Plants Revision Table

Total Page:16

File Type:pdf, Size:1020Kb

Plants Revision Table CLASSIFICATION OF ORGANISMS Domain Archaea Prokaryotes, unicellular, absorptive nutrition, found in unusual habitats, high salt, excessive heat, for example; differ biochemically from the Bacteria Domain Bacteria Prokaryotes, unicellular or in filaments, autotrophs and heterotrophs, sometimes called "true bacteria", diverse habitats Domain Eukarya Eukaryotes, unicellular & multicellular, four kingdoms: Protista, Fungi, Plantae, Animalia KINGDOM PROTISTA - eukaryotes (have true nuclei and membrane-bounded organelles), cell walls present in some; majority are motile; most unicellular, but some colonial & multicellular forms present; heterotrophs & autotrophs; sexual and asexual reproduction; majority are aquatic or in very moist terrestrial habitats. Heterotrophic Protists Phylum Myxomycota - plasmodial slime molds; multinucleate plasmodium and uninucleate sporangium; nutrition by ingestion, terrestrial. Phylum Dictyosteliomycota - cellular slime molds; have two forms - one motile (amoeboid) and other non-motile (fruiting body); nutrition by ingestion, terrestrial. Phylum Oomycota - water molds; aquatic or terrestrial; motile. Autotrophic Protists ; Phylum Chrysophyta - chiysophytes or golden brown algae, unicellular or colonial, lack cell walls or have mineral walls or silica scales Phylum Bacillariophyta - diatoms, unicellular or colonial, silica cell walls, basis for aquatic food chains Phylum Euglenophyta - euglenoids; primarily freshwater organisms; no cell walls Phylum Dinophyta - dinoflagellates; also at base of food chains in aquatic ecosystems; red tide organisms. Phylum Rhodophyta - red algae; mostly marine; complex life cycles. Phylum Phaeophyta - brown algae; largest algae some with tissue specialization; exclusively marine. Phylum Chlorophyta - green algae; probable ancestors of land plants; few marine, but most primarily found in freshwater. KINGDOM FUNGI - eukaryotes, most multicellular though few unicellular, majority are filamentous (mycelia); cell walls present; mostly non-motile; heterotrophs; no tissues or organs; sexual and asexual reproduction. Phylum Chytridiomycota - chytrids, aquatic with motile cells at some stage in life cycle Phylum Zygomycota - bread molds; dung fungi; Phylum Ascomycota - sac fungi; yeasts, cup fungi, morels; Phylum Basidiomycota - club fungi; mushrooms, puffballs, bracket fungi, rusts & smuts; KINGDOM PLANTAE - eukaryotes; multicellular photosynthetic organisms with rigid cell walls; only male gametes of some forms motile; tissues and organs present; autotrophs; sexual and asexual reproduction; vast majority are terrestrial. Non-Vascular Plants with Dominant Gametophvte. Reproduce by Spores Phylum Hepatophyta - liverworts; multicellular gametangia, lack conducting tissues & stomata, simplest of land plants; have connection to algae at genetic level Phylum Anthocerophyta - hornworts, sporophyte with basal meristem, stomata, no conducting tissue Phylum Bryophvta - mosses; specialized conducting tissue in gametophyte and sporophyte, stomata present. Vascular Plants with Dominant Sporophyte, Reproduce fry Spores Phylum Psilotophyta - whisk ferns; no true leaves or roots; long evolutionary history. Phylum Lvcophyta - club mosses; true leaves and roots; Phylum Sphenophyta - horsetails and scouring rushes; whorled arrangement of roots, stems & leaves. Phylum Pterophyta - ferns; multiveined leaves with clustered sporangia (sori) on undersurface. Vascular Plants with Dominant Sporophyte, Reproduce by Seeds Phylum Coniferophyta - conifers (cone-bearing); needlelike or scalelike leaves; exposed seeds; non-motile sperm. Phylum Cycadophyta - cycads; palmlike or femlike leaves; exposed seeds; motile sperm; formerly much more abundant. Phylum Ginkgophyta - Ginkgo biloba only remaining species; fan-shaped leaves;exposed seeds; motile sperm;"living fossils". Phylum Gnetophyta - gnetophytes; 3 very diverse genera; exposed seeds; non-motile sperm; some flowering plant properties. Phylum Anthophyta - flowering plants; seeds enclosed in a fruit; non-motile sperm; most diverse, widespread and successful of plant groups; have co-evolved with animals. Class Monocotyledones - monocots, one cotyledon in seed, flower parts in threes, leaf veins parallel, true secondary growth absent, vascular bundles in stem scattered. Class Eudicotyledones - dicots, two cotyledons in seed, flower parts in fours and fives, leaf veins netted, secondary growth present, vascular bundles in stem in ring. HEPATOPHYTA ANTHOCEROPHYTA BRYOPHYTA (liverworts) (hornworts) (mosses) GAMETOPHYTE - thailloid or leafy GAMETOPHYTE - thailloid GAMETOPHYTE - leafy Rhizoids - non-septate (no cross walls) Rhizoids - non-septate Rhizoids septate (cross walls) No leaves - dorsi-ventral flattened thallus Leaves - flattened when present, often bilobed in 2 or Leaves flattened; not bilobed, in spiral 3 rows without distinct raid vein arrangement with midvein Sex organs free, emergent Sex organs sunken in thallus Sex organs free Protonema rudimentary or none Protonema absent Protonema present SPOROPHYTE SPOROPHYTE SPOROPHYTE Seta clear or transparent No seta present Seta not clear, is opaque Capsule dehiscent by a lid or Capsule - not dehiscent or dehiscent by 4 valves; Capsule dehiscent by 2 valves longitudinal slits Columella absent Columella present Columella present in most No peristome teeth No peristome teeth Usually with peristome teeth Elaters present Elaters present No elaters Stomata absent Stomata present Stomata present Foot present Foot present Foot present Overall differentiation; no meristem Meristematic cells at apices Intercalary meristem between capsule and foot ANGIOSPERMS: TERMINOLOGY Flowers Parts of the Flower Carpel: A leaflike structure that encloses one or more ovules; collectively, the gynoecium. The carpel is the basic unit of the pistil; a simple pistil consists of a single carpel, and a compound pistil consists of two or more united carpels. Commonly differentiated into stigma, style, and ovary. Locule: A cavity within a sporangium or a cavity of the ovary in which ovules occur. Ovary: Swollen basal portion of the carpel or pistil containing ovule(s). Pedicel: The stalk of an individual flower in an inflorescence. Peduncle: The stalk of a solitary flower or of an inflorescence. Perianth: The sepals and petals together. Petal: The part of the flower that is usually conspicuously colored; collectively, the corolla. Receptacle: The enlarged end of the flower stalk to which the sepals, petals, stamens, and carpels are attached. Sepal: The outermost part of a flower; collectively, the calyx, which usually encloses the other parts. Stamen: The part of the flower that produces the pollen; usually composed of anther and filament; collectively, the androecium. Stigma: Upper, pollen-receptive portion of style. Style: Slender, stalklike portion of a carpel, or pistil; arises from the top of the ovary. Complete flower: A flower in which all four floral parts—sepal, petal, stamen, and carpel—are present. Incomplete flower: A flower in which one or more of the four floral parts is lacking. -merous: An ending that, together with a number, indicates the number of each of the floral parts. For example, 3-merous would mean having three parts of each kind. a-: A prefix used to indicate absence of a floral part (“apetalous” means that petals are lacking). Distribution of Sexes Perfect flower: A single flower that has both stamens and pistils; bisexual, or hermaphroditic. Imperfect flower: A flower in which either stamens or pistils are lacking; unisexual. A unisexual flower possessing only an androecium is referred to as a staminate flower; a flower possessing only a gynoecium is referred to as a pistillate, or carpellate, flower. Monoecious: Having both carpellate and staminate flowers on the same plant. Dioecious: Having carpellate flowers on one plant, and staminate flowers on another of the same species. Arrangement of Floral Parts Spiral arrangement: Floral parts are arranged in a spiral on the floral axis, or receptacle. Whorled arrangement: Having the floral parts arranged in circles, or in whorls (in the same plane), on the floral axis, or receptacle. SYMMETRY OF FLOWERS Regular: Corolla made up of similarly shaped petals that radiate from the center of the flower and that are equidistant from one another; actinomorphic, or radially symmetrical, flower. Irregular: Having one or more parts in at least one whorl of different form from other parts of the same whorl; a flower that is bilaterally symmetrical, or zygomorphic. MONOECIOUS VS DIOECIOUS INSERTION OF FLORAL PARTS Insertion of Floral Parts Hypogyny: Floral organization in which the sepals, petals, and stamens are attached to the receptacle at the base of the ovary, which is superior (that is, free from the calyx). Perigyny: Floral organization in which the sepals, petals, and stamens are attached to the margin of a cup-shaped extension of the receptacle (the hypanthium). The ovary is free of surrounding parts and is superior. Epigyny: Floral organization in which the sepals, petals, and stamens apparently grow' from the top of the ovary, which is inferior (that is, completely or partially attached to the calyx). Note: both hypogynous and perigynous flowers have superior (S) ovaries; only epigynous flowers have inferior (I) ovaries. PLACENTATION TYPE Axile: Having placentae arranged around (or ovules borne upon) a central column of tissue in an ovary with as many locules as there are carpels. Parietal: Having placentae borne upon the ovary wall or on an extension of it; the
Recommended publications
  • Only Write Down the Correct Answer Next to the Appropriate Question Number on Your Answer Sheet
    BOT1B10– November 2015 FACULTY OF SCIENCE DEPARTMENT OF BOTANY and PLANT BIOTECHNOLOGY MODULE PLANT DIVERSITY BOT1B10 CAMPUS APK EXAMINATION NOVEMBER 2015 DATE SESSION 14/November/2015 08:30 – 11:30 EXAMINER: PROF A. MOTEETEE INTERNAL MODERATOR: MRS J. WILLIAMSON DURATION: 3 HOURS MARKS: 120 ____________________________________________________________________________________ NUMBER OF PAGES: 11 PAGES INSTRUCTIONS: ANSWER ALL THE QUESTIONS _____________________________________________________________________________ QUESTION 1 [10] Choose an answer that matches the question the best: Only write down the correct answer next to the appropriate question number on your answer sheet. 1.1. Apart from food and beverages, plants provide human beings with: a) Oxygen, nitrogen, construction materials b) Medicines, essential oils, oxygen, fuel c) Paper, wool, cotton, silk d) Herb and spices, carbon, sodium, fodder for animals 1 BOT1B10– November 2015 1.2 Gymnosperms bear their seeds on the surfaces of: a) Leaves b) Cones c) Stems d) Fruits 1.3 Bryophytes have life cycles that depend on what for reproduction? a) Water b) Soil c) Grass d) Sun 1.4 Plants that have xylem and phloem are known as: a) Seed plants b) Photosynthetic plants c) Vascular-plants d) Non-vascular plants 1.5 Which on the following is the stalk by which the leaf blade is attached to the stem? a) Peduncle b) Pedicel c) Inflorescence d) Petiole 1.6 Seed plants use __________ and ___________ to reproduce. a) Pollen and seed b) Seeds and water c) Food and water d) Leaves and petals 1.7
    [Show full text]
  • 1Lecture Notes 2013
    5/24/13 Week 8; Monday Lecture: Monocots Part I: Some animal pollinated monocots Monocots are monophyletic! Traditional primary division is between Dicots and Monocots Trait “Dicots” Monocots # cotyledons 2 cotyledons 1 cotyledon stem ring of vascular bundles scattered vascular bundles vascular cambium often present no vascular cambium habit woody or herbaceous primarily herbaceous (no true wood) leaves simple or compound usually simple venation net veined: pinnate, palmate parallel (or striate) leaf narrow usually broad, often sheathing insertion (wrapping around the stem) roots primary --> secondary primary roots abort; adventitious roots, too adventitious roots only taproot or fibrous usually fibrous flower parts parts in 4’s, 5’s, or ∞ (rarely 3) parts in 3’s pollen monosulcate or tricolpate monosulcate Today we will look at some of the more important families of animal pollinated monocots found in the temperate zone Overhead of monocot phylogeny based on rbcL - distribution of monocot groups. Chase et al. 2000, overhead Page 57 5/24/13 Lab only; limited discussion here. Show: “Plants are Cool, Too” video Araceae - Arum family (109 gen/2830 spp) 1) herbs (some epiphytes) 2) lvs simple or compound; broad and having an apparent petiole (‘pseudo-lamina’) development not same as in a dicot leaf blade 3) calcium oxalate crystals usually present – physical deterrent to herbivory 4) Inflorescence consisting of - spathe - bract (often colorful) surrounding the flowers - spadix - axis on which the flowers are borne (male above; female below,
    [Show full text]
  • Plant Systematics Economic Botany and Ethnobotany
    CORE PAPER- VIII PLANT SYSTEMATICS ECONOMIC BOTANY AND ETHNOBOTANY UNIT - III Rubiaceae Systematic position Class-Dicotyledons Sub class -Gamopetalae Series –Inferae Order - Rubiales Family-Rubiaceae Distribution of Rubiaceae: It is commonly known as Madder or Coffee family. It includes 6000 species and 500 genera. In India it is represented by 551 species. The members of this family are distributed in tropics, sub-tropics and temperate regions. Vegetative characters Habit and Habitatat. Trees -Adina cordifolia Shrubs- Gardenia (mostly), some are twinners- Paederia Climbers -Uncaria Herbs -Gallium Epiphytic eg Hymenopogon parasiticus Helophytic, or mesophytic, or xerophytic, or hydrophytic (Limnosipanea). Majority are perennials a few annuals, cultrivated as well as wild Root –branched tap root Stem- aerial,erect or weak, cylindrical or angular herbaceous Gallium or woody ,armed with spines Randia dementorum ,glabrous,pubescent hairy or smooth Stephegyne, branched, dichasial cymein Gallium. Leaf - Cauline and ramal Leaves stipulate. Stipules interpetiolar (between the petioles , or intrapetiolar; between the petiole and axis .leafy Gallium divided Borreria hair like Pentas sometimes fused to form a sheath GardeniaPetiolate, subsessile or sessile Gallium Leaves opposite Cinchona or whorled Gallium simple; Lamina entire; Cinchona opposite decussate Ixora ), reticulate Floral characters: Inflorescence- Flowers aggregated in ‘inflorescences’, or solitary (less often); in cymes, or in panicles, Cinchona or in heads (rarely, e.g. Morindeae, Gardenia). The ultimate inflorescence units compound cyme MussaendaInflorescences with involucral bracts (when capitate), or without involucral bracts; Flowers -Bracteate Gardenia ebracteate Cinchona Bracts persistant –Hymenopogan Pedicellate,subsessile Gardenia sessile RandinBracteolate or ebracteolate, complete or incomplete actinomorphic,, Rarely Zygomorphic Randeletin bisexual unisexual Coprosma , epigynous regular; mostly 4 merous, or 5 merous; cyclic; tetracyclic.
    [Show full text]
  • Flowering Plant Families of Northwestern California: a Tabular Comparison
    Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 12-2019 Flowering Plant Families of Northwestern California: A Tabular Comparison James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Flowering Plant Families of Northwestern California: A Tabular Comparison" (2019). Botanical Studies. 95. https://digitalcommons.humboldt.edu/botany_jps/95 This Flora of Northwest California-Regional is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. FLOWERING PLANT FAMILIES OF NORTHWESTERN CALIFORNIA: A TABULAR COMPARISON James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State University December 2019 Scientific Name Habit Leaves Sexuality • Floral Formula Common Name Fruit Type • Comments Aceraceae TSV SC:O U-m [P] • K 4-5 C 4-5 A 4-10 G (2) Maple Paired samaras • leaves often palmately lobed Acoraceae H S:A U-m • P 3+3 A 6 or G (3) Sweet Flag Berry • aquatic; aromatic rhizomes Aizoaceae HS S:AO B • P [3] 5 [8] A 0-4 Gsi (2-5-4) Ice Plant Capsule (berry-like) • fleshy; stamens divided, petaloid Alismataceae
    [Show full text]
  • 11-FLOWER DIAGRAMES, FORMULAS and FLOWER SYMETRY FLOWER FORMULAS and DIAGRAMES
    11-FLOWER DIAGRAMES, FORMULAS AND FLOWER SYMETRY FLOWER FORMULAS and DIAGRAMES 1. FLOWER FORMULAS Floral formula is a means to represent the structure of a flower using numbers, letters and various symbols, presenting substantial information about the flower in a compact form. It can represent particular species, or can be generalized to characterize higher taxa, usually giving ranges of organ numbers. Floral formulae are one of the two ways of describing flower structure developed during the 19th century, the other being floral diagrams. Apart from the graphical diagrams, the flower structure can be characterized by textual formulae. A floral formula consists of five symbols indicating from left to right: Floral Symmetry Number of Tepal Number of Sepals Number of Petals Number of Stamens Number of Carpels Tepals Sepals Patals Stamen Carpels P K C A G The parts of the flower are described according to their arrangement from the outside to the inside of the flower. If an organ type is arranged in more whorls, the outermost is denoted first, and the whorls are separated by “+”. If the organ number is large or fluctuating, is denoted as “∞”. 2. FLOWER DIAGRAMES Floral diagram is a graphic representation of flower structure. It shows the number of floral organs, their arrangement and fusion. Different parts of the flower are represented by their respective symbols. Rather like floral formulas, floral diagrams are used to show symmetry, numbers of parts, the relationships of the parts to one another, and degree of connation and/or adnation. Such diagrams cannot easily show ovary position. FLOWER SYMMETRY Floral symmetry describes whether, and how, a flower in particular its perianth, can be divided into two or more identical or mirror-image parts.
    [Show full text]
  • Phylogenetic Reconstruction Prompts Taxonomic Changes in Sauropus, Synostemon and Breynia (Phyllanthaceae Tribe Phyllantheae)
    Blumea 59, 2014: 77–94 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE http://dx.doi.org/10.3767/000651914X684484 Phylogenetic reconstruction prompts taxonomic changes in Sauropus, Synostemon and Breynia (Phyllanthaceae tribe Phyllantheae) P.C. van Welzen1,2, K. Pruesapan3, I.R.H. Telford4, H.-J. Esser 5, J.J. Bruhl4 Key words Abstract Previous molecular phylogenetic studies indicated expansion of Breynia with inclusion of Sauropus s.str. (excluding Synostemon). The present study adds qualitative and quantitative morphological characters to molecular Breynia data to find more resolution and/or higher support for the subgroups within Breynia s.lat. However, the results show molecular phylogeny that combined molecular and morphological characters provide limited synergy. Morphology confirms and makes the morphology infrageneric groups recognisable within Breynia s.lat. The status of the Sauropus androgynus complex is discussed. Phyllanthaceae Nomenclatural changes of Sauropus species to Breynia are formalised. The genus Synostemon is reinstated. Sauropus Synostemon Published on 1 September 2014 INTRODUCTION Sauropus in the strict sense (excluding Synostemon; Pruesapan et al. 2008, 2012) and Breynia are two closely related tropical A phylogenetic analysis of tribe Phyllantheae (Phyllanthaceae) Asian-Australian genera with up to 52 and 35 species, respec- using DNA sequence data by Kathriarachchi et al. (2006) pro- tively (Webster 1994, Govaerts et al. 2000a, b, Radcliffe-Smith vided a backbone phylogeny for Phyllanthus L. and related 2001). Sauropus comprises mainly herbs and shrubs, whereas genera. Their study recommended subsuming Breynia L. (in- species of Breynia are always shrubs. Both genera share bifid cluding Sauropus Blume), Glochidion J.R.Forst. & G.Forst., or emarginate styles, non-apiculate anthers, smooth seeds and and Synostemon F.Muell.
    [Show full text]
  • Basic Botany
    Basic Botany - Flower Structure The Birmingham Botanical Gardens & Glasshouses Brief Descriptions of Activities Flower Structure • a Study Centre-led activity • Using large-scale models and bee (glove puppet) to take pupils through the basic flower parts and their functions Investigating Floral Structure A wide range of flowers are always on display in the glasshouses. Their structure can be recorded in a variety of ways: • Directed observation through use of questionnaires • Drawing half a flower and labelling its structure • Creating a plan of the flower as if viewed from above • Creating a simple floral formula (this worksheet is using a simplified form of the recording system used by botanists) See worksheets 1-4 at back of booklet. Pollination Mechanisms • An extension of this work is to look at a variety of ways in which plants are designed in order to attract different pollinators See ‘A Guide To Pollinators’ at back of booklet. • Busy Bees. This is a game where pupils act out pollination See worksheet 5 at back of booklet Guide To Pollinators “Bee Flowers” Typically yellow, blue or purple. They produce pollen and lots of nectar, are often marked with lines and blotches and are sweetly scented at certain times of the day. “Butterfly Flowers” Vivid colours, often purple, red or white. Usually open during the day with a long thin corolla tube, lots of nectar and a strong scent. “Moth Flowers” Often white, p ink or pale yellow, open at night and have a heavy scent. “Wasp Flowers” Often pinkish or dirty red, with horizontal or drooping cups into which the short tongued wasp can push its head.
    [Show full text]
  • Sample Chapter
    CHAPTER 2 Description of Plants PRINCIPLES OF PLANT DESCRIPTION HABIT: Natural locality of plants. • Ornamental plants: Plants cultivated for its beauty rather than its use. e.g. Marigold, Gladiolus etc. • Food crop: For economic use e.g. Maize, Rice, Apple etc. • Wild crop: Grow or produced without human care. e.g. Wild rice (Zizania aquatica), Wild rye (Elymus spp.). HABITAT: Place where a plant lives and grows. • Annual: Occurring every year. e.g. Rice, Brinjal etc. • Biennial: Occurring every two years. e.g. Raddish, Turnip etc. • Perennial: Present in all seasons of year i.e. continual. e.g. Mango, Rose etc. NATURE: Inherent or basic character. • Herb: Bushy, non-woody, erect, prostrate and decumbent. e.g. Mint, Hyacinth etc. • Shrub: Several stemmed, medium-sized woody plant. e.g. Jasmine, Rose etc. • Tree: Stout, woody trunk with few or no branches on its lower part, perennial. e.g. Mango, Pine, Banyan etc. • Clums: Nodes and internodes clearly visible. e.g. Bambusa These may be a) Deciduous—Falling off leaves annually. b) Evergreen—Having foliage leaves which remain green. c) Perennial—Persists for several years. Root Organ of a plant which grows downwards, away from light and towards water. It doesn’t bear leaves and buds but has protective apex called root cap. 10 Introduction to Pharmacognosy • Assimilatory root: Roots become green and serve for photosynthesis. e.g. Trapa • Tuberous root: Swollen, root without any definite shape. e.g. Sweet potato • Fasciculated root: Several tuberous roots occur in cluster at the base of stem. e.g. Dahlia • Nodulous root: Tuberous root becomes suddenly swollen at apex.
    [Show full text]
  • JUDD W.S. Et. Al. (1999) Plant Systematics
    CHAPTER8 Phylogenetic Relationships of Angiosperms he angiosperms (or flowering plants) are the dominant group of land Tplants. The monophyly of this group is strongly supported, as dis- cussed in the previous chapter, and these plants are possibly sister (among extant seed plants) to the gnetopsids (Chase et al. 1993; Crane 1985; Donoghue and Doyle 1989; Doyle 1996; Doyle et al. 1994). The angio- sperms have a long fossil record, going back to the upper Jurassic and increasing in abundance as one moves through the Cretaceous (Beck 1973; Sun et al. 1998). The group probably originated during the Jurassic, more than 140 million years ago. Cladistic analyses based on morphology, rRNA, rbcL, and atpB sequences do not support the traditional division of angiosperms into monocots (plants with a single cotyledon, radicle aborting early in growth with the root system adventitious, stems with scattered vascular bundles and usually lacking secondary growth, leaves with parallel venation, flow- ers 3-merous, and pollen grains usually monosulcate) and dicots (plants with two cotyledons, radicle not aborting and giving rise to mature root system, stems with vascular bundles in a ring and often showing sec- ondary growth, leaves with a network of veins forming a pinnate to palmate pattern, flowers 4- or 5-merous, and pollen grains predominantly tricolpate or modifications thereof) (Chase et al. 1993; Doyle 1996; Doyle et al. 1994; Donoghue and Doyle 1989). In all published cladistic analyses the “dicots” form a paraphyletic complex, and features such as two cotyle- dons, a persistent radicle, stems with vascular bundles in a ring, secondary growth, and leaves with net venation are plesiomorphic within angio- sperms; that is, these features evolved earlier in the phylogenetic history of tracheophytes.
    [Show full text]
  • Flower and Floral Trichome Morphology of Species of Dyckia Schult. F
    Acta Botanica Brasilica - 31(1): 29-41. January-March 2017. doi: 10.1590/0102-33062016abb0335 Flower and fl oral trichome morphology of species of Dyckia Schult. f. (Bromeliaceae, Pitcairnioideae), and their importance to species characterization and genus taxonomy Jordano Dorval Tavares de Carvalho¹, Liliana Essi² and João Marcelo Santos de Oliveira³* Received: September 10, 2016 Accepted: December 15, 2016 . ABSTRACT Th is paper presents a morphological analysis of the fl ower and fl oral trichomes of three rare species of Dyckia: Dyckia ibicuiensis, D. polyclada and D. racinae. Flowers at anthesis were collected from natural populations and subjected to morphometric and microscopic analysis. Among the most representative features for Dyckia are: morphometrics of individual fl oral parts; the general confi guration of the androecium and gynoecium; the degree of fusion of the stigmatic lobes; the morphology of the ovules, especially in relation to the chalazal appendix; and the presence and constitution of peltate trichomes in the perianth, which exhibited a polymorphism not previously reported for Dyckia. Th e characters were eff ective at describing each species, proposing phylogenetic inferences and recognizing infrageneric groupings. We propose two species groups, which are consistent with previous hypotheses about the relationships among the species of the genus. Th e objective of this study was to provide fl oral morphological data useful for characterizing these three rare species, delimiting the genus and forming phylogenetic hypotheses. Keywords: androecium, Dyckia, Encholirium, fl oral morphology, gynoecium, peltate trichome, perianth, Pitcairnioideae Introduction taxon, morphological studies of diff erent fl ower organs have allowed for inferences of evolutionary, systematic, ecological and physiological orders in diverse genera of the Morphological and anatomical studies using diff erent family (Varadarajan & Brown 1988; Brown & Gilmartin approaches have provided effective instruments for 1989; Brown & Terry 1992; Sajo et al.
    [Show full text]
  • Flora-Lab-Manual.Pdf
    LabLab MManualanual ttoo tthehe Jane Mygatt Juliana Medeiros Flora of New Mexico Lab Manual to the Flora of New Mexico Jane Mygatt Juliana Medeiros University of New Mexico Herbarium Museum of Southwestern Biology MSC03 2020 1 University of New Mexico Albuquerque, NM, USA 87131-0001 October 2009 Contents page Introduction VI Acknowledgments VI Seed Plant Phylogeny 1 Timeline for the Evolution of Seed Plants 2 Non-fl owering Seed Plants 3 Order Gnetales Ephedraceae 4 Order (ungrouped) The Conifers Cupressaceae 5 Pinaceae 8 Field Trips 13 Sandia Crest 14 Las Huertas Canyon 20 Sevilleta 24 West Mesa 30 Rio Grande Bosque 34 Flowering Seed Plants- The Monocots 40 Order Alistmatales Lemnaceae 41 Order Asparagales Iridaceae 42 Orchidaceae 43 Order Commelinales Commelinaceae 45 Order Liliales Liliaceae 46 Order Poales Cyperaceae 47 Juncaceae 49 Poaceae 50 Typhaceae 53 Flowering Seed Plants- The Eudicots 54 Order (ungrouped) Nymphaeaceae 55 Order Proteales Platanaceae 56 Order Ranunculales Berberidaceae 57 Papaveraceae 58 Ranunculaceae 59 III page Core Eudicots 61 Saxifragales Crassulaceae 62 Saxifragaceae 63 Rosids Order Zygophyllales Zygophyllaceae 64 Rosid I Order Cucurbitales Cucurbitaceae 65 Order Fabales Fabaceae 66 Order Fagales Betulaceae 69 Fagaceae 70 Juglandaceae 71 Order Malpighiales Euphorbiaceae 72 Linaceae 73 Salicaceae 74 Violaceae 75 Order Rosales Elaeagnaceae 76 Rosaceae 77 Ulmaceae 81 Rosid II Order Brassicales Brassicaceae 82 Capparaceae 84 Order Geraniales Geraniaceae 85 Order Malvales Malvaceae 86 Order Myrtales Onagraceae
    [Show full text]
  • Scholar (Botany) University of Baluchistan Session:2017-2018
    Mr.Hameedullah kakar M.sc: scholar (botany) university of Baluchistan session:2017-2018 FLOWER DESCRIPTION SOME IMPORTANT TERMS Parts of Flowers • The pistil has three parts: stigma, style, and ovary. • The stigma is the sticky surface at the top of the pistil; it traps and holds the pollen. • The style is the tube-like structure that holds up the stigma. • The style leads down to the ovary that contains the ovules. Classification of FLOWERS: • Complete: flowers possessing petals and sepals • Incomplete: flowers possessing either petals or sepals • Perfect: flowers containing both pistil and stamen • Imperfect: flowers containing either the pistil or stamen Parts of Flowers • A complete flower has a stamen, a pistil, petals, and sepals. • An incomplete flower is missing one of the four major parts of the flower, the stamen, pistil, petals, or sepals. Parts of Flowers • Flowers can have either all male parts, all female parts, or a combination. • Flowers with all male or all female parts are called imperfect (cucumbers, pumpkin and melons). • Flowers that have both male and female parts are called perfect (roses, lilies, dandelion). Students are to illustrate the following: • Complete/ Perfect Flower • Incomplete/Perfect Flower • Complete/ Imperfect Flower • Incomplete/ Imperfect Flower Types of Flowers: • As previously mentioned, there are plants which bear only male flowers (staminate plants) or bear only female flowers (pistillate plants). • Species in which the sexes are separated into staminate and pistillate plants are called dioecious. • Most holly trees and pistachio trees are dioecious; therefore, to obtain berries, it is necessary to have female and male trees. Types of Flowers: • Pistillate (female) flowers are those which possess a functional pistil(s) but lack stamens.
    [Show full text]