Isoelectric Trapping and Mass Spectrometry: Tools For
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Annual Conference Abstracts
ANNUAL CONFERENCE 14-17 April 2014 Arena and Convention Centre, Liverpool ABSTRACTS SGM ANNUAL CONFERENCE APRIL 2014 ABSTRACTS (LI00Mo1210) – SGM Prize Medal Lecture (LI00Tu1210) – Marjory Stephenson Climate Change, Oceans, and Infectious Disease Prize Lecture Dr. Rita R. Colwell Understanding the basis of antibiotic resistance University of Maryland, College Park, MD, USA as a platform for early drug discovery During the mid-1980s, satellite sensors were developed to monitor Laura JV Piddock land and oceans for purposes of understanding climate, weather, School of Immunity & Infection and Institute of Microbiology and and vegetation distribution and seasonal variations. Subsequently Infection, University of Birmingham, UK inter-relationships of the environment and infectious diseases Antibiotic resistant bacteria are one of the greatest threats to human were investigated, both qualitatively and quantitatively, with health. Resistance can be mediated by numerous mechanisms documentation of the seasonality of diseases, notably malaria including mutations conferring changes to the genes encoding the and cholera by epidemiologists. The new research revealed a very target proteins as well as RND efflux pumps, which confer innate close interaction of the environment and many other infectious multi-drug resistance (MDR) to bacteria. The production of efflux diseases. With satellite sensors, these relationships were pumps can be increased, usually due to mutations in regulatory quantified and comparatively analyzed. More recent studies of genes, and this confers resistance to antibiotics that are often used epidemic diseases have provided models, both retrospective and to treat infections by Gram negative bacteria. RND MDR efflux prospective, for understanding and predicting disease epidemics, systems not only confer antibiotic resistance, but altered expression notably vector borne diseases. -
2016 Joint Meeting Program
April 15 – 17, 2016 Fairmont Chicago Millennium Park • Chicago, Illinois The AAP/ASCI/APSA conference is jointly provided by Boston University School of Medicine and AAP/ASCI/APSA. Meeting Program and Abstracts www.jointmeeting.org www.jointmeeting.org Special Events at the 2016 AAP/ASCI/APSA Joint Meeting Friday, April 15 Saturday, April 16 ASCI President’s Reception ASCI Food and Science Evening 6:15 – 7:15 p.m. 6:30 – 9:00 p.m. Gold Room The Mid-America Club, Aon Center ASCI Dinner & New Member AAP Member Banquet Induction Ceremony (Ticketed guests only) (Ticketed guests only) 7:00 – 10:00 p.m. 7:30 – 9:45 p.m. Imperial Ballroom, Level B2 Rouge, Lobby Level How to Solve a Scientific Puzzle: Speaker: Clara D. Bloomfield, MD Clues from Stockholm and Broadway The Ohio State University Comprehensive Cancer Center Speaker: Joe Goldstein, MD APSA Welcome Reception & University of Texas Southwestern Medical Center at Dallas Presidential Address APSA Dinner (Ticketed guests only) 9:00 p.m. – Midnight Signature Room, 360 Chicago, 7:30 – 9:00 p.m. John Hancock Center (off-site) Rouge, Lobby Level Speaker: Daniel DelloStritto, APSA President Finding One’s Scientific Niche: Musings from a Clinical Neuroscientist Speaker: Helen Mayberg, MD, Emory University Dessert Reception (open to all attendees) 10:00 p.m. – Midnight Imperial Foyer, Level B2 Sunday, April 17 APSA Future of Medicine and www.jointmeeting.org Residency Luncheon Noon – 2:00 p.m. Rouge, Lobby Level 2 www.jointmeeting.org Program Contents General Program Information 4 Continuing Medical Education Information 5 Faculty and Speaker Disclosures 7 Scientific Program Schedule 9 Speaker Biographies 16 Call for Nominations: 2017 Harrington Prize for Innovation in Medicine 26 AAP/ASCI/APSA Joint Meeting Faculty 27 Award Recipients 29 Call for Nominations: 2017 Harrington Scholar-Innovator Award 31 Call for Nominations: George M. -
George Michael Humphrey Birchenough
GEORGE MICHAEL HUMPHREY BIRCHENOUGH Analysis of intestinal factors contributing to the age- dependency of systemic neuropathogenic Escherichia coli K1 infection in the neonatal rat Thesis submitted in accordance with the requirements of the UCL School of Pharmacy for the degree of Doctor of Philosophy Microbiology Group, Department of Pharmaceutics, UCL School of Pharmacy July 2012 PLAGIARISM STATEMENT This thesis describes research conducted in the UCL School of Pharmacy between October 2008 and July 2012 under the supervision of Professor Peter W. Taylor. I certify that the research described is original and that any parts of the work that have been conducted by collaboration are clearly indicated. I also certify that I have written all the text herein and have clearly indicated by suitable citation any part of the dissertation that has already appeared in publication. Signature: Date: Acknowledgements Firstly I wish to thank my supervisor, Professor Peter Taylor, for giving me the opportunity to work on such an interesting and rewarding project. Your continued support and enthusiasm has been a constant source of encouragement and I greatly appreciate all the advice and help (both scientific and general!) that you have provided over the last four years. I owe you a lot of beer. I also wish to thank my amazing parents for all their love and support over the eight years of my higher education. Without your enthusiasm and belief I would not have been able to follow this path. I sincerely promise I will now get a job! Furthermore, I wish to thank colleagues at the London School of Hygiene & Tropical Medicine, Dr. -
European Patent Office U.S. Patent and Trademark Office
EUROPEAN PATENT OFFICE U.S. PATENT AND TRADEMARK OFFICE CPC NOTICE OF CHANGES 89 DATE: JULY 1, 2015 PROJECT RP0098 The following classification changes will be effected by this Notice of Changes: Action Subclass Group(s) Symbols deleted: C12Y 101/01063 C12Y 101/01128 C12Y 101/01161 C12Y 102/0104 C12Y 102/03011 C12Y 103/01004 C12Y 103/0103 C12Y 103/01052 C12Y 103/99007 C12Y 103/9901 C12Y 103/99013 C12Y 103/99021 C12Y 105/99001 C12Y 105/99002 C12Y 113/11013 C12Y 113/12012 C12Y 114/15002 C12Y 114/99028 C12Y 204/01119 C12Y 402/01052 C12Y 402/01058 C12Y 402/0106 C12Y 402/01061 C12Y 601/01025 C12Y 603/02027 Symbols newly created: C12Y 101/01318 C12Y 101/01319 C12Y 101/0132 C12Y 101/01321 C12Y 101/01322 C12Y 101/01323 C12Y 101/01324 C12Y 101/01325 C12Y 101/01326 C12Y 101/01327 C12Y 101/01328 C12Y 101/01329 C12Y 101/0133 C12Y 101/01331 C12Y 101/01332 C12Y 101/01333 CPC Form – v.4 CPC NOTICE OF CHANGES 89 DATE: JULY 1, 2015 PROJECT RP0098 Action Subclass Group(s) C12Y 101/01334 C12Y 101/01335 C12Y 101/01336 C12Y 101/01337 C12Y 101/01338 C12Y 101/01339 C12Y 101/0134 C12Y 101/01341 C12Y 101/01342 C12Y 101/03043 C12Y 101/03044 C12Y 101/98003 C12Y 101/99038 C12Y 102/01083 C12Y 102/01084 C12Y 102/01085 C12Y 102/01086 C12Y 103/01092 C12Y 103/01093 C12Y 103/01094 C12Y 103/01095 C12Y 103/01096 C12Y 103/01097 C12Y 103/0701 C12Y 103/08003 C12Y 103/08004 C12Y 103/08005 C12Y 103/08006 C12Y 103/08007 C12Y 103/08008 C12Y 103/08009 C12Y 103/99032 C12Y 104/01023 C12Y 104/01024 C12Y 104/03024 C12Y 105/01043 C12Y 105/01044 C12Y 105/01045 C12Y 105/03019 C12Y 105/0302 -
12) United States Patent (10
US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S. -
SIFTS: Updated Structure Integration with Function, Taxonomy and Sequences Resource Allows 40-Fold Increase in Coverage of Struc
D482–D489 Nucleic Acids Research, 2019, Vol. 47, Database issue Published online 16 November 2018 doi: 10.1093/nar/gky1114 SIFTS: updated Structure Integration with Function, Taxonomy and Sequences resource allows 40-fold increase in coverage of structure-based annotations for proteins Jose M. Dana1, Aleksandras Gutmanas 1, Nidhi Tyagi2, Guoying Qi2, Claire O’Donovan3, Maria Martin2 and Sameer Velankar1,* 1Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK, 2Protein Function Development, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK and 3Metabolomics, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK Received September 07, 2018; Revised October 15, 2018; Editorial Decision October 18, 2018; Accepted October 22, 2018 ABSTRACT source for sequence and functional information pertain- ing to proteins (1). It currently contains over 500 000 The Structure Integration with Function, Taxonomy manually annotated sequences (UniProtKB/Swiss-Prot) and Sequences resource (SIFTS; http://pdbe.org/ and over 120 million computationally annotated ones sifts/) was established in 2002 and continues to oper- (UniProtKB/TrEMBL) despite a near 50% reduction of the ate as a collaboration between the Protein Data Bank size of the holdings in 2015 to remove high sequence re- in Europe (PDBe; http://pdbe.org) and the UniProt dundancy. This increase is set to continue and likely to ac- Knowledgebase (UniProtKB; http://uniprot.org). The celerate even further with the growing appreciation of the resource is instrumental in the transfer of anno- role microbiome plays in health and disease. -
CPC Scheme Between 2015.05 and 2015.07
2015.07 Compilation of Changes to the CPC Scheme Between 2015.05 and 2015.07 Presentation Details Entries for new symbols and headings: Black text in italics Entries for existing symbols and headings —text insertions: Green text in italics with yellow background —text deletions: Red strikethrough text with grey background Entries for deleted symbols and headings: Black strikethrough text • In cases when the originating project cannot be found, "N/A" is given for the Project information (e.g. the change could be due to an Editorial Correction). • Projects ending in "-F" indicate finalisation after reclassification was completed. Project: N/A (A01B) U A01B 3/00 Ploughs with fixed plough-shares U A01B 3/04 · Animal-drawn ploughs A01B 3/06 · · without alternating possibility, i.e. incapable of making an adjacent furrow on return journey, {i.e. conventional ploughing} U A01B 3/50 · Self-propelled ploughs U A01B 3/52 · · with three or more wheels, or endless tracks U A01B 3/56 · · · Alternating ploughs; {Balance ploughs} U A01B 3/64 · Cable ploughs; Indicating or signalling devices for cable plough systems {(vehicles towed by cable B60D)} U A01B 3/68 · · Cable systems with one or two engines; {e.g. electrically-driven or with diesel generating set} U A01B 5/00 Ploughs with rolling non-driven tools, e.g. discs (with rotary driven tools A01B 9/00) U A01B 5/04 · drawn by tractors A01B 5/06 · · without alternating possibility, {e.g. with rotary counters provided with scrapers} U A01B 13/00 Ploughs or like machines for special purposes (for drainage E02B 11/02); {Ditch diggers, trench ploughs, forestry ploughs, ploughs for land or marsh reclamation (machines for aerating meadows A01B 45/02 ; making furrows A01C 5/00 ; dredging machines in general E02F)} A01B 13/02 · for making or working ridges, e.g. -
University of Groningen Genome Sequencing and Analysis Of
University of Groningen Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum van den Berg, Marco A.; Albang, Richard; Albermann, Kaj; Badger, Jonathan H.; Daran, Jean-Marc; Driessen, Arnold; Garcia-Estrada, Carlos; Fedorova, Natalie D.; Harris, Diana M.; Heijne, Wilbert H. M. Published in: Nature Biotechnology DOI: 10.1038/nbt.1498 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2008 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): van den Berg, M. A., Albang, R., Albermann, K., Badger, J. H., Daran, J-M., Driessen, A. J. M., ... Bovenberg, R. A. L. (2008). Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nature Biotechnology, 26(10), 1161-1168. DOI: 10.1038/nbt.1498 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. -
Analysis of the Pseudoalteromonas Tunicata Genome Reveals Properties of a Surface-Associated Life Style in the Marine Environment
Analysis of the Pseudoalteromonas tunicata Genome Reveals Properties of a Surface-Associated Life Style in the Marine Environment Torsten Thomas1*, Flavia F. Evans1, David Schleheck1,3, Anne Mai-Prochnow1,4, Catherine Burke1, Anahit Penesyan1, Doralyn S. Dalisay5, Sacha Stelzer-Braid1,7, Neil Saunders6, Justin Johnson2, Steve Ferriera2, Staffan Kjelleberg1, Suhelen Egan1 1 Centre of Marine Bio-Innovation and School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia, 2 J. Craig Venter Institute, Rockville, Maryland, United States of America, 3 Department of Biology, The University of Konstanz, Konstanz, Germany, 4 Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham, United Kingdom, 5 Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America, 6 School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Australia, 7 Virology Research, Department of Microbiology, South Eastern Area Laboratory Service, Prince of Wales Hospital, Randwick, New South Wales, Australia Abstract Background: Colonisation of sessile eukaryotic host surfaces (e.g. invertebrates and seaweeds) by bacteria is common in the marine environment and is expected to create significant inter-species competition and other interactions. The bacterium Pseudoalteromonas tunicata is a successful competitor on marine surfaces owing primarily to its ability to produce a number of inhibitory molecules. As such P. tunicata has become a model organism for the studies into processes of surface colonisation and eukaryotic host-bacteria interactions. Methodology/Principal Findings: To gain a broader understanding into the adaptation to a surface-associated life-style, we have sequenced and analysed the genome of P. -
(12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur Et Al
US 2012026.6329A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur et al. (43) Pub. Date: Oct. 18, 2012 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/10 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/24 (2006.01) CI2N 9/02 (2006.01) (75) Inventors: Eric J. Mathur, Carlsbad, CA CI2N 9/06 (2006.01) (US); Cathy Chang, San Marcos, CI2P 2L/02 (2006.01) CA (US) CI2O I/04 (2006.01) CI2N 9/96 (2006.01) (73) Assignee: BP Corporation North America CI2N 5/82 (2006.01) Inc., Houston, TX (US) CI2N 15/53 (2006.01) CI2N IS/54 (2006.01) CI2N 15/57 2006.O1 (22) Filed: Feb. 20, 2012 CI2N IS/60 308: Related U.S. Application Data EN f :08: (62) Division of application No. 1 1/817,403, filed on May AOIH 5/00 (2006.01) 7, 2008, now Pat. No. 8,119,385, filed as application AOIH 5/10 (2006.01) No. PCT/US2006/007642 on Mar. 3, 2006. C07K I4/00 (2006.01) CI2N IS/II (2006.01) (60) Provisional application No. 60/658,984, filed on Mar. AOIH I/06 (2006.01) 4, 2005. CI2N 15/63 (2006.01) Publication Classification (52) U.S. Cl. ................... 800/293; 435/320.1; 435/252.3: 435/325; 435/254.11: 435/254.2:435/348; (51) Int. Cl. 435/419; 435/195; 435/196; 435/198: 435/233; CI2N 15/52 (2006.01) 435/201:435/232; 435/208; 435/227; 435/193; CI2N 15/85 (2006.01) 435/200; 435/189: 435/191: 435/69.1; 435/34; CI2N 5/86 (2006.01) 435/188:536/23.2; 435/468; 800/298; 800/320; CI2N 15/867 (2006.01) 800/317.2: 800/317.4: 800/320.3: 800/306; CI2N 5/864 (2006.01) 800/312 800/320.2: 800/317.3; 800/322; CI2N 5/8 (2006.01) 800/320.1; 530/350, 536/23.1: 800/278; 800/294 CI2N I/2 (2006.01) CI2N 5/10 (2006.01) (57) ABSTRACT CI2N L/15 (2006.01) CI2N I/19 (2006.01) The invention provides polypeptides, including enzymes, CI2N 9/14 (2006.01) structural proteins and binding proteins, polynucleotides CI2N 9/16 (2006.01) encoding these polypeptides, and methods of making and CI2N 9/20 (2006.01) using these polynucleotides and polypeptides. -
(12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur Et Al
US 20150240226A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur et al. (43) Pub. Date: Aug. 27, 2015 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/16 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/02 (2006.01) CI2N 9/78 (2006.01) (71) Applicant: BP Corporation North America Inc., CI2N 9/12 (2006.01) Naperville, IL (US) CI2N 9/24 (2006.01) CI2O 1/02 (2006.01) (72) Inventors: Eric J. Mathur, San Diego, CA (US); CI2N 9/42 (2006.01) Cathy Chang, San Marcos, CA (US) (52) U.S. Cl. CPC. CI2N 9/88 (2013.01); C12O 1/02 (2013.01); (21) Appl. No.: 14/630,006 CI2O I/04 (2013.01): CI2N 9/80 (2013.01); CI2N 9/241.1 (2013.01); C12N 9/0065 (22) Filed: Feb. 24, 2015 (2013.01); C12N 9/2437 (2013.01); C12N 9/14 Related U.S. Application Data (2013.01); C12N 9/16 (2013.01); C12N 9/0061 (2013.01); C12N 9/78 (2013.01); C12N 9/0071 (62) Division of application No. 13/400,365, filed on Feb. (2013.01); C12N 9/1241 (2013.01): CI2N 20, 2012, now Pat. No. 8,962,800, which is a division 9/2482 (2013.01); C07K 2/00 (2013.01); C12Y of application No. 1 1/817,403, filed on May 7, 2008, 305/01004 (2013.01); C12Y 1 1 1/01016 now Pat. No. 8,119,385, filed as application No. PCT/ (2013.01); C12Y302/01004 (2013.01); C12Y US2006/007642 on Mar. 3, 2006. -
Identification of the Virulence Determinants of the Neonatal Meningitic Bacterium Cronobacter Sakazakii
IDENTIFICATION OF THE VIRULENCE DETERMINANTS OF THE NEONATAL MENINGITIC BACTERIUM CRONOBACTER SAKAZAKII SUMYYA HASHIM HARIRI A thesis submitted in partial fulfilment of the requirements of Nottingham Trent University for the degree of Doctor of Philosophy July 2015 COPYRIGHT STATEMENT Experimental work contained in this thesis is original research carried out by the author, unless otherwise stated, in the School of Science and Technology at the Nottingham Trent University. No material contained herein has been submitted for any other degree, or at any other institution. This work is the intellectual property of the author. You may copy up to 5% of this work for private study, or personal, non-commercial research. Any re-use of the information contained within this document should be fully referenced, quoting the author, title, university, degree level and pagination. Queries or requests for any other use, or if a more substantial copy is required, should be directed in the owner(s) of the Intellectual Property Rights. Sumyya Hashim Hariri II ACKNOWLEDGEMENTS Foremost, I would like to express my sincere gratitude to my advisor Prof. Stephen Forsythe for the continuous support of my PhD study and research, for his patience, motivation, enthusiasm, and immense knowledge. I could not have imagined having a better advisor and mentor for my PhD study. Second, I would like to convey my appreciation to my second supervisor Prof. Nadia Chuzhanova who advice and support will always be remembered. I am speechless! I can barely find words to express all the wisdom, love and support given me for that I am eternally grateful to my beloved parents Prof Hashim Hariri and Mrs.