: This article examines the case of an observational and demonstration- al armillary sphere confused, one for the other, by fifth-century historians of astronomy He Chengtian and Shen Yue. Seventh-century historian Li Chunfeng dismisses them as ignorant, supplying the reader with additional evidence. Using their respective histories and what sources for the history of early imperial ar- millary instruments survive independent thereof, this article tries to explain the mix-up by exploring the ambiguities of ‘observation’ (guan) as it was mediated through terminology, text, materiality and mathematics. -
Abd Al-Rahman Al-Sufi and His Book of the Fixed Stars: a Journey of Re-Discovery
ResearchOnline@JCU This file is part of the following reference: Hafez, Ihsan (2010) Abd al-Rahman al-Sufi and his book of the fixed stars: a journey of re-discovery. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/28854/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/28854/ 5.1 Extant Manuscripts of al-Ṣūfī’s Book Al-Ṣūfī’s ‘Book of the Fixed Stars’ dating from around A.D. 964, is one of the most important medieval Arabic treatises on astronomy. This major work contains an extensive star catalogue, which lists star co-ordinates and magnitude estimates, as well as detailed star charts. Other topics include descriptions of nebulae and Arabic folk astronomy. As I mentioned before, al-Ṣūfī’s work was first translated into Persian by al-Ṭūsī. It was also translated into Spanish in the 13th century during the reign of King Alfonso X. The introductory chapter of al-Ṣūfī’s work was first translated into French by J.J.A. Caussin de Parceval in 1831. However in 1874 it was entirely translated into French again by Hans Karl Frederik Schjellerup, whose work became the main reference used by most modern astronomical historians. In 1956 al-Ṣūfī’s Book of the fixed stars was printed in its original Arabic language in Hyderabad (India) by Dārat al-Ma‘aref al-‘Uthmānīa. -
El Solar De Las Miradas
el solar deel solar las de miradas las miradas el solar deel solar las de miradas las miradas de Horacio Tignanelli Tignanelli, Horacio Luis El solar de las miradas. - 1a ed. - La Punta : Universidad de la Punta, 2010. E-Book. ISBN 978-987-1760-09-1 1. Astronomía. I. Título CDD 133.5 Fecha de catalogación: 15/04/2013 Impreso en Argentina Diseño de tapa e interior: Secretaría de Comunicación - Universidad de La Punta Esta edición de 2000 ejemplares se imprimiónen A.B.R.N. Producciones Grácas SRL en el mes de Marzo de 2007 dedicatoriadedicatoria A los astrónomos Alejandro Feinstein, de La Plata, y Hugo Mira, de San Juan, quienes me enseñaron a observar el cielo. prólogosprólogos Palabras de Alicia Bañuelos Bañuelos El Parque Astronómico La Punta Como compartimos plenamente esa idea de Hawkings, el Parque Astronómico es una de (PALP) tiene como objetivo contribuir a la sus contribuciones de la ULP para su concreción en nuestro medio. difusión de algunos conceptos básicos de la astronomía observacional y, a través de Los científicos estiman que la edad de nuestro universo es de unos 15.000 millones de ella, contribuir a la mejora de la enseñan- años. La edad de nuestro planeta, en cambio, se calcula en 4.500 millones de años. Pero za de las ciencias naturales. sólo hace 11 mil años, ayer nomás, nuestra joven especie, domesticó animales y plantas, es decir descubrimos la agricultura. Debimos entender cómo se sucedían las estaciones para Con ese propósito, la Universidad adecuar las siembras y las cosechas. Nos dimos cuenta tempranamente que necesitamos de La Punta (ULP) tomó la iniciativa de entender y predecir los fenómenos naturales. -
Thinking Outside the Sphere Views of the Stars from Aristotle to Herschel Thinking Outside the Sphere
Thinking Outside the Sphere Views of the Stars from Aristotle to Herschel Thinking Outside the Sphere A Constellation of Rare Books from the History of Science Collection The exhibition was made possible by generous support from Mr. & Mrs. James B. Hebenstreit and Mrs. Lathrop M. Gates. CATALOG OF THE EXHIBITION Linda Hall Library Linda Hall Library of Science, Engineering and Technology Cynthia J. Rogers, Curator 5109 Cherry Street Kansas City MO 64110 1 Thinking Outside the Sphere is held in copyright by the Linda Hall Library, 2010, and any reproduction of text or images requires permission. The Linda Hall Library is an independently funded library devoted to science, engineering and technology which is used extensively by The exhibition opened at the Linda Hall Library April 22 and closed companies, academic institutions and individuals throughout the world. September 18, 2010. The Library was established by the wills of Herbert and Linda Hall and opened in 1946. It is located on a 14 acre arboretum in Kansas City, Missouri, the site of the former home of Herbert and Linda Hall. Sources of images on preliminary pages: Page 1, cover left: Peter Apian. Cosmographia, 1550. We invite you to visit the Library or our website at www.lindahlll.org. Page 1, right: Camille Flammarion. L'atmosphère météorologie populaire, 1888. Page 3, Table of contents: Leonhard Euler. Theoria motuum planetarum et cometarum, 1744. 2 Table of Contents Introduction Section1 The Ancient Universe Section2 The Enduring Earth-Centered System Section3 The Sun Takes -
Muslim Scientists and Thinkers
MUSLIM SCIENTISTS AND THINKERS Syed Aslam Second edition 2010 Copyright 2010 by Syed Aslam Publisher The Muslim Observer 29004 W. Eight Mile Road Farmington, MI 48336 Cover Statue of Ibn Rushd Cordoba, Spain ISBN 978-1-61584-980-2 Printed in India Lok-Hit Offset Shah-e-Alam Ahmedabad Gujarat ii Dedicated to Ibn Rushd and other Scientists and Thinkers of the Islamic Golden Age iii CONTENTS Acknowledgments ................................................VI Foreword .............................................................VII Introduction ..........................................................1 1 Concept of Knowledge in Islam ............................8 2 Abu Musa Jabir Ibn Hayyan..................................25 3 Al-Jahiz abu Uthman Ibn Bahar ...........................31 4 Muhammad Ibn Musa al-Khwarizmi....................35 5 Abu Yaqoub Ibn Ishaq al-Kindi ............................40 6 Muhammad bin Zakaria Razi ...............................45 7 Jabir ibn Sinan al-Batani.......................................51 8 Abu Nasar Mohammad ibn al-Farabi....................55 9 Abu Wafa ibn Ismail al-Buzjani ...........................61 10 Abu Ali al-Hasan ibn al-Haytham .......................66 11 Abu Rayhan ibn al-Biruni ....................................71 12 Ali al-Hussain ibn Sina ........................................77 13 Abu Qasim ibn al-Zahrawi ..................................83 iv 14 Omar Khayyam ...................................................88 15 Abu Hamid al-Ghazali .........................................93 -
March - May 2002 REGISTRATIONS
NEW ORCHID HYBRIDS March - May 2002 REGISTRATIONS Supplied by the Royal Horticultural Society as International Cultivar Registration Authority for Orchid Hybrids NAME PARENTAGE REGISTERED BY (O/U = Originator unknown) AËRIDOVANDA Diane de Olazarra Aër. lawrenceae x V. Robert's Delight R.F. Orchids ANGULOCASTE Shimazaki Lyc. Concentration x Angcst. Olympus Kokusai(J.Shimazaki) ASCOCENDA Adkins Calm Sky Ascda. Meda Arnold x Ascda. Adkins Purple Sea Adkins Orch.(O/U) Adkins Purple Sea Ascda. Navy Blue x V. Varavuth Adkins Orch.(O/U) Gold Sparkler Ascda. Crownfox Sparkler x Ascda. Fuchs Gold R.F. Orchids Marty Brick V. lamellata x Ascda. Motes Mandarin Motes Mary Zick V. Doctor Anek x Ascda. Crownfox Inferno R.F. Orchids Mary's Friend Valerie Ascda. John De Biase x Ascda. Nopawan Motes Thai Classic V. Kultana Gold x Ascda. Fuchs Gold How Wai Ron(R.F.Orchids) BARDENDRUM Cosmo-Pixie Bard. Nanboh Pixy x Bark. skinneri Kokusai Pink Cloud Epi. centradenium x Bark. whartoniana Hoosier(Glicenstein/Hoosier) Risque Epi. Phillips Jesup x Bark. whartoniana Hoosier(Glicenstein/Hoosier) BRASSOCATTLEYA Ernesto Alavarce Bc. Pastoral x C. Nerto R.B.Cooke(R.Altenburg) Maidosa Bc. Maikai x B. nodosa S.Benjamin Nobile's Pink Pitch Bc. Pink Dinah x Bc. Orglade's Pink Paws S.Barani BRASSOLAELIOCATTLEYA Angel's Glory Bl. Morning Glory x C. Angelwalker H & R Beautiful Morning Bl. Morning Glory x Lc. Bonanza Queen H & R Castle Titanic Blc. Oconee x Lc. Florália's Triumph Orchidcastle Clearwater Gold Blc. Waikiki Gold x Blc. Yellow Peril R.B.Cooke(O/U) Copper Clad Lc. Lee Langford x Blc. -
The History of Arabic Sciences: a Selected Bibliography
THE HISTORY OF ARABIC SCIENCES: A SELECTED BIBLIOGRAPHY Mohamed ABATTOUY Fez University Max Planck Institut für Wissenschaftsgeschichte, Berlin A first version of this bibliography was presented to the Group Frühe Neuzeit (Max Planck Institute for History of Science, Berlin) in April 1996. I revised and expanded it during a stay of research in MPIWG during the summer 1996 and in Fez (november 1996). During the Workshop Experience and Knowledge Structures in Arabic and Latin Sciences, held in the Max Planck Institute for the History of Science in Berlin on December 16-17, 1996, a limited number of copies of the present Bibliography was already distributed. Finally, I express my gratitude to Paul Weinig (Berlin) for valuable advice and for proofreading. PREFACE The principal sources for the history of Arabic and Islamic sciences are of course original works written mainly in Arabic between the VIIIth and the XVIth centuries, for the most part. A great part of this scientific material is still in original manuscripts, but many texts had been edited since the XIXth century, and in many cases translated to European languages. In the case of sciences as astronomy and mechanics, instruments and mechanical devices still extant and preserved in museums throughout the world bring important informations. A total of several thousands of mathematical, astronomical, physical, alchemical, biologico-medical manuscripts survived. They are written mainly in Arabic, but some are in Persian and Turkish. The main libraries in which they are preserved are those in the Arabic World: Cairo, Damascus, Tunis, Algiers, Rabat ... as well as in private collections. Beside this material in the Arabic countries, the Deutsche Staatsbibliothek in Berlin, the Biblioteca del Escorial near Madrid, the British Museum and the Bodleian Library in England, the Bibliothèque Nationale in Paris, the Süleymaniye and Topkapi Libraries in Istanbul, the National Libraries in Iran, India, Pakistan.. -
The Persian-Toledan Astronomical Connection and the European Renaissance
Academia Europaea 19th Annual Conference in cooperation with: Sociedad Estatal de Conmemoraciones Culturales, Ministerio de Cultura (Spain) “The Dialogue of Three Cultures and our European Heritage” (Toledo Crucible of the Culture and the Dawn of the Renaissance) 2 - 5 September 2007, Toledo, Spain Chair, Organizing Committee: Prof. Manuel G. Velarde The Persian-Toledan Astronomical Connection and the European Renaissance M. Heydari-Malayeri Paris Observatory Summary This paper aims at presenting a brief overview of astronomical exchanges between the Eastern and Western parts of the Islamic world from the 8th to 14th century. These cultural interactions were in fact vaster involving Persian, Indian, Greek, and Chinese traditions. I will particularly focus on some interesting relations between the Persian astronomical heritage and the Andalusian (Spanish) achievements in that period. After a brief introduction dealing mainly with a couple of terminological remarks, I will present a glimpse of the historical context in which Muslim science developed. In Section 3, the origins of Muslim astronomy will be briefly examined. Section 4 will be concerned with Khwârizmi, the Persian astronomer/mathematician who wrote the first major astronomical work in the Muslim world. His influence on later Andalusian astronomy will be looked into in Section 5. Andalusian astronomy flourished in the 11th century, as will be studied in Section 6. Among its major achievements were the Toledan Tables and the Alfonsine Tables, which will be presented in Section 7. The Tables had a major position in European astronomy until the advent of Copernicus in the 16th century. Since Ptolemy’s models were not satisfactory, Muslim astronomers tried to improve them, as we will see in Section 8. -
"Dialling Guides" Equatorial Ring Sundial
created by 1 The Sundial Primer - "Dialling Guides" Carl Sabanski Equatorial Ring Sundial The purpose of the "Dialling Guides" is to provide an easy method for laying out the hour lines for a number of equatorial ring sundials located at any latitude in either the Northern or Southern Hemispheres. The equatorial ring sundial is a universal sundial and can be used anywhere in the world. All that is required is to tilt the sundial so the gnomon points to the celestial pole. Please go to "The Sundial Primer" and visit the "Equatorial Ring Sundial" page for more details. The "Dialling Guides" are very easy to use and will help you lay out a variety of equatorial ring sundials. They come in two sizes if printed out at full scale. One set can be printed on 8-1/2" by 11" paper and the other on 11" by 17" paper. The scaling is in inches and will help in determining the required size of the hour ring. The "Dialling Guides" can be printed to any size but then the scaling in inches is no longer valid. This gives you the flexibility to create any size of "Dialling Guide" you need to meet your requirements. There is another method of creating larger sundials that will be discussed later. The following summarizes the equatorial ring sundial "Dialling Guides" available: 1. Sizes: 4 to 10 inches in diameter in 1/4 inch increments; Time Range: as required; Time Increment: 10 minutes 2. Sizes: 4 to 10 inches in diameter in 1/4 inch increments; Time Range: as required; Time Increment: 15 minutes 3. -
Armillary Sphere
Armillary Sphere Inventory no. 45453 Armillary sphere Armillary sphere for demonstration of the heavenly spheres made and signed by Carlo Plato, Rome, c.1588. The armillary sphere is an instrument that extends right back to the ancients, and was certainly in used by the second-century astronomer and mathematician Claudius Ptolemy, of Alexandria. It was a mathematical instrument designed to demonstrate the movement of the celestial sphere about a stationary Earth at its centre. The concept of the celestial sphere was fundamental to astronomy from Antiquity through the Middle Ages and into the Early-Modern era. At the centre of the sphere is the Earth. As the Earth is stationary in this model, it is the celestial sphere which rotates about it and acts as a reference system for locating the celestial bodies – stars, in particular – from a geocentric perspective. The instrument survived throughout the medieval period into the early modern era, and in many respects came to symbolise the queen of the sciences, astronomy. It wasn’t until the middle of the sixteenth-century that the basis of the instrument – a geocentric concept of the Universe – was seriously challenged by the Polish mathematician, Nicolaus Copernicus. Even then, the instrument still continued to serve a useful purpose as a purely mathematical instrument. Portrait of Nicolas Copernicus 1580 Held stationary at the centre is a small brass sphere representing the Earth. About it rotate a set of rings representing the heavens – the celestial sphere – one complete revolution approximating to a day or 24 hours. The sphere is mounted at the celestial poles which define the axis of rotation, and its structure includes an equatorial ring and, parallel to this, above and below, two smaller rings representing the Tropic of Cancer to the north, and the Tropic of Capricorn to the south. -
The Day and Its Hours in Ancient Jewish Astronomy. Elucidation of Medieval Rabbinic Astronomical Quotations
The Day and its Hours in Ancient Jewish Astronomy. Elucidation of Medieval Rabbinic Astronomical Quotations. There are different ways of defining the span of time of one day. It appears that people, along the history, did not use a unique definition. According to their cultural background they counted the days differently. The astronomers had still their own way of counting days: it was from noon of one day until noon of the following day. Furthermore the different authors considered that their own definition of the day was so evident that they generally did not think necessary to specify the type of day that they used and its exact definition. It is clear that the diversity of the possibilities makes sometimes the elucidation of ancient texts difficult. We selected four sets of quotations of celebrated medieval rabbinic astronomers which are at the first glance problematic. n R’ Abraham bar Hiya, who appears to be the great specialist of Al-Battani and Ptolemy, defined his astronomical day n as beginning at noon of the Jewish civil day n – 1 and ending at noon of the Jewish civil day n. This definition seems disconcerting and in contradiction with the definition of the astronomical day which was in use from Ptolemy until the modern times. n R’ Isaac Israeli, in his book Yessod Olam, written in 1310 C.E. in Toledo, in Christian Spain, adopted the same position as bar Hiya. n R’ Abraham ibn Ezra, in his Sefer ha-Ibbur, made some statements about the moment of occurrence of the apparent vernal equinox in the year 1147 in the city of Verona in Italia and about the span of time between the apparent equinox and solstices on the one hand and the four tekufot of Adda on the other hand.